RU2062944C1 - Способ горения в котле электростанций - Google Patents

Способ горения в котле электростанций Download PDF

Info

Publication number
RU2062944C1
RU2062944C1 RU9292004457A RU92004457A RU2062944C1 RU 2062944 C1 RU2062944 C1 RU 2062944C1 RU 9292004457 A RU9292004457 A RU 9292004457A RU 92004457 A RU92004457 A RU 92004457A RU 2062944 C1 RU2062944 C1 RU 2062944C1
Authority
RU
Russia
Prior art keywords
air
boiler
chamber
combustion chamber
burners
Prior art date
Application number
RU9292004457A
Other languages
English (en)
Other versions
RU92004457A (ru
Inventor
Хауманн Юрген
Заттельмайер Томас
Original Assignee
Асеа Браун Бовери АГ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Асеа Браун Бовери АГ filed Critical Асеа Браун Бовери АГ
Application granted granted Critical
Publication of RU2062944C1 publication Critical patent/RU2062944C1/ru
Publication of RU92004457A publication Critical patent/RU92004457A/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • F23C7/06Disposition of air supply not passing through burner for heating the incoming air

Abstract

Использование: в топках котлов электростанций. Сущность изобретения: в способе горения часть первичного воздуха проходит сначала через теплообменник, в котором происходит его нагрев перед поступлением этого воздуха в горелки 25 а-с, где происходит смешивание и дополнительное сжигание с горючим 12 или с другой смесью. Другой поток воздуха в качестве вторичного воздуха 27 вдувается непосредственно в камеру предварительного сжигания 24, это происходит непосредственно перед подключением камеры предварительного сжигания 24 к котлу. Вниз по потоку в камере 24 в котел 22 подается третий поток воздуха. Благодаря конструкции осуществляется способ подачи воздуха в два этапа, причем котел работает с недостатком воздуха. Благодаря такому подстехиометрическому принципу работы котла можно сократить азотосодержащие соединения. 2 з.п. ф-лы, 6 ил.

Description

Изобретение относится к способу горения в котле электростанций и может быть использовано в других теплотехнических устройствах.
Известен способ горения в котле электростанций, включающий подачу первичного воздуха и горючего вещества в горелку и сжигание полученной смеси в камере предварительного сжигания с последующим дожиганием горючего вещества в продуктах сгорания в топке котла при подводе вторичного воздуха в зоне на выходе из камеры предварительного сжигания /1/.
При таком способе горения приходится работать с малыми количествами воздуха. Это приводит к тому, что создается атмосфера, при которой возникает реальная опасность коррозии. На холодных стенках котла происходят осаждения, которые создают опасность выделения сажи и асфальта. После определенной степени сгорания возникают высокие температуры, которые вызывают высокий термический выброс NOx. Цель изобретения, описанного в формуле, состоит в том, чтобы создать устройства для сведения к минимуму выделения вредных веществ, главным образом выделения NОх.
Эта цель достигается благодаря способу подачи воздуха в два этапа. Благодаря подстехиометрической работе котла сокращаются азотсодержащие соединения горючих веществ. Изучение кинетики реакции выявило оптимальное количество воздуха. Механизм сокращения усиливается с увеличением подогрева воздуха. При этом оптимум относится к работе с маслами. Если смешать горючее вещество с воздухом, процесс горения становится оптимальным.
Преимущество изобретения состоит в том, что в результате вышесказанного воздух подогревают, прежде чем в горелке получится смесь, очень масляная, но однородная, состоящая из горючего вещества и воздуха, причем смесь частично сжигается в камере предварительного сжигания. Пребывание смеси в этой камере по времени выбирается таким образом, что разложение соединений азота /IFN - полностью фиксированные нитрогены/ идет очень активно.
Другое преимущество изобретения состоит в том, что жаровая труба предварительной камеры одновременно может служить и теплоносителем для воздуха для горения.
Следующим преимуществом изобретения является то, что в конце предварительной камеры находится бедный газ очень высокой температуры. Если можно осуществить быстрое подмешивание в бедный газ, то в него можно подать некоторое количество воздуха, не повышая соединений TFN. Основой для этого является то, что это соединение быстро разлагается в предварительной камере, но полученное состояние выше, чем термодинамическое равновесие для смеси из первичного и вторичного воздуха.
Отсюда следует другое преимущество в виде следующего сокращения в испарителе котла после небольшого увеличения TFN из-за недостаточно быстрого процесса подмешивания.
Следующее существенное преимущество изобретения состоит в том, что предложенное решение лучше всего годится для котла с ретрофитным оборудованием, поскольку содержащееся в отходящем газе количество тепла соответствует величине, установленной при работе котла, производимой поэтапно. При этом мощность в нижней области испарителя сохраняется. Верхняя часть испарителя, как и в известном котле с поэтапным процессом, служит для добавления оставшегося воздуха. Из-за отвода тепла в испаритель температура значительно ниже, это препятствует сильному термическому образованию NOx при смешивании с воздухом.
Следующее преимущество изобретения состоит в том, что благодаря подачи воздуха в конце камеры предварительного сжигания можно воспрепятствовать взаимодействию агрессивных сильно подстехиометрических отходящих газов с испарителем, что препятствует химическому разрушению трубчатых стенок, отложению горючих веществ на холодных стенках.
Преимущественные исполнения приведены в остальных пунктах формулы.
На фиг.1 изображена схема котла электростанции для осуществления способа; на фиг.2 камера предварительного сжигания для осуществления способа, в котором подача горючего осуществляется тремя горелками, расположенными на трех уровнях; на фиг.3 конусообразная горелка в перспективе для осуществления способа с частичным разрезом; на фиг.4 разрез А-А на фиг.3; на фиг.5 - разрез Б-Б на фиг.3; на фиг.6 разрез В-В на фиг.3.
Одинаковые элементы на разных фигурах имеют одинаковые обозначения. Направления потоков указаны стрелками.
На фиг.1 дано схематическое изображение обычного котла электростанции 22 для получения пара. В основном речь идет о котле с различными давлениями, имеющим теплообменники, в зависимости от топлива, высокого /30/, среднего /31/ и низкого /32/ давления. Ядром котла 22 является собственно обогрев, находящийся в верхней части котла 22. Он представляет собой ряд камер предварительного сгорания 24, которые распределены по периметру котла 22 и имеют минимум по одной горелке 25 а-с. Процесс сжигания в этом котле осуществляется двухступенчатым поступлением воздуха. Сначала горелка 25 а-с работает с первичным потоком воздуха, причем этот воздух состоит минимум из одной части свежего воздуха 26, который, как более подробно показано на фиг. 2, подвергается калорической обработке, становясь первичным воздухом. В качестве топлива для работы этих горелок 25 а-с используется преимущественно жидкое горючее 12. Естественно, в качестве добавок можно использовать и другое топливо. Виды работы используемых в данном случае горелок 25 а-с показаны на фиг.3-6. Вторичный воздушный поток 27, воздух которого содержит одну часть свежего воздуха 26, преимущественно не обрабатывается, но калорическая обработка исключена, вдувается непосредственно на переходнике камеры предварительного сжигания 24 в котел 22. Эта подача воздуха в конце камеры 24 препятствует взаимодействию агрессивного сильно подстехиометрического отходящего газа с испарителем 22а, так что не происходит химического разрушения трубчатых стенок или отложения горючего материала на холодных стенках. Конструкция такой камеры предварительного сжигания показана на фиг.2. Вниз по ходу потока камеры 24 по периметру котла 22 расположены сопла 28, через которые в котел 22 поступает третий воздушный поток 29 в виде впрыскивания остаточного воздуха. Эта верхняя область подмешивания остаточного воздуха 29 обеспечивает отвод тепла к испарителю 22а, причем благодаря этому температуры относительно низкие, так что при подмешивании этого воздуха можно воспрепятствовать сильному термическому образованию NОх. С точки зрения стехиометрии следует заметить, что в камере предварительного сжигания 24 работают с λ 0,6-0,65. В самом же котле 22 l 0,75. Лишь после вдувания остаточного воздуха 29 увеличивается до 1,75. благодаря подстехиометрическому процессу в котле 22 сокращаются азотсодержащие соединения в топливе. Механизм сокращения при этом усиливается с увеличением подогрева воздуха. Время нахождения жирной, но гомогенной смеси в камере 24, полученной из горючего 12 и первичного воздуха, которая частично-сжигается в камере 24, должно выбираться таким образом, чтобы достичь значительного разложения соединений азота. В любом случае в конце камеры предварительного сжигания 24 находится бедный газ высокой температуры. При такой конфигурации котла достигают быстрого подмешивания в бедный газ, так что можно подать определенное количество воздуха 27 в бедный газ, не увеличивая соединений азота. Это возможно потому, что эти соединения азота значительно разрушаются в камере 24, но достигнутое состояние выше термодинамического равновесия для смеси первичного воздуха /фиг. 2 поз.26а/ и вторичного воздуха 27. В результате происходит дальнейшее сокращение в испарителе 22а котла 22 после небольшого увеличения соединений азота из-за недостаточно быстрых процессов смешивания. Отходящие газы в трубу обозначены поз.33. Как уже говорилось в начале описания, это устройство и способ лучше всего использовать для простейшего и наиболее дешевого переоснащения имеющихся котлов. В работающих котлах можно использовать имеющиеся воздуходувки для подачи свежего воздуха при небольшой их модификации. Это также относится и к подогреву воздуха, подаче третьего потока воздуха, самого котла и форсунки отходящего газа. Что касается камеры предварительного сжигания 24, основы предлагаемого устройства, то нужно обратиться к фиг.2.
На фиг.2 показана камера предварительного сжигания 24. Первичный воздух 26 от воздухораспределителя попадает в головную часть камеры 24 и равномерно распределяется по периметру. В щелевидном кольце 24в первичный воздух 26 подводится в камеру 24 со стороны котла и охлаждает как жаровую трубу, так и корпус 24а. Со стороны котла воздух 26 поворачивается на 180o и течет по жаровой трубе 24с обратно в сторону горелки. Жаровая труба 24с состоит из наружного цилиндра, внутри которого в продольном направлении приварены профили. Благодаря выбранному профилю получают сильную ребристость. Это особенно необходимо вблизи горелки, где возникают максимальные тепловые нагрузки. Воздух 26 при прохождении через жаровую трубу 24с поджигается, становясь воздухом сжигания 26а. Так называемые горелки из сдвоенного конуса 25а, 25в, 25с представляют собой комплект. Подогретое топливо 12 с помощью пара рассеивается в головной части горелок 25а, 25в, 25с. Со стороны, где встроены горелки, имеется непоказанный тепловой слой. Сопло на конце камеры 24 охлаждается водой 35. Система циркуляции воды в котле 22 предвключена или включена параллельно испарителю. Конец камеры 24 преимущественно имеет сужение 36, так что нет необходимости увеличивать имеющиеся в испарителе котла 22 отверстия для горения. В области отклонения на 180o часть первичного воздуха 26 ответвляется и после ускорения его потока вводится внутрь 24д камеры 24 через соответствующие отверстия 34. Это подмешивание происходит в области сужения 36 камеры 24. Это подмешивание должно производиться по возможности однородно и быстро. В области горелок предусмотрены суппорты 37, осуществляющие соединение между корпусами 24а и жаровой трубой 24с. Горелки 25а, 25в, 25с распределены по камере предварительного сжигания в трех уровнях друг над другом. При наличии, например, 4 камер по периметру котла 22 установка работает с 12 горелками. Преимущество представляет конфигурация с оборудованием Ретрофит, поскольку мощность котла 22 электростанции может благодаря этому варьироваться без дополнительных площадей или приспосабливаться к соответствующим условиям. Естественно, можно предусмотреть в камере 24 и большее число горелок. Камера 22 может вообще работать с одной горелкой. Воздух для первичного 26 и вторичного 27 воздуха может поставляться вместе или отдельно /+1 степень свободы/.
Чтобы лучше понять конструкцию горелок 25а-с, нужно рассматривать фиг.3 вместе с дополнительными фиг.4-6. Для наглядности фиг.3 на фиг.4-6 схематично показаны направляющие 21а, 21в. В дальнейшем при описании фиг.3 по мере необходимости будут упомянуты и другие фигуры. Горелка 25 а-с по фиг.3 состоит из двух полых частей конуса 1, 2, смещенных относительно друг друга радиально по симметричной продольной оси, и поставленных друг на друга. Смещение соответствующих продольных симметричных осей 1, 2в относительно друг друга создает на обеих сторонах корпуса 1, 2 в направлении, противоположном потоку, соответственно тангенциальную щель для прохода воздуха 19, 20 /см. фиг.4-6/, через которую упомянутый воздух 26а поступает в полость 14, образованную частями 1, 2 конуса. Конусообразная форма частей 1, 2 в направлении движения потока имеет определенный постоянный угол. Естественно, в зависимости от применения части корпуса 1, 2 в направлении потока имеют разный наклон корпуса. Оба вида на фигуре не показаны, поскольку для изобретения это неважно. Обе части конуса 1, 2 имеют цилиндрические начальные части 1а, 2а соответственно, которые расположены аналогично частям 1, 2, будучи сдвинуты относительно друг друга, так что тангенциальные щели для прохода воздуха проходят вдоль всей длины горелки 25 а-с. Эти начальные части могут иметь и другую геометрическую форму, они могут и вообще отсутствовать. В этой цилиндрической части 1а, 2а расположено сопло 3, через которое во внутреннюю часть 14 горелки 25 а-с вдувается горючее 12, преимущественно масло, или горючая смесь. Этот ввод топлива 4 совпадает с самым узким сечением внутреннего помещения 14. Подача другого топлива 13, здесь преимущественно газ, производится через встроенный в корпус 1, 2 подвод 8, 9 и подмешивается 16 к воздуху для горения 26а через несколько сопел 17 для воздуха для горения 26а. Подмешивание происходит в области входа в полость 14, что способствует оптимальной скорости подмешивания 16. Понятно, что процесс смешивания может осуществляться и обоими горючими веществами 12, 13 через соответствующее сопло. Со стороны камеры 24 имеется выходное отверстие горелки 25 а-с на лицевую сторону 10, на которой предусмотрены отверстия 10а, через них в случае необходимости вдувается определенное количество разреженного воздуха или охлажденного воздуха внутрь камеры 24д камеры предварительного сжигания 24. Поданное через сопло 3 жидкое топливо 12 вдувается в полость 14 под острым углом таким образом, что вдоль горелок 25 а-с вплоть до их выходов устанавливается однородное рассеяние, что возможно, если внутренние стенки конуса 1, 2 не имеют сопел 4, при которых, например, может идти речь о рассеянии давления. Для этого конус 5 для жидкого топлива закрыт от воздуха 26, поступающего для поддержания горения и, в случае необходимости, от другого воздушного потока 15, поступающего в осевом направлении. В осевом направлении концентрация вдуваемого жидкого топлива или смеси 12, продвигаясь вперед, разбивается протекающим через тангенциальные прорези 19, 20 в полость 14 горелок 25 а-с воздухом для горения 26а, который может быть и смесью горючее/воздух, и во всех случаях под воздействием другого потока 15 воздуха для горения. Под воздействием вдувания жидкого горючего 12 в области поворота, т.е. в области зоны обратного потока 6, достигают оптимальной гомогенной концентрации горючего по всему сечению. Поджигание происходит на острие зоны обратного потока 6. Лишь в этом месте может возникнуть стабильное пламя. Здесь можно не опасаться отдачи пламени внутри горелок 25 а-с, как это постоянно случается в известных устройствах предварительного смешивания. Если воздух для горения 26а, 15 предварительно подогревается, то возникает ускоренное испарение горючего, прежде чем будет достигнута точка на выходе горелки 25 а-с, в которой происходит поджигание смеси. Обогащение потоков воздуха для горения 26а, 15 может производиться подмешиванием рециркулирующего отходящего газа. Благодаря выбранному углу конуса частей 1, 2 и ширине впускной тангенциальной щели 19, 20 поддерживаются узкие пределы для установления нужной области потока воздуха для горения с зоной поворота 6 в области входа горелок для стабилизации пламени. Иными словами, изменение ширины щели 19, 20 приводит к смещению зоны поворота 6, смещение происходит вниз по ходу потока при уменьшении впускной щели. Поэтому необходимо поддерживать постоянной однажды установленную зону поворота потока 6, поскольку завихрение в направлении потока увеличивается в области горелки 25 а-с. Как уже говорилось, продольная скорость изменяется под воздействием соответствующей подачи потока воздуха 15 в осевом направлении. В случае необходимости конструкцию горелки в отношении тангенциальной щели 19, 20 для пропускания воздуха меняют с тем, чтобы без изменения длины горелки 25 а-с можно было охватить относительно большее рабочее пространство.
На фиг. 4-6 видна геометрическая конфигурация направляющих 21а, 21в. Их функция направления потока состоит в том, чтобы в соответствии со своей длиной увеличить конец конусообразных частей 1, 2 в направлении потока воздуха для горения 26а. Канализация воздуха 26а внутри полости 14 горелки 25 а-с может оптимизироваться открыванием или закрыванием направляющих 21а, 21в вокруг поворотной точки 23, находящейся в области входа в полость 14. Это особенно необходимо при изменении первоначальной величины зазора тангенциальной щели 19, 20 для впуска воздуха. Понятно, что горелки 25 а-с могут работать и без направляющих 21а, 21в, могут быть использованы и другие вспомогательные средства. ЫЫЫ2 ЫЫЫ4

Claims (3)

1. Способ горения в котле электростанции для получения пара, включающий подачу первичного воздуха и горючего вещества в по крайней мере одну горелку, сжигание последнего в камере предварительного сжигания с последующим дожиганием горючего вещества, содержащегося в продуктах сгорания в топке котла при подводе вторичногo воздуха в зону на выходе из камеры предварительного сжигания, отличающийся тем, что дополнительно выше по потоку продуктов сгорания места ввода вторичного воздуха в котел подают третичный воздух, часть первичного воздуха перед подачей в камеру предварительного сжигания подогревают, а коэффициенты первичного, вторичного и третичного воздуха, соответственно α1, α2, α3, поддерживают α1= 0,6oC0,65, α2= 0,75 и α3=1,05.
2. Способ по п.1, отличающийся тем, что подачу воздуха и горючего вещества осуществляют в горелки, расположенные на трех уровнях.
3. Способ по п.1, отличающийся тем, что подачу вторичного воздуха осуществляют несколькими струями в зону сужения на выходе из камеры предварительного сжигания.
RU9292004457A 1991-11-21 1992-11-20 Способ горения в котле электростанций RU2062944C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH3410/91A CH684959A5 (de) 1991-11-21 1991-11-21 Verfahren für eine schadstoffarme Verbrennung in einem Kraftwerkskessel.
CH3410/91 1991-11-21
DE3410/91 1991-11-21

Publications (2)

Publication Number Publication Date
RU2062944C1 true RU2062944C1 (ru) 1996-06-27
RU92004457A RU92004457A (ru) 1996-07-27

Family

ID=4255386

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9292004457A RU2062944C1 (ru) 1991-11-21 1992-11-20 Способ горения в котле электростанций

Country Status (8)

Country Link
US (1) US5303678A (ru)
EP (1) EP0543155B1 (ru)
JP (1) JPH05231611A (ru)
AT (1) ATE151854T1 (ru)
CA (1) CA2081443A1 (ru)
CH (1) CH684959A5 (ru)
DE (1) DE59208353D1 (ru)
RU (1) RU2062944C1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE507460C2 (sv) * 1995-03-24 1998-06-08 Abb Carbon Ab Förfarande och efterbrännkammaranordning för höjande av temperaturen av förbränningsgaser från en PFBC-anläggning
WO2012088110A1 (en) 2010-12-23 2012-06-28 Alstom Technology Ltd System and method for reducing emissions from a boiler
DE102011054718B4 (de) * 2011-10-21 2014-02-13 Hitachi Power Europe Gmbh Verfahren zur Erzeugung einer Spannungsverminderung in errichteten Rohrwänden eines Dampferzeugers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044683A (en) * 1959-08-20 1977-08-30 Mcdonnell Douglas Corporation Heat generator
HU173841B (hu) * 1974-12-11 1979-09-28 Energiagazdalkodasi Intezet Sposob otoplenija dlja szhiganija gorjuchikh gazov bez otravlenija i korrozii i ustrojstvo dlja povyshenija udel'noj nagrevatel'noj mohhnosti
US4023923A (en) * 1975-03-18 1977-05-17 Kramer Jr Frederick A Burner for heating an airstream
US4427362A (en) * 1980-08-14 1984-01-24 Rockwell International Corporation Combustion method
EP0073265A1 (en) * 1981-08-31 1983-03-09 Phillips Petroleum Company Method and apparatus for burning a fuel
JPH07117202B2 (ja) * 1987-01-14 1995-12-18 三菱重工業株式会社 予燃焼室付ボイラの燃焼方法および燃焼装置
CH680157A5 (ru) * 1989-12-01 1992-06-30 Asea Brown Boveri

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Заявка ФРГ N 2421452, кл. F 23 D 1/00, опубл. 1979. *

Also Published As

Publication number Publication date
ATE151854T1 (de) 1997-05-15
US5303678A (en) 1994-04-19
JPH05231611A (ja) 1993-09-07
EP0543155A1 (de) 1993-05-26
CH684959A5 (de) 1995-02-15
CA2081443A1 (en) 1993-05-22
DE59208353D1 (de) 1997-05-22
EP0543155B1 (de) 1997-04-16

Similar Documents

Publication Publication Date Title
US5147200A (en) Method of operating a firing installation
RU2082915C1 (ru) Способ сжигания топлива в камере сгорания и устройство для его осуществления
US3868211A (en) Pollutant reduction with selective gas stack recirculation
US6419480B2 (en) Method and apparatus for providing low level Nox and CO combustion
US3958413A (en) Combustion method and apparatus
US6089855A (en) Low NOx multistage combustor
US6682342B2 (en) Combustor for waste gas treatment
US5158445A (en) Ultra-low pollutant emission combustion method and apparatus
RU2062408C1 (ru) Кольцевая камера сгорания газовой турбины и способ ее эксплуатации
EP0006358A1 (en) Burner for reduced NOx emission and control of flame length and spread
US5220888A (en) Cyclonic combustion
JPH10501056A (ja) 超低量noxバーナー
JPH0135246B2 (ru)
WO1990002907A1 (en) Method and apparatus for generating highly luminous flame
US5044935A (en) Method and apparatus for operating a firing plant using fossil fuels
US5181475A (en) Apparatus and process for control of nitric oxide emissions from combustion devices using vortex rings and the like
RU2306483C1 (ru) Способ сжигания жидкого или газообразного топлива для получения тепла и воздухонагреватель для его осуществления
US7524186B2 (en) Low emissions burner with premix flame stabilized by a diffusion flame
RU2062944C1 (ru) Способ горения в котле электростанций
JPH06341611A (ja) 燃焼からのNOx放出量を最小限に抑える方法およびバーナ
EP1714074A1 (en) A method of operating a burner, and a burner for liquid and/or gaseous fuels
US4162890A (en) Combustion apparatus
US5545032A (en) Method of operating a firing installation
GB2086031A (en) Gas Turbine Combustion System
US4021191A (en) Reduction of pollutants in gaseous hydrocarbon combustion products