RU2092448C1 - Способ очистки и обеззараживания водных сред - Google Patents

Способ очистки и обеззараживания водных сред Download PDF

Info

Publication number
RU2092448C1
RU2092448C1 RU96103767A RU96103767A RU2092448C1 RU 2092448 C1 RU2092448 C1 RU 2092448C1 RU 96103767 A RU96103767 A RU 96103767A RU 96103767 A RU96103767 A RU 96103767A RU 2092448 C1 RU2092448 C1 RU 2092448C1
Authority
RU
Russia
Prior art keywords
radiation
density
aqueous media
ultrasonic
power
Prior art date
Application number
RU96103767A
Other languages
English (en)
Other versions
RU96103767A (ru
Inventor
А.Н. Ульянов
О.А. Локтев
И.И. Теленков
Е.М. Земсков
В.М. Казанский
В.С. Прокофьев
Original Assignee
Ульянов Андрей Николаевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ульянов Андрей Николаевич filed Critical Ульянов Андрей Николаевич
Priority to RU96103767A priority Critical patent/RU2092448C1/ru
Application granted granted Critical
Publication of RU2092448C1 publication Critical patent/RU2092448C1/ru
Publication of RU96103767A publication Critical patent/RU96103767A/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations

Landscapes

  • Physical Water Treatments (AREA)

Abstract

Использование: очистка и обеззараживание промышленных, бытовых, сточных вод, а также поверхностных водоисточников до норм международных стандартов. Сущность изобретения: для осуществления способа водные среды обрабатывают в ультразвуковой камере при частоте более 25 кГц и плотности мощности ультразвуковых колебаний 0,05-2 Вт/см2. После ультразвуковой обработки воду направляют на ультрафиолетовое обеззараживание и фильтрование. Для ультрафиолетового обеззараживания используют импульсный источник излучения сплошного спектра в области 190-300 нм при длительности импульса 10-6-2•10-4 с и плотности импульсной мощности излучения в любом сечении объема обрабатываемой среды не менее 20 кВт/м2, или разрядный источник излучения непрерывного действия в области 190-300 нм с плотностью мощности излучения в любом сечении объема обрабатываемой среды не менее 50 Вт/м2. 1 з.п. ф-лы, 2 табл.

Description

Изобретение относится к обработке сточных вод, содержащих органические и неорганические соединения в количествах, превышающих ПДК, и может быть использовано для очистки и обеззараживания природных поверхностных водоисточников, промышленных и бытовых сточных вод до питьевых норм.
Известен способ очистки сточных вод путем химической обработки реагентом с последующим ультрафиолетовым (УФ) облучением. Для УФ- облучения используют импульсный источник излучения сплошного спектра в области 200-300 нм с длительностью импульса 10-6 5•10-4 при плотности мощности излучения не менее 100 кВт/м2 сточных вод (пат. РФ N 2019529, C 02 F 9/00, 1/32, 1994 г.) Способ позволяет эффективно очищать стоки от токсичных соединений и патогенной микрофлоры, однако имеет следующие недостатки: многостадийность; наличие химического реагента, дополнительно загрязняющего воду; необходимость использования биосооружений для утилизации образующегося осадка; высокий уровень мощности импульсного источника излучения, приводящий к низкой долговечности излучателя и частой замене газоразрядных трубок; интенсивная соляризация кварцевой колбы источника излучения из-за недостаточной самоочистки.
Известны также способы, предусматривающие для очистки воды ультразвуковую (УЗ) обработку. В частности, известен способ осветления суспензий с помощью наложения на нее УЗ-вибраций низкой частоты (а. с. N 1286528, C 02 F 1/36, 1987 г.) УЗ используют также для уплотнения осадков сточных вод (пат. ГДР N 248572), для извлечения металлов (пат. США N 4755270) и т. п.
Известны способы, сочетающие химическую обработку (например, коагулянтом) с УЗ- воздействием (Е.Д. Бабенков. "Очистка воды коагулянтами". М. Наука, 1977 г. с. 279-280). К их недостаткам можно отнести низкую скорость осветления водных сред, дополнительное загрязнение воды химическим реагентом и пр.
Наиболее близким по технической сущности и достигаемому результату является способ обработки сточных вод, предусматривающий предварительное воздействие УЗ с последующим УФ-облучением ртутной лампой (заявка ФРГ N 3739979, C 02 F 1/32, 9/00, 1987 г.) В данном способе УЗ-обработка используется для устранения вредного влияния взвешенных частиц на УФ-дезинфекцию путем разрушения макромолекул и агломератов. Недостатком очистки водных сред по такой схеме является то, что при значительных концентрациях взвешенных частиц, агломератов, макромолекул в водной среде требуются очень высокие уровни мощности УФ-излучения, что связано с экранированием и сильным поглощением создаваемого излучения. Это обстоятельство делает известный способ экономически невыгодным и в большинстве случаев не обеспечивает необходимую степень очистки и обеззараживания сточных вод.
Целью изобретения является обеспечение высокой степени очистки водных сред от органических, неорганических, токсических загрязнений, патогенной микрофлоры до показателей, соответствующих нормам международных стандартов; снижение энергетических затрат на обеззараживание; универсальность по отношению к различным типам загрязнений.
Для достижения указанной цели водные среды, содержащие различные виды загрязнений, в т. ч. патогенную микрофлору, подвергают воздействию УЗ с частотой УЗ-колебаний более 25 кГц и их мощностью 0,05-2 Вт/см2, после чего проводят УФ- облучение. Для УФ-облучения могут быть использованы импульсный источник излучения сплошного спектра в области длин волн 190-300 нм при длительности импульса 10-6- 2•10-4 с и плотности импульсной мощности излучения в любом сечении объема обрабатываемой среды не менее 20 кВт/м2, а также разрядный источник излучения непрерывного действия в области 190-300 нм с плотностью мощности излучения в любом сечении объема обрабатываемой среды не менее 50 Вт/м2. Безвредные продукты после фотохимической обработки могут быть дополнительно отфильтрованы угольным или любым другим фильтром.
В предложенном способе используется принципиально новый подход к стадии УФ- обеззараживания водных сред. В отличие от известных способов, использующих УЗ-воздействие для целей разрушения макромолекул или агломератов, в заявленном способе подобраны режимные параметры УЗ-обработки, обеспечивающие формирование в водной среде парогазовых пузырьков. Последующее воздействие УФ-излучения на такие пузырьки приводит к образованию при значительно меньших энергетических затратах мощных окислителей (свободных радикалов, пироксидных радикалов), что в свою очередь способствует более интенсивному протеканию фотохимических реакций во всем объеме обрабатываемой среды. В результате таких реакций происходит окисление загрязнений до таких соединений, как вода, углекислый газ и т. п. или до химически нейтральных нерастворимых фрагментов, легко улавливаемых при необходимости простейшими фильтрами.
Более подробно механизм взаимодействия пузырьков с загрязнениями можно представить в следующем виде.
При воздействии УЗ-колебаний кавитационные пузырьки (каверны) возникают в первую очередь на неоднородностях, являющихся переносчиками патогенной микрофлоры, токсинов и недоступных зачастую для УФ-излучения. Образующиеся в полости пузырьков под действием этого излучения мощные окислители при попадании на границу пузырька соприкасаются с поверхностью элемента неоднородности и происходят интенсивные окислительные реакции, приводящие к инактивации токсинов и микрофлоры. Аналогично происходит инактивация в объеме обрабатываемой жидкости. Поскольку суммарная поверхность кавитационных пузырьков велика, то и эффективность обеззараживания водной среды значительно увеличивается. Следует учесть и то, что парогазовые пузырьки существуют в течение продолжительного времени, и процесс окисления при посредстве образовавшихся в них активных свободных радикалов продолжается и после воздействия на водную среду УФ-излучения.
Следует заметить, что для формирования кавитационных парогазовых пузырьков нужной плотности необходимы особые режимные параметры работы УЗ-камеры.
Установлено, что на частоте 25 кГц наблюдаются резонансные явления парогазовых пузырьков, образующихся при кавитации (это подтверждается в опытах со звуколюминесценцией). Для поддержания оптимальных пространственно-временных характеристик пузырьков необходимо инициировать механические колебания с частотами, кратными резонансной.
Плотность мощности УЗ-колебаний выбрана из следующих соображений. Известно, что для большинства процессов пороговая интенсивность УЗ составляет 0,01-0,1 Вт/см2. Однако при плотности мощности менее 0,05 Вт/см2 не происходит образования парогазовых пузырьков требуемой прочности и в достаточном количестве. Значения более 2 Вт/см2 губительно действуют на живые организмы и обслуживающий персонал, а инактивация эффективно обеспечивается и при меньших значениях интенсивности УЗ из заявленного интервала.
Для УЗ воздействия с таким параметрами частоты и мощности может быть использован УЗ- возбудитель любой из известных конструкций (например, гидродинамический, пьезоэлектрический или магнитострикционный небольшой мощности с одно- или двухкаскадным концентратором УЗ-излучения). При этом один из каскадов может быть создан из самой очищенной жидкости за счет соответствующей конструкции трубопровода (конической, экспоненциальной, ампульной-катеноидальной), по которому она протекает и подвергается воздействию УЗ-излучения.
Обработанная в УЗ-камере водная среда, представляющая собой газожидкостную систему (за счет большого количества газовых пузырьков, распределенных во всем объеме водной среды), поступает на стадию УФ-обеззараживания. Для осуществления этой стадии могут быть использованы как импульсные, так и разрядные источники излучения сплошного спектра в области длин волн 190-300 нм. При использовании импульсного источника излучения поддерживают плотность мощности излучения в каждом сечении объема обрабатываемой среды не менее 20 кВт/см2 при длительности импульсов 10-6-2•10-4 с. При использовании разрядного источника плотность мощности излучения в любом сечении объема обрабатываемой среды составляет не менее 500 Вт/м2. Эти параметры обеспечивают максимальный эффект очистки.
В качестве импульсного источника УФ- излучения используют мощную импульсную газоразрядную лампу с источником питания, формирующим импульсы разрядного тока и снабженным системой инициирования разряда.
В качестве разрядного источника УФ-излучения используют металлогалогенные и др. источники света, имеющие необходимый высокий уровень излучения в УФ-области 190-300 нм и размещенные в защитной кварцевой оболочке.
Выбранные параметры работы источников УФ- излучения позволяют:
-эффективно проводить инактивацию практически любых органических и неорганических соединений, а также патогенной микрофлоры в водных средах до показателей, соответствующих нормам международных и отечественных стандартов при существенном снижении (до 10 раз) энергетических затрат на обеззараживание при прочих равных условиях;
увеличить скорость окислительных реакций в обрабатываемом объеме;
устранить соляризацию и биообрастание кварцевых колб импульсных и кварцевых защитных чехлов непрерывных источников УФ-излучения;
создать пролонгирующее (до 10 мин) действие окислителей в кавитационных парогазовых пузырьковых кавернах по окончании УФ-облучения.
Пример 1. Сточную воду, содержащую загрязнения в количествах, указанных в табл. 1, подают в камеру УЗ-обработки. УЗ-колебания с частотой 25 кГц инициируют посредством возбудителя УЗ, на который подаются через усилитель электрические колебания с задающего генератора (в случае пьезоэлектрического или магнитострикционного возбудителя). При использовании гидродинамического возбудителя УЗ-колебаний возбуждение резонатора-излучателя производится за счет натекания струи очищаемой жидкости на преграду. Плотность мощности УЗ-колебаний в активной зоне составляет 0,05 Вт/см2 и более, что достигается при весьма малых мощностях потребления электроэнергии от первичных источников (5-20 Вт при КПД около 10). Повышение интенсивности УЗ в активной зоне происходит за счет 2-х каскадных резонансных экспоненциальных фокусирующих корпусов и увеличения энергии подводимого к излучателю переменного электрического сигнала. После обработки порции воды в УЗ-камере (кавитаторе) в течение 1-2 с она обогащается кавитационными парогазовыми пузырьками диаметром 0,1-0,5 мм, длительность жизни которых при нормальных условиях достигает 10-15 мин. Такая обогащенная вода после УЗ-обработки поступает в камеру УФ-облучения. В камере вдоль ее продольной оси расположены один или несколько импульсных источников излучения сплошного спектра в области 190-300 нм, выполненные в виде трубки, прозрачной для УФ-излучения и заполненной смесью инертных газов или иным пригодным для этих целей веществом. Камера представляет собой корпус из нержавеющей стали цилиндрической формы, снабженный входным и выходным патрубками для подачи и отвода обрабатываемой водной среды. Источник излучения работает в импульсно-периодическом режиме с частотой, варьируемой от 1 до 10 Гц. Длительность импульса регулируется посредством изменения величины секционированной рабочей емкости источника питания и составляет 10-6 с. Плотность импульсной мощности излучения в любом сечении объема среды составляет не менее 20 кВт/м2. За время нахождения в УФ-камере (f 3кГц) каждый объем среды облучается тремя импульсами. После УФ-обработки воду дополнительно фильтруют через слой АУ. Результаты очистки приведены в табл. 1.
Пример 2. Воду обрабатывают в условиях примера 1 при частоте УЗ-колебаний 50 кГц и плотности мощности 2 Вт/см2 с, после чего подвергают УФ-облучению импульсным источником при длительности импульса 2•10-4 с и минимальной плотности мощности 100 кВт/м2 при частоте посылок импульсов 1 Гц. Результаты очистки приведены в табл. 1.
Пример 3. Воду обрабатывают в УЗ-камере при режимных параметрах примера 1 (частота 25 кГц, плотность мощности 0,05 Вт/см2), после чего подают в камеру УФ-дезинфекции с расположенным в ней разрядным источником излучения, выполненным в виде прозрачной для УФ-излучения кварцевой трубки, заполненной смесью газов или паров. Вокруг газоразрядной трубки расположена защитная кварцевая прозрачная для УФ-излучения оболочка, вдоль которой движется облучаемая водная среда. Эта конструкция расположена вдоль продольной оси цилиндрического фотореактора, снабженного входным и выходным патрубками для подачи и отвода обрабатываемой водной среды. Плотность излучения в каждом сечении объема обрабатываемой среды не менее 50 Вт/м2. Время УЗ-обработки составляет 1-2 с, время УФ-облучения 3 с. Результаты очистки приведены в табл. 2.
Пример 4. Воду обрабатывают в условиях примера 2 (50 кГц, 2 Вт/см2) и подвергают УФ-облучению разрядным источником излучения, используемым в примере 3, при плотности мощности излучения в каждом сечении объема среды не менее 100 Вт/м2. Результаты очистки приведены в табл. 2.
Как видно из представленных в табл. 1, 2 данных, заявленный способ позволяет достичь следующих результатов:
при существенном уменьшении энергозатрат в сравнимых условиях достичь высокой степени очистки водной среды от коллоидов и взвешенной органики;
снизить содержание в обрабатываемой водной среде растворенных органических веществ до экологически безопасных норм;
провести обеззараживание среды от патогенной микрофлоры до норм ГОСТа на питьевую воду;
обеспечить выходные параметры по цветности и запаху, удовлетворяющие существующим нормам.

Claims (2)

1. Способ очистки и обеззараживания водных сред, включающий предварительную ультразвуковую обработку с последующим ультрафиолетовым облучением, отличающийся тем, что ультразвуковую обработку проводят при частоте ультразвуковых колебаний более 25 кГц и плотности их мощности 0,05 - 2,0 Вт/см2, а для ультрафиолетового облучения используют импульсный источник излучения сплошного спектра в области 190 300 нм при длительности импульса 10-6 2•10-4c и плотности импульсной мощности излучения в любом сечении объема обрабатываемой среды не менее 20 кВт/м2 или разрядный источник излучения непрерывного действия в области 190 300 нм с плотностью мощности излучения в любом сечении объема обрабатываемой среды не менее 50 Вт/м2.
2. Способ по п.1, отличающийся тем, что после ультрафиолетового облучения водные среды подвергают фильтрованию.
RU96103767A 1996-03-01 1996-03-01 Способ очистки и обеззараживания водных сред RU2092448C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96103767A RU2092448C1 (ru) 1996-03-01 1996-03-01 Способ очистки и обеззараживания водных сред

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96103767A RU2092448C1 (ru) 1996-03-01 1996-03-01 Способ очистки и обеззараживания водных сред

Publications (2)

Publication Number Publication Date
RU2092448C1 true RU2092448C1 (ru) 1997-10-10
RU96103767A RU96103767A (ru) 1997-12-10

Family

ID=20177387

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96103767A RU2092448C1 (ru) 1996-03-01 1996-03-01 Способ очистки и обеззараживания водных сред

Country Status (1)

Country Link
RU (1) RU2092448C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058224A1 (en) * 1999-03-31 2000-10-05 Sig Technology (Nz) Limited Reactor for cleaning and disinfection of aquatic media
EP3015435A1 (en) 2014-10-30 2016-05-04 ZEL-EN, razvojni center energetike Device for reducing microbial contamination of waste water without reagents
RU2717000C2 (ru) * 2015-06-09 2020-03-17 Конинклейке Филипс Н.В. Средство предохранения от обрастания для узла с мокрым отсеком и судно, содержащее такое средство

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент РФ N 2019529, кл. C 02 F 9/00, 1/32, 1994. Авторское свидетельство СССР N 1286528, кл. C 02 F 1/36, 1987. Заявка ФРГ N 3739979, кл. C 02 F 1/32, 1987. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058224A1 (en) * 1999-03-31 2000-10-05 Sig Technology (Nz) Limited Reactor for cleaning and disinfection of aquatic media
EP3015435A1 (en) 2014-10-30 2016-05-04 ZEL-EN, razvojni center energetike Device for reducing microbial contamination of waste water without reagents
RU2717000C2 (ru) * 2015-06-09 2020-03-17 Конинклейке Филипс Н.В. Средство предохранения от обрастания для узла с мокрым отсеком и судно, содержащее такое средство

Similar Documents

Publication Publication Date Title
US10519051B2 (en) Systems and methods for the treatment of ballast water
US6540922B1 (en) Method and device for treating a liquid medium
WO2000058824A1 (en) Method and system for consistent cluster operational data in a server cluster using a quorum of replicas
JP4471551B2 (ja) 水の電気分解によって発生するオゾンで水を処理する装置および方法
US5965093A (en) Decontamination system with improved components
EP1338565A2 (en) Free Radical Generator and method for water treatment
JP2002355551A (ja) 環境汚染物質の分解方法及び装置
US5536400A (en) Apparatus for purifying fluids with UV radiation and ozone
JP2007152155A (ja) 紫外線照射水処理装置
Ghasemi et al. A review of pulsed power systems for degrading water pollutants ranging from microorganisms to organic compounds
RU2472712C2 (ru) Устройство для обеззараживания воды
RU2092448C1 (ru) Способ очистки и обеззараживания водных сред
RU2183197C1 (ru) Устройство для обработки воды
WO2000058224A1 (en) Reactor for cleaning and disinfection of aquatic media
RU2094394C1 (ru) Способ очистки природных и сточных вод и установка для его осуществления
RU2755988C1 (ru) Способ очистки сточных вод
RU2099290C1 (ru) Способ очистки сточных вод нефтехимических и нефтеперерабатывающих производств от растворенных фенолов и нефтепродуктов
RU2170713C2 (ru) Установка для очистки и обеззараживания водных сред
RU2813075C1 (ru) Способ очистки сточных и пластовых вод
RU2727125C1 (ru) Устройство ультразвуковой очистки сточных вод
JPH1177033A (ja) 汚水浄化装置
RU2043974C1 (ru) Способ обеззараживания жидкостей
JP2000093953A (ja) 難分解性有機物分解装置およびそれを利用した難分解性有機物除去方法
JP2004329988A (ja) 液体の浄化処理方法
RU2099294C1 (ru) Способ глубокой очистки высококонцентрированных сточных вод и устройство для его осуществления