RU2076428C1 - Электродвигатель - Google Patents

Электродвигатель Download PDF

Info

Publication number
RU2076428C1
RU2076428C1 RU9494006656A RU94006656A RU2076428C1 RU 2076428 C1 RU2076428 C1 RU 2076428C1 RU 9494006656 A RU9494006656 A RU 9494006656A RU 94006656 A RU94006656 A RU 94006656A RU 2076428 C1 RU2076428 C1 RU 2076428C1
Authority
RU
Russia
Prior art keywords
stator
rotor
shaft
bearing
electric motor
Prior art date
Application number
RU9494006656A
Other languages
English (en)
Other versions
RU94006656A (ru
Inventor
Б.П. Фридман
В.С. Жернаков
Original Assignee
Уфимский государственный авиационный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уфимский государственный авиационный технический университет filed Critical Уфимский государственный авиационный технический университет
Priority to RU9494006656A priority Critical patent/RU2076428C1/ru
Publication of RU94006656A publication Critical patent/RU94006656A/ru
Application granted granted Critical
Publication of RU2076428C1 publication Critical patent/RU2076428C1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0402Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0429Passive magnetic bearings with permanent magnets on both parts repelling each other for both radial and axial load, e.g. conical magnets

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Использование: в микродвигателестроении, в приборах с вращающимися частями и в гироскопах с легким ротором. Сущность изобретения: электродвигатель содержит ротор 1 с валом 2, статор 3, закрепленный в корпусе 4, который снабжен подшипниковыми торцевыми щитами 5 и 6, содержащими соответственно гнездо 7 для механического упора вала 2 и проходную направляющую подшипниковую втулку 8 для рабочего окончания вала двигателя. Магнитные подшипники электродвигателя выполнены в виде пары симметрично расположенных на валу 2 двигателя магнитотвердых конусообразных роторов 9, 10 и пары соосно расположенных по отношению к ним магнитотвердых статоров 11, 12, выполненных в форме цилиндров с конусной выемкой. 1 з. п. ф-лы. 1 ил.

Description

Изобретение относится к электрическим машинам и приборам с вращающимися узлами и может быть использовано как в микродвигателестроении, так и в гироскопах с легким ротором.
Известен асинхронный торцовый электродвигатель [1] который содержит два статора и две части ротора, между которыми установлен радиальный магнитный подшипник, создающий подвес вала в радиальном направлении, но одновременно вызывающий неустойчивость вала в аксиальном направлении. Аксиальная стабилизация ротора в этом электродвигателе достигается благодаря использованию электродинамических усилий, возникающих между ротором и статором при изменении воздушного зазора между ними.
Недостатками указанного электродвигателя являются повышенная сложность конструкции и недостаточная надежность функционирования.
Известен также электродвигатель с магнитными подшипниками [2] который включает в себя радиальные магнитные подшипники, установленные на роторе и статоре, а также узел осевой стабилизации ротора, состоящий из неподвижного кольцевого магнита с аксиальным намагничиванием и взаимодействующего с ним кольцевого магнита, установленного на роторе электродвигателя.
Недостатки этого электродвигателя заключаются в осевых динамических вибрациях ротора в процессе работы двигателя вследствие недостаточно надежной осевой стабилизации ротора.
Наиболее близким к предлагаемому является электродвигатель с магнитными подшипниками [3] содержащий радиальные магнитные подшипника, установленные на роторе и статоре, узел осевой стабилизации ротора, выполненный в виде неподвижного кольцевого магнита с осевым намагничиванием, взаимодействующего с кольцевым магнитом, установленным на роторе, при этом в электродвигатель введен механический упор для вала ротора, а радиальный подшипник, установленный на роторе, смещен по оси ротора в сторону неподвижного кольцевого магнита относительно радиального подшипника, установленного на статоре.
Недостатками электродвигателя, выбранного в качестве прототипа, являются его многоэлементность, структурная и технологическая сложность, ограниченный эксплуатационный ресурс.
Изобретение направлено на конструктивное и технологическое упрощение электродвигателя, снижение трудоемкости изготовления, повышение надежности функционирования и увеличения эксплуатационного ресурса.
Цель достигается тем, что в электродвигателе, содержащем ротор с валом и статор, закрепленный во внешнем корпусе, имеющем пару подшипниковых торцевых щитов с механическим упором для вала ротора на одном из щитов и проходной направляющей подшипниковой втулкой для вала ротора на другом из щитов, а также магнитные подшипники, выполненные в виде пары закрепленных на валу ротора магнитотвердых роторов и пары соосно расположенных по отношению к ним магнитотвердых статоров, выполненных в форме цилиндров, закрепленных в подшипниковых торцевых щитах корпуса, роторы магнитных подшипников выполнены конусообразными, соответствующими роторам конусными выемками, причем ротор и статор каждого из магнитных подшипников выполнены с намагничиванием по своим высотам в едином последовательно согласном направлении вдоль оси двигателя.
Кроме того, механическое сочленение между одним из торцевых подшипниковых щитов корпуса и статором одного из магнитных подшипников выполнено в виде направленного вдоль оси двигателя резьбового соединения, образованного внешней резьбой на проходной направляющей подшипниковой втулке для вала в торцевом щите корпуса и посаженной на резьбу указанной втулки фигурной гайкой. Гайка прикреплена к тыльной части статора соответствующего магнитного подшипника. При этом на внешнюю резьбу проходной направляющей подшипниковой втулки для вала последовательно с фигурной гайкой статора упомянутого магнитного подшипника посажена контргайка для фиксации статора магнитного подшипника в требуемых положениях.
Структурно-конструктивная схема электродвигателя в его продольно-осевом разрезе представлена на чертеже.
Электродвигатель содержит ротор 1 с валом 2, статор 3, закрепленный в корпусе 4, который снабжен подшипниковыми торцевыми щитами 5 и 6, содержащими соответственно гнездо 7 для механического упора вала 2 и проходную направляющую подшипниковую втулку 8 для рабочего окончания вала двигателя. Магнитные подшипники электродвигателя выполнены в виде пары симметрично расположенных и закрепленных на валу 2 двигателя магнитотвердых конусообразных роторов 9, 10 и пары соосно расположенных по отношению к ним магнитотвердых статоров 11, 12, выполненных в форме цилиндров с конусной выемкой.
Статор 11 одного из магнитных подшипников (9, 11), расположенного у гнезда 7 для механического упора вала 2, неподвижно прикреплен к внутренним концентрическим выступам подшипникового торцевого щита 5, а статор 12 второго магнитного подшипника (10, 12) посредством присоединенной к его тыльной части фигурной гайки 13 сочленяется с внутренним цилиндрическим выступом проходной направляющей втулки 8 торцевого щита 6 с помощью резьбы, обеспечивающей возможность плавного двухстороннего перемещения магнитотвердого статора 12 вдоль рабочей оси электродвигателя осуществляется при помощи опорной контргайки 14, посаженной на внешнюю резьбу внутреннего выступа проходной направляющей втулки 8 правого торцевого щита 6 двигателя.
Роторы 9, 10 и статоры 11, 12 обоих магнитных подшипников (9, 11 и 10, 12) выполнены с намагничиванием по своим высотам в едином последовательно согласном направлении, которое лежит вдоль общей рабочей оси электродвигателя.
В процессе работы двигателя подвес его ротора как в радиальном, так и в аксиальном направлении обеспечивается равнодействующей F1 силы магнитного взаимодействия между ротором 9 и статором 11 первого магнитного подшипника, а также равнодействующей F2 силы магнитного взаимодействия между ротором 10 и статором 12 второго магнитного подшипника.
Равнодействующие силы F1 и F2 на роторы 9 и 10 магнитных подшипников 9, 11 и 10, 12 содержат как встречно направленные аксиальные составляющие F01 и F02, обуславливающие осевую динамическую стабилизацию ротора 1 двигателя, так и радиально направленные составляет FР1 и FР2, определяющие автоматическую динамическую центровку ротора электродвигателя.
При этом по сравнению с прототипом, где выталкивающее осевое усилие F0, разгружающее механический упор вала двигателя (подпятник), падает по мере уменьшения эксцентриситета (смещения) между статорными и роторными элементами радиальных подшипников, принципиальным преимуществом предлагаемого электродвигателя является то, что динамическое осевое смещение ротора двигателя в сторону механического упора вала сопровождается прогрессивно возрастающим амортизирующим аксиальным магнитным взаимодействием элементов магнитного подшипника 9, 10, максимально снижающего износ механического осевого упора заявляемого двигателя и тем самым увеличивающего рабочий ресурс последнего.
Устраняя недостатки и ограничения прототипа за счет расширения динамического диапазона упругих осевых перемещений ротора двигателя и обеспечения прогрессивно возрастающей осевой и радиальной жесткости магнитной подвески вала при аксиальных и радиальных девиациях его положения, описываемое устройство создает одновременно расширенные технические возможности оперативной плавной регулировки жесткости магнитной стабилизации рабочего положения ротора двигателя и динамического диапазона его упругих радиально-осевых перемещений и аксиальной устойчивости.
Соответствующее достижение оптимального режима двухкоординатной магнитной подвески ротора описываемого электродвигателя, при которой минимальные энергетические потери на трение и повышенный КПД двигателя сочетаются с его расширенным эксплуатационным ресурсом, обеспечивается соответствующей установкой фигурной гайки 13, несущей магнитотвердый статор 12 правого подшипника (10, 12), вдоль цилиндрического выступа проходной направляющей втулки 8 торцевого щита 6, что осуществляется предварительным подбором на резьбовом выступе втулки 8 положения фиксаторной (опорной) контргайки 14 и последующим подвинчиванием к ней фигурной гайки 13 с магнитотвердым статором.
Предлагаемая конструкция электродвигателя позволяет вместе с повышением его функциональной надежности, структурной простоты и износоустойчивости обеспечить максимальный рабочий ресурс и повышенный КПД двигателя за счет оперативной установки оптимального режима его работы и динамического подвеса ротора.

Claims (2)

1. Электродвигатель, содержащий ротор с валом и статор, закрепленный во внешнем корпусе, имеющем пару подшипниковых торцевых щитов с механическим упором для вала ротора на одном из щитов и проходной направляющей подшипниковой втулкой для вала ротора на другом из щитов, а также магнитные подшипники, выполненные в виде пары закрепленных на валу ротора магнитотвердых роторов и пары соосно расположенных по отношению к ним магнитотвердых статоров, выполненных в форме цилиндров, закрепленных в подшипниковых торцевых щитах корпуса, отличающийся тем, что роторы магнитных подшипников выполнены конусообразными симметрично друг другу, а их статоры выполнены с соответствующими роторам конусными выемками, причем ротор и статор каждого из магнитных подшипников выполнены с намагничиванием по своим высотам в едином последовательно-согласном направлении вдоль оси двигателя.
2. Электродвигатель по п.1, отличающийся тем, что механическое сочленение между одним из торцевых подшипниковых щитов корпуса и статором одного из магнитных подшипников выполнено в виде направленного вдоль оси двигателя резьбового соединения, образованного внешней резьбой на проходной направляющей подшипниковой втулке для вала в торцевом щите корпуса и посаженной на резьбу указанной втулки фигурной гайкой, прикрепленной к тыльной части статора соответствующего магнитного подшипника, при этом на внешнюю резьбу проходной направляющей подшипниковой втулки для вала последовательно с фигурной гайкой статора упомянутого магнитного подшипника посажена контргайка для фиксации статора магнитного подшипника в требуемых положениях.
RU9494006656A 1994-02-23 1994-02-23 Электродвигатель RU2076428C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU9494006656A RU2076428C1 (ru) 1994-02-23 1994-02-23 Электродвигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU9494006656A RU2076428C1 (ru) 1994-02-23 1994-02-23 Электродвигатель

Publications (2)

Publication Number Publication Date
RU94006656A RU94006656A (ru) 1995-08-20
RU2076428C1 true RU2076428C1 (ru) 1997-03-27

Family

ID=20152888

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9494006656A RU2076428C1 (ru) 1994-02-23 1994-02-23 Электродвигатель

Country Status (1)

Country Link
RU (1) RU2076428C1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2176039C2 (ru) * 1999-02-23 2001-11-20 Уфимский государственный авиационный технический университет Радиально-аксиальный подшипник
CN102654128A (zh) * 2011-03-01 2012-09-05 胡道明 磁悬浮水下电动泵
CN106321633A (zh) * 2016-11-07 2017-01-11 湘潭大学 一种新型混合磁悬浮轴承
CN108050158A (zh) * 2017-11-23 2018-05-18 燕山大学 一种磁液双悬浮支承锥形轴承
CN108988568A (zh) * 2018-10-11 2018-12-11 安徽威能电机有限公司 磁悬浮式电机
RU2700276C1 (ru) * 2018-12-26 2019-09-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Электрическая машина
CN112271958A (zh) * 2020-09-29 2021-01-26 珠海格力电器股份有限公司 一种磁悬浮电机及其轴承结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 454635, кл. H 02 K 1/06, 1972. Заявка ФРГ N 2515608, кл. F 16 C 32/04, 1976. Авторское свидетельство СССР N 847443, кл. H 02 K 5/16, 1981. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2176039C2 (ru) * 1999-02-23 2001-11-20 Уфимский государственный авиационный технический университет Радиально-аксиальный подшипник
CN102654128A (zh) * 2011-03-01 2012-09-05 胡道明 磁悬浮水下电动泵
CN102654128B (zh) * 2011-03-01 2015-11-25 胡道明 磁悬浮水下电动泵
CN106321633A (zh) * 2016-11-07 2017-01-11 湘潭大学 一种新型混合磁悬浮轴承
CN106321633B (zh) * 2016-11-07 2018-06-05 湘潭大学 一种新型混合磁悬浮轴承
CN108050158A (zh) * 2017-11-23 2018-05-18 燕山大学 一种磁液双悬浮支承锥形轴承
CN108050158B (zh) * 2017-11-23 2020-08-14 燕山大学 一种磁液双悬浮支承锥形轴承
CN108988568A (zh) * 2018-10-11 2018-12-11 安徽威能电机有限公司 磁悬浮式电机
RU2700276C1 (ru) * 2018-12-26 2019-09-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Электрическая машина
CN112271958A (zh) * 2020-09-29 2021-01-26 珠海格力电器股份有限公司 一种磁悬浮电机及其轴承结构

Similar Documents

Publication Publication Date Title
US7456534B2 (en) Rotating electrical machine
EP2479871A1 (en) Electrical machines
US20050264118A1 (en) Conical bearingless motor/generator
US11383071B2 (en) Tattoo device with motor having built-in motion conversion member
CN107425647B (zh) 采用五自由度混合磁轴承的车载飞轮电池
JP2003102145A (ja) 磁気浮上モータ、及び磁気軸受装置
US5233254A (en) Conical rotor for switched reluctance machine
RU2076428C1 (ru) Электродвигатель
CN107124069A (zh) 一种磁悬浮转子支承系统、磁悬浮电机及吸尘器
CN110435931B (zh) 一种磁悬浮控制力矩陀螺高速转子装置
CN1229307A (zh) 支承结构
US5588754A (en) Backup bearings for extreme speed touch down applications
CN111404317A (zh) 一种磁悬浮电机
CN110131314B (zh) 磁悬浮轴承、电机、压缩机和空调器
KR102163168B1 (ko) 에어 베어링을 적용한 선형 시스템 및 이를 갖는 선형 평가 시스템
CN210135170U (zh) 磁悬浮轴承、电机、压缩机和空调器
US4543780A (en) Drive and mounting for an open-end spinning unit
CN109681525B (zh) 磁悬浮轴承及电机
CN206850594U (zh) 一种磁悬浮电机及吸尘器
CN116336078A (zh) 一种自然电磁磁悬浮与气体动压悬浮组合悬浮轴系
RU124339U1 (ru) Магнитный подшипник
CN211089341U (zh) 一种贯通式直线电机
SU847443A1 (ru) Электродвигатель с магнитнымипОдшипНиКАМи
CN107093939A (zh) 一种磁悬浮电机及吸尘器
RU94006656A (ru) Электродвигатель