RU2068196C1 - Самонастраивающаяся система управления - Google Patents

Самонастраивающаяся система управления Download PDF

Info

Publication number
RU2068196C1
RU2068196C1 RU92010390A RU92010390A RU2068196C1 RU 2068196 C1 RU2068196 C1 RU 2068196C1 RU 92010390 A RU92010390 A RU 92010390A RU 92010390 A RU92010390 A RU 92010390A RU 2068196 C1 RU2068196 C1 RU 2068196C1
Authority
RU
Russia
Prior art keywords
input
output
controller
amplitude
frequency
Prior art date
Application number
RU92010390A
Other languages
English (en)
Other versions
RU92010390A (ru
Inventor
В.М. Мазуров
Original Assignee
Акционерное общество закрытого типа "Экспериментальная лаборатория системотехники"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество закрытого типа "Экспериментальная лаборатория системотехники" filed Critical Акционерное общество закрытого типа "Экспериментальная лаборатория системотехники"
Priority to RU92010390A priority Critical patent/RU2068196C1/ru
Publication of RU92010390A publication Critical patent/RU92010390A/ru
Application granted granted Critical
Publication of RU2068196C1 publication Critical patent/RU2068196C1/ru

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

Изобретение относится к области адаптивных систем управления с пробным синусоидальным сигналом. Цель изобретения - повышение точности и быстродействия работы системы путем частотного разделения каналов регулирования и самонастройки, что достигается включением в контур главной обратной связи системы заграждающего фильтра, настроенного с помощью блока фазовой автоподстройки частоты на частоту критических колебаний объекта. По амплитуде и периоду этих колебаний с помощью вычислительного блока рассчитываются требуемые настройки ПИД-регулятора. Этим обеспечиваются постоянные запасы устойчивости в замкнутой системе при дрейфе параметров объекта управления. 3 ил.

Description

Предлагаемое изобретение относится к области адаптивных систем управления с пробным синусоидальным сигналом и может найти применение при создании устройств автоматической настройки и самонастраивающихся регуляторов для химических, энергетических, электромеханических и других объектов.
Известны самонастраивающиеся системы автоматического регулирования с подстройкой фазочастотной характеристики на частоте пробного сигнала, содержащие основной контур, сигнал с выхода которого проходит через полосовой фильтр на первый вход фазового детектора, на второй вход которого поступает опорный сигнал [1] Недостатком данных систем является плохая помехозащищенность, что приводит к большой погрешности подстройки желаемой фазочастотной характеристики замкнутой системы.
Наиболее близкой к предлагаемой является самонастраивающаяся система с гармоническим пробным сигналом [2] которая содержит регулятор, соединенный со входом объекта управления, выход объекта управления соединен со входом измерителя амплитуды и фазы, выходы которых через устройство сравнения соединены с вычислительным блоком, соединенным с регулятором, на другой вход которого через входной сумматор с выхода объекта управления поступает сигнал обратной связи. Недостатком этой системы является низкая точность определения требуемых параметров и значительное время настройки.
Указанные недостатки устранены в предлагаемой самонастраивающейся системе управления, содержащей регулятор, соединенный через сумматор с объектом управления, выход которого подключен к одному из входов заграждающего фильтра (включенного в цепь обратной связи системы), выход которого через устройство сравнения подключен к первому входу регулятора и к одному из входов измерителя амплитуды и фазы, первый выход которого соединен со входом блока фазовой подстройки частоты, выход блока фазовой подстройки частоты соединен соответственно со входом блока вычисления коэффициентов заграждающего фильтра, выход которого подключен к второму входу заграждающего фильтра, со входом вычислительного блока и со входом генератора пробных гармонических колебаний, выход которого соединен со вторым входом измерителя амплитуды и фазы, второй выход которого соединен с первым входом вычислительного блока, выход которого подключен ко второму входу регулятора.
Изобретение поясняется чертежом, где на фиг.1 изображена структурная схема самонастраивающейся системы управления с ПИД-регулятором, а на фиг.2 - графики процессов самонастройки.
Самонастраивающаяся система управления содержит настраиваемый ПИД-регулятор 1, выход которого через сумматор 2 соединен со входом объекта управления 3, выход которого подключен к одному из входов заграждающего фильтра 4, выход которого через устройство сравнения 5 подключен к первому входу регулятора и к одному из входов измерителя 6 амплитуды и фазы, первый выход которого соединен со входом блока 7 фазовой подстройки частоты, выход которого соединен соответственно со входом блока вычисления коэффициентов заграждающего фильтра 8, выход которого подключен ко второму входу заграждающего фильтра 4, с одним из входов вычислительного блока 9 и со входом генератора 10 пробных гармонических колебаний, выход которого соединен со вторым входом сумматора 2 и со вторым входом измерителя 6 амплитуды и фазы, второй выход которого соединен со вторым входом вычислительного блока 9, выход которого подключен ко второму входу ПИД-регулятора 1.
Система работает следующим образом. На вход объекта управления 3 через сумматор 2 поступает сигнал с ПИД-регулятора 1 и управляемого по частоте генератора 10 пробных гармонических колебаний U Uр + Uпр. Выходной сигнал У с объекта управления 3 и сигнал Uпр с генератора 10 подается на вход измерителя 6 амплитуды и фазы, который выделяет установившиеся значения амплитуды А и фазы Ф гармонической составляющей выходного сигнала объекта 3 на частоте пробных колебаний.
Выделенное значение фазы Ф колебаний подается на блок 7 фазовой подстройки частоты, которое устанавливает такое значение частоты W пробных колебаний, которое удерживает фазовый сдвиг на уровне ПИ. Это значение частоты будет соответствовать критической частоте колебаний объекта управления. Одновременно значение фазы Ф подается на вход вычислительного блока 9, предназначенного для расчета настроек ПИД-регулятора 1, на другой вход которого подается установившееся значение амплитуды А колебаний. С вычислительного блока 9 параметры настройки ПИД-регулятора 1, а именно коэффициент усиления Kр, постоянные интегрирования Ти и дифференцирования Тд поступают на его второй вход. Текущие значения частоты колебаний W блока 7 фазовой подстройки частоты поступают также на блок 8, в котором происходит расчет коэффициентов усиления заграждающего фильтра 4, который перестраивается в соответствии с изменением частоты W. По достижении величиной Ф значения, близкого ПИ, происходит расчет настроек регулятора 1 с помощью вычислительного блока 9. При дрейфе параметров объекта управления 3 блок 7 фазовой подстройки частоты будет отслеживать значение Ф на уровне ПИ, тем самым обеспечивая режим требуемых настроек регулятора 1 и, следовательно, заданных запасов устойчивости в замкнутой системе.
Опишем реальный алгоритм работы самонастраивающейся системы управления, реализованный в цифровом виде на однокристальной микроЭВМ. Основной ПИД-регулятор 1 работает по широко распространенному "скоростному" алгоритму управления [3]
Up(k) Up(k-1) + Kp*{Ep(k) Ep(k-1) + Ep(k) * Tk/Ti + [Ep(k) 2*Ep(k-1> + Ep(k-2)] *Td/Tk} (1)
где k текущий номер периода квантования Tk, k 0, 1, 2,
Up(k) текущее значение выходного сигнала регулятора 1;
Up(k-1) запаздывающий на один период квантования сигнал регулятора 1. Аналогично будем обозначать и другие запаздывающие сигналы;
Ep(k) Yз-Yф(k) сигнал ошибки регулирования, формируемый устройством сравнения 5;
Yз заданное значение выходного сигнала объекта 3;
Yфk текущее значение выходного сигнала заграждающего фильтра 4;
E(k-1), E(k-2) запаздывающие на один и два периода квантования сигналы ошибки регулирования;
Kp, Ti, Td параметры настройки ПИД-регулятора 1.
На начальном этапе пуска системы в работу все запаздывающие сигналы должны быть равны нулю, за исключением сигнала Up(k-1), значение которого принимается равным управлению, установленному в ручном режиме работы. Величины параметров настройки регулятора 1 устанавливаются, исходя из условия обеспечения гарантированной устойчивости замкнутой системы. Допустима установка Кp 0, что соответствует ручному режиму управления объектом 3. На вход объекта управления 3 через сумматор 2 подается сигнал U(k) Up(k) + Uпр(k), где пробный синусоидальный сигнал Uпр(k) формируется генератором 10, имеет частоту W и период Т 2*ПИ/W.
Перестраиваемый по частоте генератор 10 работает следующим образом: вычисляется величина текущего значения кванта работы генератора 10 q 2*ПИ/N, где N целая часть нормируемого периода колебаний N int(T/Tk); вычисляется текущее дискретное время генератора s s + q; вычисляется пробный сигнал Uпр(k) Аг*sin(s), где Аг заданная амплитуда пробного сигнала, величина которой выбирается исходя из допустимой амплитуды колебаний выхода объекта. Обычно допустимо значение Аг 10 20 процентов. Чем больше величина Аг и чем выше разрядность аналого-цифрового преобразователя, тем точнее вычисляется амплитуда и фаза колебаний выходного сигнала Y. Если s > 2*ПИ, то величина s сбрасывается на ноль, что исключает переполнение переменной s. Изменение частоты колебаний генератора 10 осуществляется изменением величины N с одновременным пересчетом величины кванта q.
Цифровой заграждающий фильтр 4 работает по алгоритму
Yф(k) A*[Y(k) + Y(k-2)] + B*[Y(k-1) Yф(k-1)] - C*Yф(k-2), (2)
где A, B, C коэффициенты усиления фильтра, которые заново вычисляются при каждой смене нормированного периода колебаний N с помощью блока 8. Расчет этих коэффициентов ведется по формулам [4]
H 1/tg(ПИ/N),
F 1+H/D+H*H,
A (1+H*H)/F, (3)
B 2*(1-H*H)/F,
C (1-H/D+H*H)/F,
где H и F вспомогательные коэффициенты;
D добротность заграждающего фильтра 4.
Как показали результаты цифрового моделирования, рекомендуется выбирать добротность D фильтра в диапазоне 1 10, причем чем больше добротность, тем меньше влияние фильтра на динамику замкнутой системы, меньше чувствительность к шумам, но возрастает время затухания гармоники на выходе фильтра 4 и, следовательно, время самонастройки.
Измеритель 6 установившихся значений амплитуды А и фазы Ф колебаний работает по методу синхронного детектирования [5] и реализует в цифровом виде вычисление следующих величин:
Figure 00000002

где Us и Uc синусная и косинусная составляющие гармоники выходного сигнала Y;
L*T длина реализации;
L число анализируемых периодов колебаний в одной реализации (число периодов усреднения). Чем больше длина реализации, тем точнее вычисляются величины Us и Uc, меньше влияние шумов, но увеличивается время настройки регулятора. По этим значениям вычисляются текущие величины амплитуды и фазы:
Figure 00000003

Фт arctg(Us/Uc). (7)
Величины Aт и Фт принимаются за установившиеся значения A и Ф, если разность между их относительными значениями на предыдущей i-й и последующей i реализациях не превышает некоторой величины r. Величина r должна выбираться с учетом дисперсии величины Aт и Фт, т.е. с учетом уровня шума чем он выше, тем больше должна быть величина r. При малом уровне шума рекомендуется выбирать r 0,01 0,15.
Благодаря наличию заграждающего фильтра 4 величины A и Ф будут однозначно соответствовать одной точке амплитудно-фазовой характеристики объекта 3 и не будут зависеть от текущих параметров настройки регулятора 1 (в отличие от метода настройки, описанного в работе [5]). Таким образом, использование заграждающего фильтра 4 осуществляет частотное разделение каналов управления и самонастройки. Причем, в отличие от работы [6] здесь разделение осуществляется в контуре главной обратной связи системы, что повышает точность настройки регулятора 1 за счет возможности определения критических параметров колебаний объекта 3.
Блок 7 фазовой подстройки частоты работает по интегральному алгоритму N(i) N(i-1)*[1,6*Ф/(-ПИ)-0,6] где N(i) и N(i-1) величины нормированного периода колебаний генератора 10 на предыдущей и последующей реализациях. Коэффициенты этого алгоритма (1,6 и 0,6) подобраны так, чтобы обеспечить быстрый поиск величины N, обеспечивающей Ф -ПИ. При выходе величины установившегося значения фазы на уровень, близкий к ПИ, разрешается расчет настроек регулятора 1. Величина допустимого отклонения величины Ф от значения ПИ может находиться в диапазоне dФ 0,04 0,14 радиана.
Расчет настроек регулятора 1 ведется вычислительным блоком 9 по формулам:
Kp 0,4*Aг/A; Ti Tk*N(i)/1,5; Td Tk*N(i)/5, (8)
которые несколько скорректированы в сторону увеличения запасов устойчивости в системе по сравнению с формулами работы [7] Коррекция проведена с учетом уменьшения запасов устойчивости в системе при включении в нее заграждающего фильтра.
Наличие величин r и dФ позволяет алгоритму самонастройки отслеживать изменяющиеся параметры объекта управления 3. Причем, чем больше эти величины, тем больше допустимая скорость дрейфа параметров объекта 3.
Периодичность перестройки регулятора 1 определяется рядом факторов: числом L анализируемых периодов колебаний в одной реализации, значениями величин r и dФ, уровнем шума, скоростью дрейфа параметров. При малом уровне шума перестройка регулятора 1 может происходить при L 1, т.е. через каждый период критических колебаний объекта 3. Чем больше запаздывание и инерционность в объекте управления, тем больше этот период колебаний.
Приведем результаты цифрового моделирования самонастраивающейся системы управления. В качестве модели объекта управления 3 был выбран объект второго порядка с запаздыванием, имеющий передаточную функцию
Wоб K*exp(-tau*p)/[T1*p+1)(T2*p+1)] (9)
где K 1,05; T1 7,78 мин; Т2 2,21 мин; tau 1,3 мин.
Согласно рекомендациям работы [3] принят период квантования Тк 0,5 мин. В этом случае цифровая модель объекта будет определяться уравнением: Y(k) A1*Y(k-1) + A2*Y(k-2) + B1*U(k-1-M) + B2*U(k-2-M) + B3*U(k-3-M), (10)
где задержка М int(tau/Tk int(1,3/0,5) 2, а коэффициенты равны A1 1,735; A2 0,7479; B1 0,001175; B2 0,009879; B3 0,002179.
Моделирование проводилось при следующих исходных данных: первоначальные настройки ПИД-регулятора 1: Kр 0,1; Ti 100 мин; Td 0; сигнал задания Yз 50 процентов; нормируемый период колебаний N 16; число анализируемых периодов колебаний L 1; амплитуда генератора Aг 10 процентов; начальное значение сигнала управления U(O) 50 процентов; добротность заграждающего фильтра D 1; величины r 0,1; dФ 0,1 рад.
Графики изменения текущих значений амплитуды Aт и фазы Фт, иллюстрирующие процесс отслеживания критического периода колебаний объекта 3, приведены на фиг.2. Видно, что после двух значений N 16 и N 21 определен нормируемый период колебаний Nк=22, обеспечивающий фазовый сдвиг Ф -ПИ. Этому значению периода соответствует критическая частота Wк 2*ПИ/(Nк*Tk 2*ПИ/(22*0,5) 0,571 рад/мин. Аналитически вычисленное значение фазового сдвига на этой частоте для объекта 3 с учетом дополнительного запаздывания, вносимого цифровым регулятором, равно -3,135 рад. что весьма близко к величине -ПИ. Выход на критическую частоту позволил вычислительному блоку 9 рассчитать настройки ПИД-регулятора 1. Эти и последующие значения настроек показаны стрелками на фиг.2. Таким образом, в установившемся режиме через каждые 11 мин происходит уточнение настроек регулятора 1. При этом амплитуда колебаний выходного сигнала объекта 3 достаточно мала и составляет A 1043 процента. По этой величине можно определить критический коэффициент усиления регулятора 3, являющийся важнейшей характеристикой замкнутой системы, характеризующей запасы ее устойчивости. В данном случае критический коэффициент усиления регулятора равен Кркр Aг/A 10/1,43 6,98. Хорошее качество отработки ступенчатого возмущения с амплитудой 20 процентов, действующего на вход объекта 3, иллюстрируется фиг.3. Так, на фиг.3а виден процесс затухания гармоники в выходном сигнале фильтра 4 и сохранения ее в выходном сигнале объекта 3. На фиг.3б приведены графики управляющих сигналов, формируемых регулятором 3 и генератором пробных колебаний 10. ЫЫЫ2

Claims (1)

  1. Самонастраивающаяся система управления, содержащая регулятор, объект управления, выход которого подключен к первому входу измерителя амплитуды и фазы, первый выход которого соединен с первым входом вычислительного блока, выход которого соединен с входом подстройки параметров регулятора, сигнальный вход которого соединен с выходом устройства сравнения, первый вход которого является входом задания системы, сумматор и генератор пробных гармонических колебаний, отличающаяся тем, что в систему введены блок фазовой подстройки, вход которого соединен с вторым выходом измерителя амплитуды и фазы, заграждающий фильтр и блок вычисления коэффициентов заграждающего фильтра, вход которого соединен с выходом блока фазовой подстройки, подключенным к второму входу вычислительного блока и к входу генератора пробных гармонических колебаний, выход которого соединен с вторым входом измерителя амплитуды и фазы и с первым входом сумматгора, второй вход которого подключен к выходу регулятора, а выход к входу объекта управления, выход которого соединен с информационным входом заграждающего фильтра, подключенного выходом к второму входу устройства сравнения, а управляющим входом к выходу блока вычисления коэффициентов заграждающего фильтра.
RU92010390A 1992-12-07 1992-12-07 Самонастраивающаяся система управления RU2068196C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU92010390A RU2068196C1 (ru) 1992-12-07 1992-12-07 Самонастраивающаяся система управления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU92010390A RU2068196C1 (ru) 1992-12-07 1992-12-07 Самонастраивающаяся система управления

Publications (2)

Publication Number Publication Date
RU92010390A RU92010390A (ru) 1996-08-27
RU2068196C1 true RU2068196C1 (ru) 1996-10-20

Family

ID=20133189

Family Applications (1)

Application Number Title Priority Date Filing Date
RU92010390A RU2068196C1 (ru) 1992-12-07 1992-12-07 Самонастраивающаяся система управления

Country Status (1)

Country Link
RU (1) RU2068196C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040425A1 (fr) * 2005-10-05 2007-04-12 ZAKRYTOE AKTSIONERNOE OBSCHESTVO 'EleSi' Procede d'auto-reglage d'un systeme de commande d'objets et dispositif de mise en oeuvre de ce procede
RU2457529C1 (ru) * 2011-01-11 2012-07-27 Учреждение Российской академии наук Институт лазерной физики Сибирского отделения Адаптивная система для регулирования и стабилизации физических величин
RU2461037C1 (ru) * 2011-06-14 2012-09-10 Общество с ограниченной ответственностью "Электроспецприбор" Адаптивная система управления
RU2494433C2 (ru) * 2011-10-24 2013-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И.Менделеева" Энергосберегающая система автоматического регулирования
RU2494431C2 (ru) * 2008-11-17 2013-09-27 Данфосс А/С Способ уменьшения колебаний в системе управления
RU2498495C1 (ru) * 2012-07-20 2013-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Способ настройки параметров регулятора возбуждения синхронного электрического генератора

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 3287615, кл .ЗВ-28, 1966. 2. Козлов Ю.М, Юсупов Р.М. Беспоисковые самонастраивающиеся системы. - М., Наука, 1969, с. 318 - 319. 3. Изерман Р. Цифровые системы управления.- М., Мир, 1984, с. 91 - 93. 4. Титце У., Шенк К. Полупроводниковая схемотехника. - М., Мир, 1985, с. 422 - 425. 5. Автоматизация настройки систем управления /под ред. Ротача В.Я./- М., Энергоатомиздат, 1984, с. 232 - 233. 6. Самонастраивающиеся системы. Справочник /под ред. Чинаева П.И./- Киев, Наукова думка, 1969, с. 376 - 380. 7. Острем К., Виттенмарк В.- Системы управления с ЭВМ. - М., Мир, 1987, с. 213. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040425A1 (fr) * 2005-10-05 2007-04-12 ZAKRYTOE AKTSIONERNOE OBSCHESTVO 'EleSi' Procede d'auto-reglage d'un systeme de commande d'objets et dispositif de mise en oeuvre de ce procede
RU2494431C2 (ru) * 2008-11-17 2013-09-27 Данфосс А/С Способ уменьшения колебаний в системе управления
RU2457529C1 (ru) * 2011-01-11 2012-07-27 Учреждение Российской академии наук Институт лазерной физики Сибирского отделения Адаптивная система для регулирования и стабилизации физических величин
RU2461037C1 (ru) * 2011-06-14 2012-09-10 Общество с ограниченной ответственностью "Электроспецприбор" Адаптивная система управления
RU2494433C2 (ru) * 2011-10-24 2013-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И.Менделеева" Энергосберегающая система автоматического регулирования
RU2498495C1 (ru) * 2012-07-20 2013-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Способ настройки параметров регулятора возбуждения синхронного электрического генератора

Similar Documents

Publication Publication Date Title
KR900005546B1 (ko) 적응프로세스 제어장치
US4564794A (en) Phase locked loop and a motor control servo
KR860008509A (ko) 패턴 인지 자동 조정 제어기
Tomar et al. Amplitude and frequency estimation of exponentially decaying sinusoids
RU2068196C1 (ru) Самонастраивающаяся система управления
Laskawski et al. Sampling rate impact on the tuning of PID controller parameters
US4665474A (en) Method and device for rapidly determining a synchronous reference voltage for a network controlled converter
Li et al. Introduction to phase-locked loop system modeling
RU2368934C2 (ru) Адаптивная система управления
WO1996013898A1 (en) Filter, repetitive control system and learning control system both provided with such filter
US4560950A (en) Method and circuit for phase lock loop initialization
Douce et al. The development and performance of a self-optimizing system
RU2339988C1 (ru) Адаптивная система управления
Lee et al. Robust control for uncertain linear systems with sinusoidal disturbance of uncertain frequencies
RU2343524C1 (ru) Адаптивная система управления
Lincoln A simple stability criterion for control systems with varying delays
Levant Universal output-feedback SISO controller
JPH0367301A (ja) プロセス制御における極点判別方法
JPH044602B2 (ru)
Yu et al. The Analysis and Design of Closed-Loop Control System for MEMS Vibratory Gyroscopes
Pan et al. Active noise cancellation frequency-locked loop with a notch filter
Atkinson et al. Design of type 2 diaital phase-locked loops
KR100498411B1 (ko) 주파수동기제어방법및이를수행하는위상동기루프
Reddy et al. PID Controller Design for Non-Minimum Phase Time-Delay Systems using Optimization method
US5646955A (en) Apparatus for measuring cycle to cycle jitter of a digital signal and method therefor