RU2086959C1 - Авиационный лазерный газоанализатор для обнаружения утечек из трубопроводов - Google Patents

Авиационный лазерный газоанализатор для обнаружения утечек из трубопроводов Download PDF

Info

Publication number
RU2086959C1
RU2086959C1 RU95109208/25A RU95109208A RU2086959C1 RU 2086959 C1 RU2086959 C1 RU 2086959C1 RU 95109208/25 A RU95109208/25 A RU 95109208/25A RU 95109208 A RU95109208 A RU 95109208A RU 2086959 C1 RU2086959 C1 RU 2086959C1
Authority
RU
Russia
Prior art keywords
unit
radiation
output
control unit
timer
Prior art date
Application number
RU95109208/25A
Other languages
English (en)
Other versions
RU95109208A (ru
Inventor
Игорь Александрович Жученко
Виктор Николаевич Емохонов
Павел Геннадьевич Филиппов
Виктор Николаевич Моисеев
Роберт Никифорович Пихтелев
Original Assignee
Игорь Александрович Жученко
Виктор Николаевич Емохонов
Павел Геннадьевич Филиппов
Виктор Николаевич Моисеев
Роберт Никифорович Пихтелев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Игорь Александрович Жученко, Виктор Николаевич Емохонов, Павел Геннадьевич Филиппов, Виктор Николаевич Моисеев, Роберт Никифорович Пихтелев filed Critical Игорь Александрович Жученко
Priority to RU95109208/25A priority Critical patent/RU2086959C1/ru
Publication of RU95109208A publication Critical patent/RU95109208A/ru
Application granted granted Critical
Publication of RU2086959C1 publication Critical patent/RU2086959C1/ru

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Использование: изобретение относится к газоанализу, а именно, к области определения мест и интенсивности утечек природного газа из магистральных трубопроводов. Сущность: устройство содержит два лазера, оптически сопряженные с блоком формирования и вывода излучения, которое облучает контролируемый участок земной поверхности вблизи газопровода, и регистрирует рассеянное от земной поверхности излучение с помощью приемной оптической системы и фотоприемного устройства, которое подключено к усилителю-преобразователю. Электрические импульсы с выхода усилителя- преобразователя поступают в блок буферной памяти, а затем в вычислитель, после чего результат сравнения отражается на сигнальном устройстве и записывается на самописце, играющем роль долговременной памяти. В устройстве каждый лазер подключается к соответствующему выходу блока управления режимами работ, состоящего из блока формирования задержки, таймера, двух усилителей-преобразователей, блока управления перестройкой, между каждым лазером и блоком формирования и вывода излучения дополнительно установлен блок перестройки излучения, независимо и плавно перестраивающий длину волны излучения в диапазоне 3,1-3,6 мкм, подключенный к блоку управления режимами работы и оптически связанный с одним из двух дополнительно установленных блоков калибровки и контроля, выходы которых подключены к блоку управления режимами работы, кроме того, в блоке управления режимами работы соответствующие выходы коммутатора связаны с каждым усилителем-преобразователем, таймером и блоком управления перестройкой, таймер связан с блоком формирования задержки, выход коммутатора подключен к вычислителю, выход таймера подключен к блоку буферной памяти, а вход блока управления перестройкой связан с вычислителем. Для дополнительного повышения точности определения координат места утечки, за блоком формирования и вывода излучения дополнительно установлен на оптической оси блок пространственного сканирования излучения, оптически связывающий через облучаемый участок земной поверхности выход блока формирования и вывода излучения с входом приемной оптической системы, и подключенный к блоку управления режимами работы, в который дополнительно установлен блок управления пространственным сканированием. 1 з.п. ф-лы, 5 ил.

Description

Изобретение относится к газоанализу, а именно, области определения мест и интенсивности утечек природного газа и ШФЛУ из магистральных трубопроводов с помощью приборов, устанавливаемых на борт летательных аппаратов.
Наиболее распространены оптические газоанализаторы [1-5] в которых исследуемый газ помещается в кювету при известных термодинамических условиях, источник излучения просвечивает газовую смесь в кювете, а из анализа прошедшего излучения определяется состав газовой смеси и концентрация газа. Часто для повышения точности измерений газоанализатор снабжается дополнительной кюветой с эталонным газом и результаты измерения получаются путем сравнения двух излучений, прошедших через измерительную и эталонную кюветы. Подобные устройства обеспечивают высокую точность измерений, но скорость контроля при использовании такого газоанализатора на подвижном носителе крайне низка.
Более высокую скорость контроля обеспечивают лазерные газоанализаторы, которые при установке их на подвижный носитель позволяют измерить локальную или среднюю по трассе концентрацию примеси в атмосфере без уменьшения эксплуатационной скорости носителя. Наибольшую универсальность обеспечивают лазерные газоанализаторы, работающие по методу комбинационного рассеяния и состоящие из лазерного излучателя, системы формирования и вывода излучения, приемного оптического тракта, фотоприемника, системы регистрации и системы обработки и хранения информации [6-9] Теоретически такие приборы позволяют путем облучения контрольной точки пространства получить информацию обо всех молекулах, присутствующих в контролируемом объеме, используя только один лазерный импульс. Однако в случае контроля утечек природного газа (в котором метан занимает в зависимости от месторождения 90-97% объема) на первое место выходит чувствительность приборов к концентрации анализируемого газа, в нашем случае метана и легких углеводородов, таких как этан, пропан, бутан, гексан. Сечение комбинационного рассеяния для метана составляет примерно 2•10(-29)см2, тогда как сечение поглощения метана в центре линий поглощения дает значение примерно 5•10(-19) 2•10(-18)см2. Поэтому более чувствительны газоанализаторы, использующие абсорбционные свойства газов и, в частности, работающие по методу дифференциального поглощения [10-14]
Для анализа метана традиционно эффективно используются гелий-неоновые лазеры, работающие на длине волны 3,3922 мкм, которая совпадает с центром линии P7 спектра поглощения метана [15-10] Наиболее близок к заявляемому газоанализатору авиационный лазерный газоанализатор [20] предназначенный для обнаружения утечек природного газа из трубопроводов, использующий метод дифференциального поглощения, и два гелий-неоновых лазера в качестве излучателей, работающих на длинах волн соответственно 3,3922 мкм и 3,3912 мкм, одна из которых попадает в линию поглощения, а другая лежит вне ее (фиг.1). Использование двух источников излучения связано с установкой прибора на подвижном носителе, что требует возможно меньшей задержки между импульсами излучения на длинах волн 11 и 12. Так, при времени задержки между импульсами, например, в 20 мкс необходимо было бы иметь эквивалентный источник излучения мощных лазерных импульсов, следующих с частотой в 50 кГц, что неэффективно и технически трудно реализуемо из-за ограничений мощности источника бортового электропитания. Известное устройство содержит два лазера, оптически сопряженные с блоком формирования и вывода излучения, которое облучает контролируемый участок земной поверхности вблизи газопровода, и регистрирует рассеянное от земной поверхности излучение с помощью приемной оптической системы и фотоприемного устройства, которое подключено к усилителю-преобразователю. Электрические импульсы, соответствующие принятому излучению на длинах волн 11 и 12, с выхода усилителя-преобразователя поступают в блок буферной памяти, а затем в вычислитель, которым в прототипе является электронная схема, формирующая сигнал, пропорциональный отношению импульсов, соответствующих излучению на длинах волн 11 и 12, и сравнивающая полученное значение с априорно заданным порогом, после чего результат сравнения отражается на сигнальном устройстве, которым является лампочка или звуковой сигнал и записывается на самописце, играющем роль долговременной памяти.
Известное техническое решение обеспечивает достаточную чувствительность при малых концентрациях метана (фиг.2). По мере роста концентрации метана в облаке утечки интенсивность регистрируемого излучения на длине волны 11 (3.3922 мкм) очень быстро уменьшается до нуля, не позволяя оценить величину концентрации (фиг. 3). Наиболее важными, требующими оперативного вмешательства являются утечки газа с взрывоопасной концентрацией. Как известно, взрывоопасной является концентрация метана в смеси с воздухом от 3 до 60% от общего объема газовой смеси. Известное устройство, таким образом, является только индикатором превышения концентрации некоторой пороговой величины. При большом значении порога возрастает вероятность пропуска утечки меньшего расхода, нежели обусловленное величиной порога значение. При малом значении порога возрастает вероятность ложной тревоги из-за срабатывания устройства при флуктуациях фоновой концентрации метана, среднее значение которой в атмосфере составляет 1,6-2,0 ppm, тогда как дисперсия превышает среднее значение в несколько раз. Таким образом, желательный рабочий диапазон измеряемых концентраций у устройства, предназначенного для контроля за герметичностью газопроводов, должен составлять 1 ppm 600000 ppm, поэтому, чем шире динамический диапазон устройства, тем адекватнее оно удовлетворяет требованиям. Другим важным свойством устройства обнаружения утечек из газопроводов является способность определить объем утечки. Как указывалось выше, из-за маленького динамического диапазона известного устройства, оно позволяет проводить только "оконтуривание" облака утечки по уровню, соответствующему некоторому априорно заданному значению концентрации. Поэтому измерить концентрацию газа внутри облака утечки с использованием известного технического решения не представляется возможным, а значит, отсутствует возможность оценить объем утечки.
Еще одна особенность известного технического решения возможность анализа только одного газа из состава природного газа и ШФЛУ (широких фракций легких углеводородов) метана, поскольку у гелий-неонового лазера нет других совпадений линии излучения с линией поглощения иных веществ.
Техническая задача предложенного технического решения состоит в расширении функциональных возможностей, динамического диапазона измерений и повышения точности определения координат места утечки.
Для достижения поставленной задачи каждый лазер подключается к соответствующему выходу блока управления режимами работ, состоящего из блока формирования задержки, таймера, двух усилителей-преобразователей, блока управления перестройкой, между каждым лазером и блоком формирования и вывода излучения дополнительно установлен блок перестройки излучения, независимо и плавно перестраивающий длину волны излучения в диапазоне 3,1-3,6 мкм, подключенный к блоку управления режимами работы и оптически связанный с одним из двух дополнительно установленных блоков калибровки и контроля, выходы которых подключены к блоку управления режимами работы, кроме того, в блоке управления режимами работы соответствующие выходы коммутатора связаны с каждым усилителем-преобразователем, таймером и блоком управления перестройкой, таймер связан с блоком формирования задержки, выход коммутатора подключен к вычислителю, выход таймера подключен к блоку буферной памяти, а вход блока управления перестройкой связан с вычислителем.
Для дополнительного повышения точности определения координат места утечки за блоком формирования и вывода излучения дополнительно установлен на оптической оси блок пространственного сканирования излучения, оптически связывающий через облучаемый участок земной поверхности выход блока формирования и вывода излучения с входом приемной оптической системы, и подключенный к блоку управления режимами работы, в который дополнительно установлен блок управления пространственным сканированием.
Расширение функциональных возможностей в предложенном техническом решении состоит в том, что введение блока перестройки излучения в диапазоне 3,1-3,6 мкм позволяет проводить контроль за герметичностью не только газопроводов, транспортирующих природный газ, но и продуктопроводов, транспортирующих ШФЛУ, в которых основными компонентами являются этан, пропан, бутан, гексан (фиг.3). Кроме того, в результате использования предложенного технического решения появляется возможность оценить степень взрывоопасности утечки.
Расширение динамического диапазона измерений состоит в том, что благодаря плавной перестройке длины волны излучения в указанном выше диапазоне, появляется возможность выбора такой длины волны, на которой сечение поглощение контролируемого газа обеспечивает прием ненулевой интенсивности излучения на длинах волн 11, 12, а значит, позволяет измерить и оценить концентрацию газа в облаке утечки, а из пространственного распределения концентрации оценить объем утечки и степень ее взрывоопасности. Другая возможность расширения динамического диапазона измерений заключается в том, что при известном составе транспортируемого газа, контроль ведется не по основной его компоненте, например, по метану в природном газе, а по этану, концентрация которого в облаке утечки составляет 0.01-0.03 от концентрации метана в облаке утечки.
Повышение точности определения места утечки достигается за счет возможности измерения концентрации газа внутри облака утечки, тогда как известное техническое решение позволяет проводить только оконтуривание облака утечки, диаметр которого в зависимости от чувствительности (величины порога в известном решении) может достигать десятков метров при контроле с высоты в 100-150 м. При любых условиях распространения газа концентрация его над местом утечки максимальна, поскольку при дальнейшем распространении газового потока его геометрические размеры увеличиваются, при этом концентрация газа в сечении падает в соответствии с законами сохранения.
Схема предложенного технического решения приведена на фиг.4 и 5. На приведенной схеме имеется название блоков. Раскроем подробнее их смысл и приведем возможные варианты реализации. Лазер накачки представляет собой импульсно-периодический источник излучения, например, Nd:YAG лазер, состоящий из излучателя, блока питания, блока охлаждения, и, возможно, блока управления затвором, обеспечивающим генерацию последовательности лазерных импульсов с длиной волны 1,06 мкм в режиме генерации гигантских импульсов.
Блок калибровки и контроля может быть выполнен по произвольной схеме, в частности, он может состоять из оптической схемы, обеспечивающей отвод части излучения из основного канала, прохождение излучения через кювету, наполненную эталонным газом при низком давлении с известным спектром поглощения, например, эталонным газом может служить метан, и двух фотоприемников, один из которых регистрирует энергию импульса излучения на входе в кювету, а другой на выходе из кюветы. Блок перестройки излучения может, например, являться параметрическим генератором света, на базе нелинейного кристалла LiNbО3, состоящий из резонатора, блока селекции дин волн, электромеханического блока, позволяющего изменять ориентацию оптической оси кристалла относительно направления распространения излучения накачки, термостабилизатора, поддерживающего постоянной температуру кристалла и самого нелинейного кристалла, преобразующего накачное излучение с длиной волны 1,06 мкм в излучение в диапазоне от 2 до 4 мкм в зависимости от спектральных характеристик зеркал резонатора и угла поворота кристалла, и, в частности, в диапазоне 3,1-3,6 мкм, согласно формуле изобретения. Блок формирования и вывода излучения представляет собой произвольную оптическую схему, обеспечивающую формирование пучка лазерного излучения с требуемой расходимостью и апертурой и облучение лазерным излучением участка земной поверхности вблизи трубопровода, и, в частности, представлять собой отклоняющее зеркало, полупрозрачную пластину и формирующий телескоп. Приемная оптическая система может быть построена по произвольной схеме, например, в виде простой линзы, фокусирующей излучение на фотоприемник, чувствительный в диапазоне длин волн перестройки параметрического генератора, за которым установлен предварительный усилитель, согласующий выход фотоприемника с входом, усилителя-преобразователя. Усилитель-преобразователь представляет собой электронный усилитель, за которым может быть установлен аналого-цифровой преобразователь. Блок буферном памяти может быть реализован в виде магнитной памяти, либо электронной, например, на микросхемах типа К132РУ8. Вычислителем может быть электронная схема с использованием микропроцессоров, а может быть стандартной ПЭВМ, в которой реализуется запрограммированный алгоритм работы. Блок долговременной памяти может быть выполнен в виде магнитной памяти на дискетах, на магнитной ленте, либо в виде файлов, хранимых в ПЭВМ на жестком диске, либо на электронных микросхемах типа К132РУ8. Визуализатор может быть реализован либо в виде дисплея ПЭВМ, либо в виде любого индикатора, способного отразить информацию о наличии утечки и концентрации газа в ней, например, на электронных лампах цифровых индикатора. Блок формирования времени задержки представляет собой электронную схему формирующую последовательность импульсов, поступающих либо на блоки питания лазеров накачки, при значительных временах задержки, либо на блоки управления затвором, и в простейшем варианте может быть реализован по схеме генератора прямоугольных импульсов с регулируемой частотой следования. Коммутатор представляет собой управляемую электронную ключевую схему, например, на тиристорах, которая обеспечивает требуемый режим работы газоанализатора. Усилители-преобразователи в блоке управления могут быть решены по схеме, аналогичной описанный выше для канала приемного тракта. Блок управления перестройкой представляет собой электронную схему, формирующую управляющие электрические импульсы для исполнительного элемента в блоке перестройки, например, шагового двигателя, который в зависимости от полярности и амплитуды управляющего импульса посредством механического привода поворачивает оптическую ось кристалла на требуемый угол. Таймер представляет собой электронную схему, формирующую последовательность синхроимпульсов, обеспечивающих генерацию и последующую обработку последовательности пар импульсов, соответствующих лазерным импульсам на длинах волн 11 и 12.
Принцип работы предложенного технического решения следующий.
Режим "Калибровка". С блока формирования задержки электрический сигнал подается либо только на один из лазеров, и тогда калибровка каждого лазера осуществляется без привязки по времени, либо в виде последовательности пар импульсов с задержкой, достаточной для выполнения одного цикла операции калибровки. Выбор требуемого режима калибровки осуществляется по сигналам от коммутатора на блок управления перестройкой и усилители-преобразователи. Режим независимой по времени калибровки обоих блоков перестройки длины волны излучения наиболее приемлем для работы в наземных условиях, когда не требуется большая оперативность, на этапе подготовки к полету, тогда как режим подстройки попеременно, то одного, то другого блока перестройки длины волны излучения пригоден для оперативной работы в воздухе, когда требуется, например, оценить степень взрывоопасности утечки. Лазер накачки генерируем импульс, который, преобразуясь в блоке перестройки излучения по длинам волн в более длинноволновую область в соответствии с начальным положением оси нелинейного кристалла относительно направления распространения излучения накачки, затем поступает в блок калибровки и контроля. Часть излучения, поступающая на блок формирования и вывода излучения в настоящем режиме не используется. С выходов фотоприемников в блоке калибровки и контроля (соответственно выводы 3 и 4 в 1 блоке, и 6 и 7 во втором), сигналы поступают на соответствующие входы усилителей-преобразователей в блоке контроля. После преобразования сигналы с выхода усилителей-преобразователей (выводы 9,10) поступают в блок буферной памяти, и затем в вычислитель, в котором в результате сравнения амплитуд импульсов и сравнения с эталонными значениями длин волн, хранящимися либо в виде номеров отсчетов шагового двигателя, либо в виде эталонного спектра, формируется сигнал, который затем в блоке управления перестройкой преобразуется в управляющий сигнал для исполнительного элемента (шагового двигателя), в результате чего привод поворачивает ось кристалла на угол, соответствующий выбранной длине волны излучения. Считывание сигнала из блока буферной памяти в вычислитель происходит по команде от таймера (выход 14 в блоке управления режимами работы), который также синхронизирует моменты запуска того или иного лазера накачки через блок формирования задержки. В зависимости от точности изготовления и сборки исполнительных элементов привода и параметров исполнительного элемента эта операция проводится либо за один цикл, либо для обеспечения требуемой точности установки (в зависимости от ширины линии) за несколько циклов. В результате осуществления режима "калибровка" в блоках перестройки длины волны излучения нелинейные кристаллы оказываются по отношению к направлению распространения излучения накачки в положении, которое обеспечивает преобразование исходной длины волны накачного излучения в известные длины волн 11 и 12 соответственно для одного и другого блоков перестройки длины волны излучения.
Режим "Работа". В этом режиме по сигналам от коммутатора, в вычислителе, таймере и усилителях-преобразователях происходит переключение с режима "калибровка" на режим "работа". По синхроимпульсу от таймера блок формирования задержки формирует последовательность сигналов, обеспечивающих генерацию последовательности лазерных импульсов попеременно от каждого лазера накачки. Соответственно в блоках перестройки длины волны излучения происходит преобразование исходной длины волны накачного излучения в длины волн 11 в одном блоке перестройки и в 12 в другом. Часть излучения с длинами волн 11 и 12 поступает в соответствующие блоки калибровки и контроля, и затем с выходов 3 и 6, отвечающих сигналам с фотоприемников в блоках калибровки и контроля, установленным до калибровочной кюветы, поступает на вход усилителей-преобразователей в блоке управления режимами работы и с их выходов 9 и 10 в блок буферной памяти, а отсюда в вычислитель. Другая часть излучения из блока перестройки длины волны излучения поступает на блок формирования и вывода излучения, и затем по единой оптической оси на облучаемый участок земной поверхности вблизи трубопровода.
Таймер обеспечивает последовательное размещение в блоке буферной памяти и последующее считывание в вычислитель четырех сигналов по два на каждой длине волны с выхода блока калибровки и контроля, а также сигнала, соответствующего принятому приемным трактом рассеянному от земли излучению в вычислитель. Вычислитель рассчитывает значение средней концентрации контролируемого газа на трассе вдоль линии визирования и в случае превышения концентрацией фонового значения, оценивает объем утечки и оценивает объем утечки на основе заданного цикла измерений пространственного распределения концентрации и определяет координаты утечки на основе исходных данных от системы навигации или расчетного значения в случае полета по известному маршруту (использование эталонной карты местности с применением реперных точек). Текущая информация с вычислителя отражается на дисплее, позволяя проводить оперативный контроль за герметичностью трубопроводов. В блок долговременной памяти в зависимости от задания и условий полета на трассе заносится либо вся информация, которая поступает на дисплей, либо только информация об утечке (координаты, объем, профиль концентрации и пр.).
Опыт проведения исследований показывает, что при отсутствии пространственного сканирования лазерным излучением по земной поверхности точность определения места утечки снижается из-за ограниченных летных возможностей летательных аппаратов. Погодные условия (боковой ветер, ухудшение метеорологической видимости и пр.) осложняют полет летательного аппарата над трассой трубопровода, так что результирующая траектория представляет собой случайной формы кривую со средней линией совпадающей (или параллельной) трассе трубопровода в лучшем случае. Поэтому введение ручного управления пространственным положением оси лазерного излучения на земной поверхности или автоматического сканирования осью лазерного излучения в направлении, перпендикулярном линии движения, позволяет более точно определить место утечки. В этом режиме в соответствии с п.2 формулы изобретения в предлагаемое устройство дополнительно устанавливается блок пространственного сканирования, за блоком формирования и вывода излучения, и блок управления пространственным сканированием в блок управления режимами работы. Блок пространственного сканирования может представлять из себя гироплатформу, с установленной на ней двугранной зеркальной призмой, а блок управления пространственным сканированием электронная схема, формирующая питающие напряжения для гироплатформы, а также сигналы управления гироплатформой (в ручном режиме управляемые дополнительно от "кнюппеля", в автоматическом режиме от генератора сигналов). В полете при ручном режиме управления оператор исходя из оперативной оценки обстановки с помощью кнюппеля изменяет положение оптической оси зондирующего и регистрируемого лазерного излучения в желаемом направлении. В автоматическом режиме положение оси визирования лазерного излучения меняется по определенному заранее алгоритму в зависимости от решаемой задачи без вмешательства извне.
Предлагаемое техническое решение было реализовано на практике, прошло наземные испытания, размещалось на вертолете МИ-8Т и прошло контрольные летные испытания. Результаты испытаний показали работоспособность как по составным частям, так и в целом в режиме обнаружения искусственно создаваемой подземной утечки природного газа.

Claims (2)

1. Авиационный лазерный газоанализатор для обнаружения утечек из трубопроводов, состоящий из двух лазеров, оптически сопряженных с блоком формирования и вывода излучения и через облучаемый участок земной поверхности с приемной оптической системой и фотоприемным устройством, которое подключено к усилителю-преобразователю, который подключен к блоку буферной памяти, связанному с вычислителем, а выходы вычислителя связаны с сигнальным устройством и блоком долговременной памяти, отличающийся тем, что сигнальное устройство выполнено в виде дисплея, каждый лазер подключен к соответствующему выходу дополнительно устанавливаемого блока управления режимами работ, состоящего из блока формирования задержки, таймера, коммутатора, двух усилителей-преобразователей, блока управления перестройкой, между каждым лазером и блоком формирования и вывода излучения из оптической оси дополнительно установлен блок перестройки излучения, независимо и плавно перестраивающий длину волны излучения в диапазоне 3,1 3,6 мкм, подключенный к блоку управления режимами работы, и оптически связанный с одним из двух дополнительно установленных блоков калибровки и контроля, выходы которых подключены к блоку управления режимами работы, в блоке управления режимами работы коммутатор связан с каждым усилителем-преобразователем, таймером и блоком управления перестройкой, таймер связан с блоком формирования задержки, выход коммутатора подключен к вычислителю, выход таймера подключен к блоку буферной памяти, а вход блока управления перестройки связан с вычислителем.
2. Авиационный лазерный газоанализатор для обнаружения утечек из трубопроводов, состоящий из двух лазеров, оптически сопряженных с блоком формирования и вывода излучения и через облучаемый участок земной поверхности с приемной оптической системой и фотоприемным устройством, которое подключено к усилителю-преобразователю, который подключен к блоку буферной памяти, связанному с вычислителем, а выходы вычислителя связаны с сигнальным устройством и блоком долговременной памяти, отличающийся тем, что сигнальное устройство выполнено в виде дисплея, каждый лазер подключен к соответствующему выходу дополнительно устанавливаемого блока управления режимами работ, состоящего из блока формирования задержки, таймера, коммутатора, двух усилителей-преобразователей, блока управления перестройкой, блока управления пространственным сканированием, между каждым лазером и блоком формирования и вывода излучения на оптической оси дополнительно установлен блок перестройки излучения, независимо и плавно перестраивающий длину волны излучения в диапазоне 3,1 3,6 мкм, подключенный к блоку управления режимами работы и оптически связанный с одним из двух дополнительно установленных блоков калибровки и контроля, выходы которых подключены к блоку управления режимами работы, за блоком формирования и вывода излучения установлен на оптической оси блок пространственного сканирования излучения, оптически связывающий через облучаемый участок земной поверхности выход блока формирования и вывода излучения с входом приемной оптической системы, и подключенный к блоку управления режимами работы, в блоке управления режимами работы коммутатор связан с каждый усилителем-преобразователем, таймером и блоком управления перестройкой, таймер связан с блоком формирования задержки, выход коммутатора подключен к вычислителю, выход таймера подключен к блоку буферной памяти, а вход блока управления перестройкой связан с вычислителем.
RU95109208/25A 1995-06-07 1995-06-07 Авиационный лазерный газоанализатор для обнаружения утечек из трубопроводов RU2086959C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95109208/25A RU2086959C1 (ru) 1995-06-07 1995-06-07 Авиационный лазерный газоанализатор для обнаружения утечек из трубопроводов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95109208/25A RU2086959C1 (ru) 1995-06-07 1995-06-07 Авиационный лазерный газоанализатор для обнаружения утечек из трубопроводов

Publications (2)

Publication Number Publication Date
RU95109208A RU95109208A (ru) 1997-06-20
RU2086959C1 true RU2086959C1 (ru) 1997-08-10

Family

ID=20168498

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95109208/25A RU2086959C1 (ru) 1995-06-07 1995-06-07 Авиационный лазерный газоанализатор для обнаружения утечек из трубопроводов

Country Status (1)

Country Link
RU (1) RU2086959C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447554C (zh) * 2005-07-12 2008-12-31 吉林大学 一种甲烷浓度的检测方法和装置
RU209611U1 (ru) * 2021-11-23 2022-03-17 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Беспилотный летательный аппарат для поиска опасных и посторонних предметов на железной дороге
RU2771575C1 (ru) * 2021-08-27 2022-05-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Дистанционный способ обнаружения утечек пропана
RU229752U1 (ru) * 2024-07-29 2024-10-24 Денис Андреевич Старцев Газоанализатор для непрерывного мониторинга выбросов технологических установок на основе диодно-лазерной спектроскопии поглощения

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644937B (zh) * 2016-11-08 2019-05-28 上海禾赛光电科技有限公司 楼宇内燃气泄漏的遥测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 5130544, кл. G 01 N 21/61, 1992. 2. Патент ФРГ N 419346, кл. G 01 N 21/21, А, 1992. 3. Патент ФРГ N 41123356, кл. G 01 N 21/61, 1992. 4. Патент Японии N 4 -62018, кл. G 01 N 21/61, 1992. 5. Патент Великобритании N 2237637, кл. G 01 N 21/61, 21/31, 1991. 6. Лазерный контроль атмосферы./Под ред. Э.Д.Хинкли. - М.: Мир, 1979. 7. Захаров В.М. и др. Лазерные методы исследования загрязнений атмосферы. - Обнинск, 1976. 8. Лазерное зондирование индустриальных аэролей. - М.: Наука, 1986. 9. Лидарные комплексы: современное состояние и перспективы. Оптика атмосферы. 1988, т. 1, N 18, с. 3 - 12. 10. Лазерная спектроскопия атмосферных газов. - Томск, 1978. 11. Межерис Р. Лазерное дистанционное зондирование. - М.: Мир, 1987. 12. Лазерная спектроскопия атомов и молекул. - М.: Мир, 1979. 13. Journal of Mol. Spectrossopy. 1987, V. 117, N 2, р. 381 - 389. 14. Журнал прикладной спетроскопии. Т. XIIY, 1986, в. 6, с. 1009 - 1011. 15. Лазерные абсорбционные методы анализа микроконцентраций га *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447554C (zh) * 2005-07-12 2008-12-31 吉林大学 一种甲烷浓度的检测方法和装置
RU2771575C1 (ru) * 2021-08-27 2022-05-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Дистанционный способ обнаружения утечек пропана
RU209611U1 (ru) * 2021-11-23 2022-03-17 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Беспилотный летательный аппарат для поиска опасных и посторонних предметов на железной дороге
RU229752U1 (ru) * 2024-07-29 2024-10-24 Денис Андреевич Старцев Газоанализатор для непрерывного мониторинга выбросов технологических установок на основе диодно-лазерной спектроскопии поглощения

Also Published As

Publication number Publication date
RU95109208A (ru) 1997-06-20

Similar Documents

Publication Publication Date Title
US7728295B2 (en) Method and apparatus for detecting surface and subsurface properties of materials
ES2392834T3 (es) Configuración de un espectrómetro diodo láser semiconductor y método
Seidel et al. Robust, spatially scanning, open-path TDLAS hygrometer using retro-reflective foils for fast tomographic 2-D water vapor concentration field measurements
WO2019112459A1 (ru) Способ дистанционного измерения концентрации газов в атмосфере
US3843258A (en) Dual beam absorption type optical spectrometer
RU2086959C1 (ru) Авиационный лазерный газоанализатор для обнаружения утечек из трубопроводов
JP4540604B2 (ja) 気体速度センサ
Minato et al. Development of a lidar system for measuring methane using a gas correlation method
RU2091759C1 (ru) Авиационное устройство для обнаружения утечек газа из трубопроводов
Molero et al. The laser as a tool in environmental problems
RU2285251C2 (ru) Дистанционный оптический абсорбционный лазерный газоанализатор
Patel A combined stopped flow temperature jump apparatus with dual beam detection
McClenny et al. Methodology for comparison of open-path monitors with point monitors
Egorov et al. Lidar methods for probing an atmospheric aerosol
Leonard et al. A single-ended atmospheric transmissometer
Herrmann et al. Trace analysis in gases by laser-induced Schlieren technique
Wehe Development of a tunable diode laser probe for measurements in hypervelocity flows
RU2786790C1 (ru) Лазерный оптико-акустический газоанализатор и способ измерения концентрации газа
Boutier et al. Laser velocimeter for wind tunnel measurements
Kelly et al. Suitability of tunable diode laser absorption spectroscopy experiments for low density flows
SU1275272A1 (ru) Абсорбционный газоанализатор
Chen et al. Design of an Airborne DIAL Measurement System for Measuring Concentrations of Atmospheric
Schlamp et al. Homodyne detection laser-induced thermal acoustics velocimetry
Yalin et al. Erosion Measurements by Cavity Ring-Down Spectroscopy for the VHITAL Program
Berezin et al. A car-borne highly sensitive near-IR diode-laser methane detector

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060608