RU2084761C1 - Способ осуществления экзотермических реакций - Google Patents

Способ осуществления экзотермических реакций Download PDF

Info

Publication number
RU2084761C1
RU2084761C1 RU95108566A RU95108566A RU2084761C1 RU 2084761 C1 RU2084761 C1 RU 2084761C1 RU 95108566 A RU95108566 A RU 95108566A RU 95108566 A RU95108566 A RU 95108566A RU 2084761 C1 RU2084761 C1 RU 2084761C1
Authority
RU
Russia
Prior art keywords
catalyst
solid
gaseous
fluidized bed
liquid
Prior art date
Application number
RU95108566A
Other languages
English (en)
Other versions
RU95108566A (ru
Inventor
Н.А. Языков
А.Д. Симонов
В.Н. Пармон
Original Assignee
Институт катализа им.Г.К.Борескова СО РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт катализа им.Г.К.Борескова СО РАН filed Critical Институт катализа им.Г.К.Борескова СО РАН
Priority to RU95108566A priority Critical patent/RU2084761C1/ru
Publication of RU95108566A publication Critical patent/RU95108566A/ru
Application granted granted Critical
Publication of RU2084761C1 publication Critical patent/RU2084761C1/ru

Links

Landscapes

  • Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Использование: изобретение относится к способам осуществления экзотермических реакций - сжигание газообразных, жидких и твердых топлив для нагрева газов, жидкостей и твердых тел; обезвреживание газообразных, жидких и твердых отходов путем их сжигания; окисление аммиака; получение формальдегида неполным окислением метана и т.п.. Сущность изобретения: способ осуществляют путем проведения экзотермических каталитических реакций на катализаторе, выполненном в виде малообъемной организующей насадки, расположенной в реакторе с псевдоожиженным слоем частиц твердого дисперсного теплоносителя. Каталитически активная насадка выполнена в виде неподвижного блока, элементы которого представляют собой решетки, насадки типа колец "Рашига" и т.п. Каталитически активная насадка содержит катализатор, соответствующий проводимому каталитическому процессу, а исходные вещества для проведения процесса подаются в псевдоожиженный слой инертного теплоносителя в газообразном, жидком или твердом состоянии. В качестве инертного теплоносителя используется твердый дисперсный материал с температурой плавления выше температуры проведения процесса. Предлагаемый способ позволяет полностью исключить использование дорогостоящего сферического катализатора с сохранением при тех же условиях высокой эффективности каталитического процесса. При этом проявляется дополнительное качество - увеличение срока службы катализатора в 50 - 100 раз. 3 з.п. ф-лы.

Description

Изобретение относится к способам осуществления экзотермических реакций: сжигание газообразных, жидких и твердых топлив для нагрева газов, жидкостей и твердых тел; обезвреживание газообразных, жидких и твердых отходов путем их сжигания, окисление аммиака, получение формальдегида неполным окислением метана и т.п.
Известен способ сжигания топлив для нагрева рабочей среды путем подачи воздуха через газораспределительную решетку в псевдоожиженный слой твердого дисперсного теплоносителя с одновременным введением в последний топлива в соотношении α 1,0 1,1 и регулированием температуры слоя путем отвода из него тепла с помощью рабочей среды (Махорин К.Е. и др. Высокотемпературные установки с кипящим слоем. Киев, Техника, 1966, с 36).
Недостатком известного способа является необходимость проведения процесса при высоких температурах (выше 800oC), определяемых скоростью горения топливно-воздушных смесей на поверхности частиц инертного теплоносителя. Для ввода аппарата в работу необходимо нагреть теплоноситель до температуры 600
800oC с помощью дополнительного источника тепла, а для устойчивости работы аппарата температура должна поддерживаться на уровне 800 1000oC. Температура отходящих из слоя дымовых газов близка к температуре слоя частиц теплоносителя. Необходимы дополнительные устройства для утилизации тепла дымовых газов. Высокие температуры сжигания приводят к образованию термических оксидов азота. Присутствующие в топливе связанные соединения азота при таком способе сжигания также окисляются, в основном, с образованием оксида азота. Не исключается образование монооксида углерода и органический соединений типа бензпиренов при дожигании части топлива в надслоевом пространстве.
Известен также способ сжигания газообразных и жидких топлив в неподвижном слое катализатора (Trimm D.L. Appl. Catal. 1983, v.7, p. 249). В этом случае предварительно смешанная и подогретая топливно-воздушная смесь пропускается через слой катализатора, представляющего собой гранулы, кольца или пористые блоки. В качестве активных компонентов катализаторов используются системы Cr2O3, CO3O4, CuO, Смешанные оксиды Cr2O3 Co3O4, Cr2O3 - Cr2O3 и т.д. Используются также катализаторы на основе оксидов металлов с добавкой благородных металлов, например Pt. Температура сжигания топлив определяется активностью и термостабильностью катализаторов и может варьироваться в широких пределах от 200 до 800oC. Отвод тепла от продуктов сгорания топлив проводится через стенки каталитического реактора и последующей системы теплообменников (например, для нагрева воды, воздуха) или непосредственным контактом дымовых газов с рабочей средой.
Недостатками способа являются низкие значения коэффициентов теплоотдачи от дымовых газов, являющихся теплоносителем, к рабочему телу, необходимость использования чрезмерно больших теплообменных поверхностей после слоя катализатора. Из-за значительного адиабатического разогрева в слое катализатора исключается возможность сжигания стехиометрических смесей топлива с воздухом. Поэтому смеси сжигают обычно в избытке воздуха, что приводит к снижению эффективности устройств за счет увеличения объема дымовых газов, повышения объемной скорости топливно-воздушной смеси, проходящей через слой катализатора, т. е. уменьшения времени контакта. Это может привести к неполному сгоранию топлива, и поэтому температура слоя катализатора обычно поддерживается около 800 1100oC. При такой высокой температуре сам катализатор должен обладать высокой термостабильностью и рядом уникальных структурных свойств. С другой стороны, при этих температурах возможны образование как "топливных", так и "термических" оксидов азота и их появление в дымовых газах. При этом теряется экологическое преимущество каталитического сжигания. Также исключается возможность сжигания твердых топлив и отходов.
Наиболее близким к изобретению из предшествующего уровня техники является известный способ сжигания топлив для нагрева рабочей среды путем подачи воздуха с a 1,0 1,1 через газораспределительную решетку в псевдоожиженный слой дисперсного катализатора полного окисления органических веществ с одновременным введением в последний топлива. Температура в слое поддерживается постоянной в интервале 300 800oC за счет изменения расхода рабочей среды. (а.с. СССР N826798).
Изобретение решает задачу улучшения эффективности осуществления экзотермических реакций за счет уменьшения истирания катализатора и улучшения однородности псевдоожиженного слоя.
Задача решается путем проведения каталитических реакций на катализаторе, выполненном в виде малообъемной насадки, а псевдоожиженный слой организуют в объеме последней из частиц инертного материала. Каталитически активная насадка выполнена в виде неподвижного блока, элементы которого представляют собой решетки, насадки тип колец "Рашига" и т.п. Каталитически активная насадка содержит катализатор, соответствующий проводимому каталитическому процессу, а исходные вещества для проведения процесса подают в псевдоожиженный слой инертного теплоносителя в газообразном, жидком или твердом состоянии. В качестве инертного теплоносителя используют твердый дисперсный материал с температурой плавления выше температуры проведения процесса.
Отличительными особенностями предлагаемого способа являются:
1. Катализатор выполнен в виде организующей малообъемной насадки, расположенной в реакторе с псевдоожиженным слоем частиц твердого дисперсного теплоносителя.
2. Каталитически активная насадка выполнена в виде неподвижного блока, элементы которого представляют собой решетки, насадки типа колец "Рашига" и т.п.
3. Каталитически активная насадка содержит катализатор, соответствующий проводимому каталитическому процессу.
4. Исходные вещества для проведения процесса подают в псевдоожиженный слой инертного теплоносителя в газообразном, жидком или твердом состоянии.
5. В качестве инертного теплоносителя используют твердый дисперсный материал с температурой плавления выше температуры проведения процесса.
Пример 1. В реактор диаметром 80 мм загружают 2,0 л катализатора полного окисления веществ с диаметром гранул 2,0 3,0 мм. Под газораспределительную решетку подают воздух для псевдоожижения слоя катализатора и окисления топлива. Внешним электронагревателем нагревают слой катализатора до 300 - 400oC. Затем шнековым дозатором в слой подают порошкообразный бурый уголь Канско-Ачинского месторождения в количестве 3,3 3,5 кг/час. Температуру в слое регулируют количеством воды, подаваемой на охлаждение в теплообменник, погруженный в слой катализатора, и поддерживают на уровне 700oC. Количество оксида углерода в дымовых газах на выходе из реактора, 0,16 об. Степень истирания катализатора 0,3 мас. в сутки.
Пример 2. Аналогичен примеру 1. В реактор с каталитически активной малообъемной насадкой в виде колец из пористой окиси алюминия с нанесенным активным компонентом загружают дисперсный теплоноситель (кварцевый песок). Малообъемную насадку располагают на высоте 300 мм от газораспределительную решетку подают воздух для псевдоожижения слоя катализатора и окисления топлива. Внешним электронагревателем нагревают слой до 300 400oC. Затем шнековым дозатором в псевдоожиженный слой песка на высоте 150 мм от газораспределительной решетки подают бурый уголь Канско-Ачинского месторождения в количестве 3,3 3,5 кг/час. Температуру в слое поддерживают на уровне 700oC за счет регулированного количества воды, подаваемой на охлаждение в теплообменник, погруженный в псевдоожиженный слой над организующей насадкой. Количество оксидов углерода 0,12об. степеней истирания каталитической насадки 0.01 мас. в сутки.
Пример 3. Аналогичен примеру 2. В реакторе устанавливают малообъемную насадку из пористой металлокерамики с нанесенным каталитическим активным компонентом. Количество оксидов углерода -0,15 об. степень истирания каталитической насадки 0,003 мас. в сутки.
Пример 4. Аналогичен 1. В слой подают вместо угля дизельное топливо через форсунку в количестве 0,9 кг/час. Количество оксида углерода в дымовых газах 0,11 об. Степень истирания катализатора -0,4 мас. в сутки.
Пример 5. Аналогичен примерам 2 и 4. Количество оксида углерода 0,11 об. Степень истирания каталитической насадки 0,01 мас. в сутки.
Пример 6. Аналогичен примеру 1. В слой подают газообразный пропан в количестве 0,3 м3/час. Степень окисления пропана 99,9% Степень истирания катализатора 0,3 мас. в сутки.
Пример 7. Аналогичен примерам 2 и 6. Степень окисления пропана 99,9% Степень истирания каталитической насадки 0,01 мас. в сутки.
Пример 8. Аналогичен примеру 1. В слой катализатора вместо угля подают модельную сточную воду, содержащую 20% дизельного топлива и 80% воды. Количество подаваемой сточной воды 2,5 3,0 л/час. Количество оксида углерода в отходящей из реактора парогазовой смеси составляет 0,2 об. Степень истирания катализатора 0,8 мас. в сутки.
Пример 9. Аналогичен примерам 2 и 8. Количество оксида углерода в отходящих газах 0,14 об. Степень истирания каталитической насадки 0,01 мас. в сутки.
Пример 10. В реактор диаметром 80 мм загружают 2,0 л катализатора окисления аммиака с диаметром гранул 2,0 2,5 мм. Слой катализатора разогревают до температуры 500oC внешним электроподогревателем. Под газораспределительную решетку подают воздух для псевдоожижения слоя, затем в слой подают аммиак. Температуру в слое регулируют количеством воды, подаваемой на охлаждение в теплообменник, погруженный в слой катализатора, и поддерживают на уровне 700oC. Степень превращения аммиака в окись азота при соотношении воздух/аммиак, равном 7.1, составляет 76% Степень истирания катализатора - 0,5 мас. в сутки.
Пример 11.0аналогичен примеру 10. В реактор устанавливают малообъемную организующую насадку из пористой металлокерамики, содержащую катализатор окисления аммиака, и загружают дисперсный теплоноситель. Степень превращения аммиака 77% Степень истирания каталитически активной насадки 0,003 мас. в сутки.
Пример 12. Аналогичен примеру 1. Шнековым дозатором подают шлам-лигнин Байкальского целлюлозного завода с влажностью 80% в количестве 10 кг/час. Температура в слое поддерживается 500oC. Температура парогазовой смеси и твердых продуктов на выходе из реактора составляет 200oC. Количество оксида углерода 0,15 об. Степень истирания катализатора 0,5 мас. в сутки. Твердый продукт после отделения в циклоне обрабатывают 0,5 h водным раствором серной кислоты в соотношении 10:1 на единицу массы твердого продукта. В качестве модельной сточной воды используют разбавленный черный щелок целлюлозного завода с цветностью 5000o кобальтплатиновой шкалы и химическим потреблением кислорода (ХПК) 320 мг O2/л с pH 10,5. Количество твердого продукта для очистки сточной воды составляет 0,3 г на 1 л сточной воды. В 1 л сточной воды добавляют 3 мл суспензии, перемешивают и через 10 мин анализируют на цветность и ХПК. Эффект очистки по ХПК 92% по цветности 98%
Пример 13. Аналогичен примерам 2 и 12. Количество оксида углерода 0,14 об. Степень истирания каталитической насадки 0,01 мас. в сутки. Степень очистки сточной воды по ХПК 92% по цветности 98%
Таким образом, приведенные примеры показывают, что предлагаемый способ позволяет полностью исключить использование дорогостоящего сферического катализатора с сохранением при тех же условиях высокой эффективности каталитического процесса. При этом проявляется дополнительное качество - увеличение срока службы катализатора в 50 100 раз.

Claims (4)

1. Способ осуществления каталитических реакций путем подачи реагентов в слой псевдоожиженных твердых частиц, проведения указанных реакций в присутствии катализатора при температуре, регулируемой изменением расхода нагреваемой среды, отличающийся тем, что катализатор выполнен в виде организующей малообъемной насадки, а псевдоожиженный слой организуют из частиц инертного материала-теплоносителя.
2. Способ по п.1, отличающийся тем, что исходные вещества для проведения процесса подают в псевдоожиженный слой инертного материала-теплоносителя в газообразном, жидком или твердом состоянии.
3. Способ по п.1, отличающийся тем, что в качестве инертного теплоносителя используют твердый дисперсный материал с температурой плавления выше температуры проведения процесса.
4. Способ по п.1, отличающийся тем, что насадка выполнена в виде неподвижного блока, элементы которого представляют собой решетки, блоки, насадки типа колец "Рашига".
RU95108566A 1995-05-30 1995-05-30 Способ осуществления экзотермических реакций RU2084761C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95108566A RU2084761C1 (ru) 1995-05-30 1995-05-30 Способ осуществления экзотермических реакций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95108566A RU2084761C1 (ru) 1995-05-30 1995-05-30 Способ осуществления экзотермических реакций

Publications (2)

Publication Number Publication Date
RU95108566A RU95108566A (ru) 1997-01-20
RU2084761C1 true RU2084761C1 (ru) 1997-07-20

Family

ID=20168152

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95108566A RU2084761C1 (ru) 1995-05-30 1995-05-30 Способ осуществления экзотермических реакций

Country Status (1)

Country Link
RU (1) RU2084761C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2489210C1 (ru) * 2012-08-07 2013-08-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций
RU2489209C1 (ru) * 2012-08-15 2013-08-10 Закрытое акционерное общество "Техметалл-2002" Каталитический элемент для осуществления гетерогенно-каталитических реакций

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Авторское свидетельство СССР N 826798, кл. F 23 C 11/02, 1983. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2489210C1 (ru) * 2012-08-07 2013-08-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций
RU2489209C1 (ru) * 2012-08-15 2013-08-10 Закрытое акционерное общество "Техметалл-2002" Каталитический элемент для осуществления гетерогенно-каталитических реакций

Also Published As

Publication number Publication date
RU95108566A (ru) 1997-01-20

Similar Documents

Publication Publication Date Title
US5466421A (en) Apparatus for the catalytic conversion of waste gases containing hydrocarbon, halogenated hydrocarbon and carbon monoxide
US3647716A (en) Transport reactor with a venturi tube connection to a combustion chamber for producing activated carbon
CN1909950A (zh) 分段进氧法催化部分氧化h2s的方法
KR20040010608A (ko) N2o의 선택적 촉매 환원 및 이를 위한 촉매
EP0842894A1 (en) Process and apparatus for catalytic partial oxidation of a hydrocarbon
US4443419A (en) Moving bed gas treating process
RU2084761C1 (ru) Способ осуществления экзотермических реакций
SK182789A3 (en) Apparatus for catalytic combustion of organic compounds
US3904549A (en) Fluidized bed regeneration of powdered activated carbon
AU735307B2 (en) Apparatus and process for carrying out reactions in fluidized particle beds
RU2536510C2 (ru) Каталитический реактор для переработки осадков сточных вод и способ их переработки (варианты)
JP3029512B2 (ja) 燃焼ガスの亜酸化窒素除去方法
CN109796073A (zh) 含氨氮废水处理方法
RU2057988C1 (ru) Способ сжигания топлива
US3852038A (en) Apparatus for the reactivation of powdered carbon
JP2008207103A (ja) 排水の処理方法
JPH07308547A (ja) 廃ガスから窒素酸化物を除去する方法
RU2647744C1 (ru) Способ сжигания топлива
JPH0691992B2 (ja) 高濃度硝酸アンモニウム含有廃水の処理方法
US3375059A (en) Oxidation of waste gases using plural catalysts in serial zones
GAO et al. Simultaneous removals of SO2 and NO in a powder-particle fluidized bed by using iron oxide dust as sorbent
RU2100061C1 (ru) Катализатор для очистки газов от оксидов азота
RU2159734C1 (ru) Способ переработки жидких хлорсодержащих отходов производства винилхлорида
RU2004320C1 (ru) Способ изготовлени катализатора дл очистки газов
RU155103U1 (ru) Устройство для обезвреживания органических отходов и сернистой нефти

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140531