RU2093831C1 - Способ определения концентрации креатинина в биологических жидкостях - Google Patents

Способ определения концентрации креатинина в биологических жидкостях Download PDF

Info

Publication number
RU2093831C1
RU2093831C1 RU94038070A RU94038070A RU2093831C1 RU 2093831 C1 RU2093831 C1 RU 2093831C1 RU 94038070 A RU94038070 A RU 94038070A RU 94038070 A RU94038070 A RU 94038070A RU 2093831 C1 RU2093831 C1 RU 2093831C1
Authority
RU
Russia
Prior art keywords
creatinine
sample
optical density
alkaline
concentration
Prior art date
Application number
RU94038070A
Other languages
English (en)
Other versions
RU94038070A (ru
Inventor
Г.Е. Яковлева
В.И. Пупкова
Original Assignee
Акционерное общество "Вектор-Бест"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Вектор-Бест" filed Critical Акционерное общество "Вектор-Бест"
Priority to RU94038070A priority Critical patent/RU2093831C1/ru
Publication of RU94038070A publication Critical patent/RU94038070A/ru
Application granted granted Critical
Publication of RU2093831C1 publication Critical patent/RU2093831C1/ru

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Применение: медицинская и клиническая биохимия. Сущность изобретения: тестируемый образец крови или мочи инкубируют с пикриновой кислотой в течение 20 мин, сначала в щелочной среде с последующим измерением оптической плотности реакционной смеси, затем смесь закисляют буферным раствором глицин HCl до pH 3,5 - 5,0, инкубируют 15 мин и вновь измеряют оптическую плотность реакционной смеси. Для закисления смеси используют преимущественно 3,2 М глицин HCl буфер, pH 2,2. Концентрацию креатинина определяют по разности оптических плотностей реакционной смеси в щелочной и кислой среде. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области медицинской биохимии, аналитической химии, а именно к созданию способов, позволяющих количественно определить креатинин в сыворотке крови и моче колориметрическим методом.
В настоящее время в медицинской практике для определения содержания креатинина в биологических жидкостях используют два основных способа: ферментативный способ, основанный в основном на реакции креатинина с креатининфосфокиназой, и колориметрический способ, основанный на реакции Яффе взаимодействии креатинина с пикриновой кислотой. Продуктом реакции Яффе является пикрат креатинина, который в щелочной среде имеет оранжевую окраску. Интенсивность окраски пропорциональна концентрации креатинина.
Ферментативные способы сложны и дорогостоящи, поэтому в России используют в основном колориметрические способы. Однако реакция Яффе, лежащая в основе всех колориметрических методов, неспецифична. Пикриновая кислота при взаимодействии с целым рядом веществ (белки, глюкоза, ацетон, ацетоуксусная и пировиноградная кислоты и т.д.) образует соединения, имеющие оранжевую или красно-оранжевую окраску, что приводит к завышению результатов анализа.
Существует два подхода к решению этой проблемы: измерять интенсивность окраски в первые минуты реакции, когда вклад примесных соединений в реакцию Яффе еще невелик (кинетические методы), и удалять примесные соединения из тестируемого образца перед анализом (колориметрические методы по конечной точке).
Известен, например, кинетический способ определения концентрации креатинина путем инкубации тестируемого образца в щелочной среде в присутствии пикриновой кислоты при температуре 37oC с последующим определением скорости образования пикрата креатинина по двум точкам в начальный период реакции в течение 1 2 мин /1/. Однако этот способ требует не только очень высокой квалификации специалистов, но и дорогостоящего спектрофотометрического оборудования, позволяющего с высокой точностью произвести такие измерения. Сильно же завышенные концентрации глюкозы, пирувата, ацетона, аскорбата в тестируемом образце приводят к ошибочно завышенным результатам по креатинину. Поэтому этот способ не обеспечивает правильность определения концентрации креатинина в сыворотке крови и моче больных сахарным диабетом.
Наиболее ближайшим к заявляемому прототипом является способ определения концентрации креатинина, заключающийся в следующем /2/: тестируемый образец сыворотки крови депротеинезируют при помощи трихлоруксусной кислоты. Образовавшийся при этом осадок удаляют центрифугированием. Супернатант инкубируют с пикриновой кислотой в щелочной среде при комнатной температуре 20 мин и затем измеряют оптическую плотность раствора при длине волны (500 505) нм против холостой пробы. Параллельно в тех же условиях измеряют оптическую плотность калибровочной пробы, а расчет концентрации креатинина проводят по формуле
Figure 00000002
,
где Еп оптическая плотность тестируемой пробы в щелочной среде (ед.опт. пл.);
Ек оптическая плотность калибровочной пробы в щелочной среде (ед.опт.пл. );
177 концентрация калибратора (мкмоль/л).
Данный способ позволяет определять содержание креатинина в интервале от 25 до 880 мкмоль/л.
Коэффициент вариации не более 5%
Основным недостатком прототипа являются завышенные результаты анализа из-за вклада примесных веществ, образующих с пикриновой кислотой комплексы, имеющие оранжевую окраску, в суммарную окраску реакционной смеси, а также сложность способа из-за необходимости процедуры осаждения белков и дальнейшего отделения осадка центрифугированием.
Технической задачей изобретения является повышение точности и упрощение способа определения концентрации креатинина.
Поставленная задача достигается тем, что реакцию креатинина с пикриновой кислотой проводят последовательно сначала в щелочной среде, где образуется пикрат креатинина, имеющий оранжевую окраску, затем в кислой среде, где происходит обесцвечивание пикрата креатинина, при этом комплексы пикриновой кислоты с другими веществами окраску сохраняют. Содержание креатинина рассчитывают по разности оптических плотностей реакционной смеси в щелочной и кислой среде.
Предлагаемый способ заключается в следующем.
Тестируемый образец инкубируют с пикриновой кислотой в щелочной среде 20 мин при температуре (18 30)oC и измеряют оптическую плотность при длине волны 500 нм против холостой пробы при той же длине волны. Затем в смесь добавляют буферный раствор глицин HCI до pH смеси 3,5 5,0. Смесь выдерживают 15 мин при температуре (18 30)oC и повторно измеряют оптическую плотность раствора при длине волны 500 нм. При закислении комплекс креатинина с пикриновой кислотой обесцвечивается, оставшаяся окраска относится к комплексам пикриновой кислоты с примесными веществами (белками, глюкозой, ацетоном и т. д. ). Параллельно, аналогичным образом проводят измерения оптической плотности калибровочной пробы в щелочной и кислой среде.
Расчет содержания креатинина проводят относительно оптической плотности калибровочного образца (раствора креатинина) по формуле
Figure 00000003
,
где Еп1 оптическая плотность тестируемой пробы в щелочной среде (ед.опт. пл.);
Еп2 оптическая плотность тестируемой пробы в кислой среде (ед.опт.пл.);
Ек1 оптическая плотность калибровочной пробы в щелочной среде (ед.опт. пл.);
Ек2 оптическая плотность калибровочной пробы в кислой среде (ед.опт.пл. );
150 концентрация калибратора (мкмоль/л).
Предлагаемый способ позволяет обеспечить правильность определения креатинина (100±5)% с воспроизводимостью результатов (коэффициент вариации) менее 5% в области концентраций креатинина 25 900 мкмоль/л.
На фиг. 1 представлена зависимость обесцвечивания пикрата креатинина от времени и pH реакционной смеси. Из фиг. 1 видно, что оптимум pH этой реакции лежит в интервале от 3,5 до 5,0.
Определяющими отличительными признаками заявляемого способа являются следующие:
реакцию креатинина с пикриновой кислотой проводят последовательно сначала в щелочной, а затем в кислой среде при pH 3,5 5,0, что позволяет повысить точность определения креатинина за счет вычетания вклада в цветную реакцию примесных соединений, т.к. в кислой среде обесцвечивается лишь пикрат креатинина, комплексы же пикриновой кислоты с другими веществами свою окраску сохраняют;
для закисления реакционной смеси и обесцвечивания пикрата креатинина используют преимущественно буферный раствор глицин HCl в концентрации 3,2 M pH 2,2, что позволяет проводить реакцию обесцвечивания пикрата креатинина при pH 3,5 5,0 и избежать тем самым осаждения белков, которое наблюдается при pH <3,5 и мешает анализу; проведение реакции при pH > 5 не позволяет полностью обесцветить комплекс креатинина с пикриновой кислотой; использование глицин HCl буфера высокой концентрации, а именно 3,2 M pH 2,2 является преимущественным вариантом предлагаемого способа, т.к. позволяет добавлять в реакционную смесь минимальное удобное количество буфера (например, 0,05 мл). В качестве подкислителя реакционной смеси могут использоваться любые другие доступные реагенты, например смесь 4,6 N серной кислоты и 3,5 N уксусной кислоты и др.
Изобретение иллюстрируется следующими примерами.
Исследования проводили на нормальных и патологических контрольных сыворотках крови фирмы Rendox. Содержание креатинина по паспорту фирмы в нормальной сыворотке 148 мкмоль/л, в патологической 497 мкмоль/л.
Пример 1
К 0,1 мл сыворотки крови прибавляют 0,7 мл 30 ммоль/л пикриновой кислоты и 0,3 мл 0,28 моль/л гидрата окиси натрия. Смесь выдерживают 20 мин при температуре (18 30)oC и измеряют оптическую плотность раствора при длине волны 500 нм. Затем в реакционную смесь добавляют 0,05 мл буферного раствора 3,2 M глицин HCl pH 2,2 до pH реакционной смеси 4,4. Смесь выдерживают 15 мин при температуре (18 30)oC и измеряют оптическую плотность раствора при длине волны 500 нм. Рассчитывают содержание креатинина относительно калибратора.
Концентрация креатинина в нормальной сыворотке крови составляет 153 мкмоль/л, отклонение 3,3% Концентрация креатинина в патологической сыворотке крови 497 мкмоль/л, отклонение 0%
Пример 2
Способ осуществляют аналогично примеру 1, но при закислении добавляют в реакционную смесь буферный раствор 3,2 М глицин HCl pH 2,2 до pH реакционной смеси 5,0.
Концентрация креатинина в нормальной сыворотке крови составляет 150 мкмоль/л, отклонение 1,4% Концентрация креатинина в патологической сыворотке крови составляет 492 мкмоль/л, отклонение 1,0%
Пример 3
Способ осуществляют аналогично примеру 1, но закисление реакционной смеси проводят до pH 3,5.
Концентрация креатинина в нормальной сыворотке крови составляет 145 мкмоль/л, отклонение 2% Концентрация креатинина в патологической сыворотке крови 490 мкмоль/л. отклонение 1,4%
Пример 4
Способ осуществляют аналогично примеру 1, но для закисления реакционной смеси до pH 3,5 используют смесь 4,6 N серной кислоты и 3,5 N уксусной кислоты.
Концентрация креатинина в нормальной сыворотке крови составляет 142 мкмоль/л, отклонение 4% Концентрация креатинина в патологической сыворотке крови 500 мкмоль/л, отклонение 0,6%
Использование предлагаемого способа позволяет по сравнению с прототипом
повысить точность определения концентрации креатинина в биологических жидкостях за счет исключения нежелательного вклада в цветную реакцию примесных соединений;
упростить способ за счет исключения длительной стадии осаждения и отделения мешающих белков.

Claims (2)

1. Способ определения концентрации креатинина в биологических жидкостях, включающий инкубацию образца биологической жидкости в щелочной среде в присутствии пикриновой кислоты с последующим определением оптической плотности тестируемой и калибровочной проб относительно холостой пробы, отличающийся тем, что после измерения оптической плотности щелочного раствора пробы ее подкисляют до pH от 3,5 до 5,0 и повторно определяют оптическую плотность раствора относительно холостой пробы при той же длине волны, а искомую концентрацию креатинина определяют по отношению разности величин оптических плотностей тестируемой пробы в щелочной и кислой средах к разности величин оптических плотностей калибровочной пробы в щелочной и кислой средах.
2. Способ по п. 1, отличающийся тем, что для подкисления пробы используют 3,2 М глицин HCl буфер с pH 2,2.
RU94038070A 1994-10-10 1994-10-10 Способ определения концентрации креатинина в биологических жидкостях RU2093831C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94038070A RU2093831C1 (ru) 1994-10-10 1994-10-10 Способ определения концентрации креатинина в биологических жидкостях

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94038070A RU2093831C1 (ru) 1994-10-10 1994-10-10 Способ определения концентрации креатинина в биологических жидкостях

Publications (2)

Publication Number Publication Date
RU94038070A RU94038070A (ru) 1996-10-20
RU2093831C1 true RU2093831C1 (ru) 1997-10-20

Family

ID=20161535

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94038070A RU2093831C1 (ru) 1994-10-10 1994-10-10 Способ определения концентрации креатинина в биологических жидкостях

Country Status (1)

Country Link
RU (1) RU2093831C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Инструкция по применению набора реактивов "Креатинин" 1060 фирмы "Орион", Россия. 2. Инструкция по применению набора реактивов для определения содержания креатинина в сыворотке (плазме) крови и моче по конечной точке ("Диаком" Креатинин КТ), фирма "Диаком-Ока", Россия. *

Also Published As

Publication number Publication date
RU94038070A (ru) 1996-10-20

Similar Documents

Publication Publication Date Title
Reddy et al. A simplified method for the analysis of hydroxyproline in biological tissues
CA2088652C (en) Improved oxidative coupling dye for spectrophotometric quantitative analysis of analytes
CN102292450B (zh) 用于检测被湿度损害的尿测试条的装置和方法
Giustarini et al. Adaptation of the Griess reaction for detection of nitrite in human plasma
US3934977A (en) Reagent and method for determining total calcium in body fluids
US3890099A (en) Colorimetric assay for urea
Heick et al. Automated determination of urine and cerebrospinal fluid proteins with Coomassie Brilliant Blue and the Abbott ABA-100
Jarvie et al. A rapid method for the emergency analysis of paraquat in plasma using second derivative spectroscopy
JPH04181159A (ja) 補正用紙片を有する呈色試験紙
RU2093831C1 (ru) Способ определения концентрации креатинина в биологических жидкостях
US4077772A (en) Method for the determination of hemoglobin in trace amounts
US4211531A (en) Colorimetric cholesterol assay
US4131430A (en) Urea assay
US3649198A (en) Diagnostic method for the determination of uric acid in blood
Levinson Kinetic centrifugal analyzer and manual determination of serum urea nitrogen, with use of o-phthaldialdehyde reagent.
Ertingshausen et al. Single-Reagent Method for Rapid Determination of Total Bilirubin with the" CentrifiChem" Analyzer
WO1995014932A1 (fr) Procede de dosage d&#39;une substance reagissant avec un reactif de limulus
CA2569206A1 (en) Assay system with in situ formation of diazo reagent
US4030885A (en) Bilirubin determination
US3477818A (en) Method for the determination of the bilirubin content of body liquids
Copeland et al. Hemoglobin Determination in Plasma or Serum by First-Derivative Recording Spectrophotometry: Evaluation of the Procedure of Soloni, Cunningham, and Amazon
US3348920A (en) Reagent and method for the quantitative determination of bilirubin
SU1720004A1 (ru) Способ определени альбумин-глобулинового коэффициента крови
CA1108038A (en) Method for checking the intensity of destruction of malignant cells in the human body
RU2089909C1 (ru) Способ определения концентрации конъюгированного билирубина в сыворотке крови