RU2062307C1 - Электролитическая ячейка для получения хлора и щелочи - Google Patents

Электролитическая ячейка для получения хлора и щелочи Download PDF

Info

Publication number
RU2062307C1
RU2062307C1 SU833615228A SU3615228A RU2062307C1 RU 2062307 C1 RU2062307 C1 RU 2062307C1 SU 833615228 A SU833615228 A SU 833615228A SU 3615228 A SU3615228 A SU 3615228A RU 2062307 C1 RU2062307 C1 RU 2062307C1
Authority
RU
Russia
Prior art keywords
pipe
cell
channel
alkali
electrolyte
Prior art date
Application number
SU833615228A
Other languages
English (en)
Inventor
Есида Мунео
Тамура Еситомо
Original Assignee
Асахи Касеи Когио Кабусики Кайся
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Асахи Касеи Когио Кабусики Кайся filed Critical Асахи Касеи Когио Кабусики Кайся
Application granted granted Critical
Publication of RU2062307C1 publication Critical patent/RU2062307C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Abstract

Изобретение относится к электрохимическим производствам и позволяет упростить конструкцию. Изобретение касается электролитической ячейки для получения хлора и щелочи, включающей корпус, два электрода, разделенных катионообменной мембраной, патрубки ввода и вывода, устройство для циркуляции, размещенное между электродом и перегородкой и выполненное в виде горизонтальной трубы и 1-15 вертикальных труб, соединенных с горизонтальной трубой, открытый конец горизонтальной трубы размещен на расстоянии 1/3 или менее длины ячейки от патрубка ввода, а открытый конец крайней вертикальной трубы размещен на таком же расстоянии от патрубка вывода. 5 ил., 4 табл.

Description

Изобретение относится к области электрохимических производств.
Целью изобретения является упрощение конструкции.
На фиг.1 вид сбоку ячейки, выполненной в соответствии с настоящим изобретением. На фиг. 2 разрез ячейки по линии Х-Х'. На фиг.3 разрез ячейки по линии У-У'. На фиг. 4 ячейка с устройством для циркуляции. На фиг.5 - выполнение ячейки с вертикальным каналом для циркуляции.
На фиг. 1 корпус 1 снабжен разгораживающей стенкой 2, и левым и правым фланцами, как показано на фиг.2 и 3, где одна сторона стенки 2 имеет несколько вертикальных ребер 3, на которых держится анод 4, видимый как вертикальная зигзагообразная линия. И наоборот, другая сторона стенки имеет несколько ребер 5, на которых держится катод 6, показанный вертикальной зигзагообразной линией. Поэтому анодный oтсек (правый) и катодный отсек (левый) имеют свое определенное место.
Ряд, описанных выше одиночных ячеек, собран в линию, тогда как катионообменная мембрана и два электрода на обеих ее сторонах размещены между одиночными ячейками, причем как анодный, так и катодный отсек заканчиваются на конце конструкции.
Позиция 7 представляет собой входное отверстие для свежего анолита 8, представляет собой выходное отверстие для отработанного анолита и выделяемых хлорных газов 9, представляет собой входное отверстие для свежего католита 10 и представляет собой выходное отверстие для отработавшего католита и выделяемого газообразного водорода. Ребра 3 и 5 образуют углубленное пространство позади анодов и катодов, где находятся соответственно каналы 11 и 12, имеющие вертикальную часть 13 и горизонтальную часть 14, выполненные параллельно плоским электродам 4 и 6. Канал имеет верхнее отверстие 15 на верхней кромке и нижнее отверстие 16 на нижней кромке.
Во время работы, если рассматривать например анодный отсек, газ хлора, выделяемый на аноде 4, не входит в канал 11, потому что в канале нет больше отверстий, кроме 15 и 16, а если что-то и входит в канал, так это отработанный анолит, содержащий скудный газ, более тяжелый, чем газосодержащая жидкость. За счет этого внутренняя часть канала приобретает такую большую плотность по сравнению с внешней частью канала, что канал создает определенный направленный вниз поток.
Более точно отработанный анолит, имеющий низкую концентрацию соляного раствора и кислотность, течет внутрь по верхнему отверстию 15, которое прилаживается вблизи к выходному отверстию 8, и отработанный анолит вытекает через отверстие 16, которое прилаживается вблизи входного отверстия 7. Таким образом, свежий анолит, имеющий высокую концентрацию соляного раствора и кислотность, смешивается с отработанным анолитом, имеющим низкую концентрацию и кислотность, настолько регулярно, что реализуется выравнивание концентрации и кислотности анолита. То же справедливо для катодного отсека, где находится канал 12.
На фиг. 4 показан другой пример устройства канала. В этом примере выполнено множество вертикальных частей 13 с одним каналом 11. Это эффективно для тех случаев, когда отделение газа происходит слабо, или когда мертвая зона потока образуется в электролите. Однако необходимо отметить, что чрезмерные вертикальные части 13 могут превратить заднее пространство в малопригодное для течения электролита. Тем самым вызываются слабое газоотделение и увеличение напряжения. Открытый конец крайней вертикальной трубы размещен на расстоянии 1/3 или менее от патрубка вывода электролита.
На фиг.5 показан пример выполнения канала, подходящего для ячейки с малой поперечной длиной. В тех случаях, когда поперечная длина не больше 50 см, примерно в центре ячейки предпочтительно устройство канала, состоящего из вертикальной части 11 без горизонтальной части.
Что касается катионообменной мембраны, используемой в настоящем изобретении, то можно выбирать мембрану любого типа, лишь бы она подходила для хлоро-щелочного электролита. В настоящее время считается, что данному случаю соответствует мембрана, состоящая из перфтороуглерода, содержащего карбоксильные кислотные группы, и в условиях хлоро-щелочного электролиза она годится в пределах эффективности тока. Этот тип мембраны наиболее пригоден для данного изобретения.
В процессе хлоро-щелочного электролиза, в основном, обратная миграция гидроксильных ионов от катодного отсека к анодному отсеку через мембрану должна быть нейтрализована за счет дополнения кислоты в анодный отсек. В противном случае она вызывает накопление хлората в анодном отсеке, возрастание газообразного водорода в хлорном газе, быстрый износ материала покрытия анодов и другие повреждения.
С другой стороны, карбоксилитные кислотные группы в мембране становятся неразложимыми, когда она встречается с высококонцентрированной кислотой. И поэтому возникает возрастание напряжения электролиза. Если бы эта операция продолжалась принудительно, то это могло бы привести к появлению вздутия или даже к поломке мембраны. Однако при работе ячейки, выполненной в соответствии с настоящим изобретением, имеется возможность подачи соляного раствора высокой кислотности для нейтрализации обратной миграции гидроксильных ионов, так как ячейка, по настоящему изобретению, способна к выравниванию распределения кислоты в анодном отсеке, тем самым предотвращая повреждение мембраны и увеличение напряжения электролиза.
Что касается электрода, выполненного в соответствии с настоящим изобретением, то для его изготовления годится пористый плоский электрод, например из цельнотянутой металлической решетки, сетки или сетчатого металла, перфорированного металлического листа. Кроме того, могут использоваться вытянутые металлические стержни. Что касается анода, то приемлемы любые материалы, используемые обычно для хлоро-щелочного электролиза. А именно, титан, цирконий, тантал, ниобий и сплавы этих металлов служат в качестве основы, поверхность которой покрывается активным материалом, который для анода содержит окисел металла платиновой группы (например, окисел рутения) в качестве основной составляющей. Материалом катода может быть железо, никель и их сплавы, которые используются непосредственно, или покрываются для катода активным материалом, например никелем Рейни, никелем Родана, окислом никеля. Что касается хлоро-щелочного водного раствора в данном изобретении, сохраняется потребность в промышленном применении поваренной соли, хлористого калия, но при этом нет больше существенных ограничений.
Как описано выше, электролитическая ячейка, выполненная в соответствии с настоящим изобретением, способна уравнивать отклонение концентрации, распределение рН и температуры в электролите, тем самым создавая следующие преимущества:
1. Работа при высокой плотности тока 30 а/дм2 или выше.
2. Пониженное напряжение.
3. Большая продолжительность жизни катионообменной мембраны, а также анода.
4. Более высокое качество продукта химической реакции в виде хлорного газа и гидроокиси щелочного металла.
В электролитической ячейке, выполненной в соответствии с настоящим изобретением, выполнен канал в отсеке для осуществления естественной циркуляции электролита, тем самым создавая возможность получения следующих преимуществ.
5. Низкая стоимость возведения установки и ее эксплуатации.
6. Неизменно сохраняется соответствующая циркуляция даже тогда, когда помимо канала, по данному изобретению, выполнено отверстие во входном канале для свежего электролита для уравнивания скорости подачи к каждой ячейке.
Пример 1.
В биполярной системе электролитической ячейки, имеющей конструкцию, показанную на фиг. 1, был выполнен электролиз водного раствора хлористого натрия. Область приложения тока определяется размерами 115 см высоты и 235 см поперек. Глубина выемки заднего пространства, смежного с электродом, составляет 3 см. Анод был выполнен из перфорированной титановой пластины, имеющей толщину 1 мм и покрытой окислом рутения. Катод был выполнен из перфорированной низкоуглеродистой стали в виде пластины толщиной 1 мм. В заднем пространстве рядом с катодом был устроен канал, выполненный из нержавеющей стали в виде пластинки толщиной 1 мм, а в заднем пространстве рядом с анодом выполнен канал, изготовленный из титановой пластинки толщиной 1 мм, имеющий в основном прямоугольное сечение 2,5 см х 8 см, причем верхние отверстия этих каналов находятся как раз под выходным отверстием для отработанного электролита и электролитического продукта на высоте 105 см. Нижние их отверстия находятся в 2 см от входного отверстия для свежего электролита.
Мембранный полимер был изготовлен путем сополимеризации тетрафтороэтилена и перфторо-3,6-диокси-4-метил-7-октенесульфонильного фторида. Два сорта полимеров, один из которых имеет эквивалентный вес 1350 (полимер 1), а другой имеет эквивалентный вес 1100 (полимер 2), были получены в результате реакции. Затем эти два полимера были подвергнуты тепловой обработке и за счет этого был изготовлен двухслойный состав путем комбинации 35 микрон полимера 1 и 100 микрон полимера 2, а на него внедрено покрытие из Тефлона со стороны полимера 2 вакуумным нанесением. Этот покрытый слой был затем омылен. Содержащая группу сульфокислоты ионообменная мембрана была подвергнута понижающей обработке с целью выработки групп карбоксильной кислоты только относительно поверхности со стороны полимера 1. Мембрана, используемая в данном примере, была изготовлена, как описано выше.
Что касается работы, то в анодные отсеки был подан водный раствор поваренной соли, 5,3 N, при 60oС со скоростью 130 лит/час, а в катодные отсеки со скоростью 130 лит/час подавался слабый водный раствор NаОН с тем, чтобы отвести электролитическое тепло. Операция управлялась таким образом, чтобы сохранялась температура 90oС; 6,5 N на выходном отверстии.
После того, как через 2 3 часа работа привелась к равновесию при плотности тока 40 а/дм2, к анолиту был добавлен 5 N НСL. Между тем, в девяти точках были взяты пробы, и эти образцы были исследованы для определения концентраций NаСL и NаОН. Затем была определена однородность распределения (далее "однородность") отношением наибольшего показателя концентрации к наименьшему показателю, измеренным в отсеке.
Результаты приведены в таблице 1, где в качестве контрольного эксперимента добавлен результат, полученный при принудительной циркуляции на скорости 1 м3/час для обоих электролитов. Эффективность тока составляла 95% на основе выработанного NаОН.
Таблица, приведенная выше показывает, что в случае с каналом получены результаты, которые заслуживают внимания для сравнения с работой с принудительной циркуляцией, и что в случае без канала происходит увеличение напряжения из-за ослабления однородности и частичного неразложения группы карбоксильной кислоты ионообменной мембраны ввиду увеличения концентрации кислоты.
Пример 2.
Кроме изменения концентрации кислоты в анолите до 0,20 N, пример 2 осуществлен при тех же условиях, что и пример 1, в основном для определения эффекта за счет высоты канала. Результаты показаны в таблице 2.
Приведенные результаты доказывают, что соответствующей высотой канала может быть высота более 50 см.
Пример 3.
Создавались те же условия работы, как и в примере 2, и проверялось воздействие изменений расположения верхнего и нижнего отверстий канала за счет использования того же канала высотой 100 см. Эксперименты осуществлены при условии, что когда верхнее положение изменяется, нижнее положение зафиксировано на 5 см над входным отверстием для электролита, и при условии, что когда нижнее положение изменяется, верхнее положение остается нетронутым как раз под выходным отверстием.
Полученные результаты приведены в таблице 3.
Результаты, приведенные в таблице 3 показывают, что верхнее положение меньше влияет на однородность и изменения напряжения. И, наоборот, нижнее положение имеет определенное влияние на указанные параметры. В заключение необходимо отметить, что нижнее положение должно предпочтительно настраиваться по отношению к входному отверстию в пределах 1/3 длины ячейки, предпочтительно в пределах 10 см.
Пример 4.
В соответствии с примером 2, где исследовалось влияние выступающей области канала на область приложения тока. Во время экспериментов вертикальные каналы были расположены в линию с интервалами 10 см, начиная с положения как раз под выходным отверстием на потолке. Указанные выше вертикальные каналы были соединены горизонтальным каналом, при этом его высота контролировалась на 105 см, а нижнее отверстие устраивалось в 2 см от входного отверстия.
В таблице 4 показана тенденция, что при большем числе вертикальных каналов повышается однородность, но там, где общая выступающая область вертикальных каналов превышает 1/3 длины ячейки, электролитическое напряжение неблагоприятно увеличивается. Это может быть происходит от того, что каналы блокируют проход вверх, выделяемых газов.
На графике приведены данные, которые показывают, что наилучшие результаты получают при размещении открытого конца горизонтальной трубы на расстоянии 1/3 или менее длины ячейки от патрубка ввода электролита и верхнего открытого конца вертикальной трубы на таком же расстоянии от патрубка вывода.
В известном электролизере имеется устройство для циркуляции, выполненное в виде канала, одна часть которого является внешней, а вторая внутренней по отношению к каждому электроду, причем внутренний канал расположен в толще электрода, в предложенном устройство для циркуляции размещено в пространстве между электродами, что упрощает конструкцию. ЫЫЫ2 ЫЫЫ4 ТТТ1 ТТТ2 ТТТ3 ТТТ4

Claims (1)

  1. Электролитическая ячейка для получения хлора и щелочи, включающая корпус, два электрода, разделенные катионообменной мембраной, патрубки ввода электролита, размещенные в нижней части, и патрубки вывода продуктов электролиза, размещенные в верхней части ячейки, устройство для циркуляции электролита, отличающаяся тем, что, с целью упрощения конструкции, устройство для циркуляции электролита размещено между электродом и мембраной, выполнено в виде горизонтальной трубы и 1-15 вертикальных труб, соединенных с горизонтальной трубой, открытый конец горизонтальной трубы размещен на расстоянии 1/3 или менее длины ячейки от патрубка ввода электролита, а открытый конец крайней вертикальной трубы размещен на таком же расстоянии от патрубка вывода.
SU833615228A 1982-07-06 1983-07-05 Электролитическая ячейка для получения хлора и щелочи RU2062307C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP116236/82 1982-07-06
JP57116236A JPS599185A (ja) 1982-07-06 1982-07-06 イオン交換膜法電解槽

Publications (1)

Publication Number Publication Date
RU2062307C1 true RU2062307C1 (ru) 1996-06-20

Family

ID=14682179

Family Applications (1)

Application Number Title Priority Date Filing Date
SU833615228A RU2062307C1 (ru) 1982-07-06 1983-07-05 Электролитическая ячейка для получения хлора и щелочи

Country Status (5)

Country Link
US (1) US4557816A (ru)
EP (1) EP0099693B1 (ru)
JP (1) JPS599185A (ru)
DE (1) DE3369707D1 (ru)
RU (1) RU2062307C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2519455C2 (ru) * 2009-10-26 2014-06-10 Асахи Касеи Кемикалз Корпорейшн Катионообменная мембрана, электролизер с ее использованием и способ изготовления катионообменной мембраны
RU2532910C2 (ru) * 2008-02-27 2014-11-20 Байер Матириальсайенс Аг Способ получения поликарбоната на границе раздела фаз и переработки по меньшей мере части образующегося раствора хлорида щелочного металла на дополнительной стадии электролиза

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8614706D0 (en) * 1986-06-17 1986-07-23 Ici Plc Electrolytic cell
GB8614707D0 (en) * 1986-06-17 1986-07-23 Ici Plc Electrolytic cell
US4839012A (en) * 1988-01-05 1989-06-13 The Dow Chemical Company Antisurge outlet apparatus for use in electrolytic cells
DE3808495A1 (de) * 1988-03-15 1989-09-28 Metallgesellschaft Ag Membranelektrolysevorrichtung
EP0505899B1 (en) * 1991-03-18 1997-06-25 Asahi Kasei Kogyo Kabushiki Kaisha A bipolar, filter press type electrolytic cell
IT1247483B (it) * 1991-03-21 1994-12-17 Permelec Spa Nora Dispositivo per l'estrazione di fluidi bifase da celle di elettrolisi
IT1263899B (it) * 1993-02-12 1996-09-05 Permelec Spa Nora Migliorato processo di elettrolisi cloro-soda a diaframma e relativa cella
JP3282691B2 (ja) * 1993-04-30 2002-05-20 クロリンエンジニアズ株式会社 電解槽
JP3026762U (ja) * 1994-07-29 1996-07-23 ケーアイケーエンジニアリング株式会社 並行棒いす
WO1998055670A1 (en) * 1997-06-03 1998-12-10 De Nora S.P.A. Ion exchange membrane bipolar electrolyzer
GB9910714D0 (en) 1999-05-10 1999-07-07 Ici Plc Bipolar electrolyser
US20040108204A1 (en) 1999-05-10 2004-06-10 Ineos Chlor Limited Gasket with curved configuration at peripheral edge
US6761808B1 (en) 1999-05-10 2004-07-13 Ineos Chlor Limited Electrode structure
ITMI20010401A1 (it) * 2001-02-28 2002-08-28 Nora Tecnologie Elettrochimich Nuovo assieme bipolare per elettrolizzatore a filtro-pressa
JP4779937B2 (ja) * 2006-11-10 2011-09-28 ダイキン工業株式会社 圧縮機
US20130264195A1 (en) * 2012-04-10 2013-10-10 Qiang Zhou Pumpless, fanless electrolyte-circulation system
BE1023328B1 (fr) * 2015-07-17 2017-02-07 Vermandis Construction Dispositif et procédé de production d'un sel alcalin d'acide hypohalogéneux
CN113789546B (zh) * 2021-10-14 2024-03-26 中国华能集团清洁能源技术研究院有限公司 一种隔膜完整性测试系统及使用方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE793281A (fr) * 1971-12-23 1973-06-22 Rhone Progil Cadres pour cellules electrolytiques du type filtre-presse
FR2280434A1 (fr) * 1974-07-29 1976-02-27 Rhone Poulenc Ind Cellule d'electrolyse a zone de perte de charge controlee, et procede d'electrolyse
JPS51119681A (en) * 1975-04-15 1976-10-20 Asahi Glass Co Ltd A cell frame for an electrolizer
US4149952A (en) * 1975-04-15 1979-04-17 Asahi Glass Co. Ltd. Electrolytic cell
JPS5927392B2 (ja) * 1976-12-23 1984-07-05 ダイヤモンド・シヤムロツク・テクノロジ−ズエス・エ− 塩素−アルカリ電解槽
JPS552704A (en) * 1978-06-14 1980-01-10 Asahi Glass Co Ltd Construction of electrode room
JPS565988A (en) * 1979-06-27 1981-01-22 Asahi Chem Ind Co Ltd Vertical diaphragm type alkali chloride electrolytic bath
US4340460A (en) * 1980-11-24 1982-07-20 Olin Corporation Internal downcomer for electrolytic recirculation
US4322281A (en) * 1980-12-08 1982-03-30 Olin Corporation Method for controlling foaming within gas-liquid separation area
US4378286A (en) * 1980-12-29 1983-03-29 Occidental Chemical Corporation Filter press type electrolytic cell and frames for use therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЕР заявка N 0052880, кл. С 25 В 1/46, опублик. 02.06.1982. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532910C2 (ru) * 2008-02-27 2014-11-20 Байер Матириальсайенс Аг Способ получения поликарбоната на границе раздела фаз и переработки по меньшей мере части образующегося раствора хлорида щелочного металла на дополнительной стадии электролиза
RU2519455C2 (ru) * 2009-10-26 2014-06-10 Асахи Касеи Кемикалз Корпорейшн Катионообменная мембрана, электролизер с ее использованием и способ изготовления катионообменной мембраны

Also Published As

Publication number Publication date
US4557816A (en) 1985-12-10
JPS599185A (ja) 1984-01-18
JPH0561356B2 (ru) 1993-09-06
DE3369707D1 (en) 1987-03-12
EP0099693A1 (en) 1984-02-01
EP0099693B1 (en) 1987-02-04

Similar Documents

Publication Publication Date Title
RU2062307C1 (ru) Электролитическая ячейка для получения хлора и щелочи
US4142950A (en) Apparatus and process for electrolysis using a cation-permselective membrane and turbulence inducing means
US4100050A (en) Coating metal anodes to decrease consumption rates
US3242059A (en) Electrolytic process for production of chlorine and caustic
US3773634A (en) Control of an olyte-catholyte concentrations in membrane cells
US4149952A (en) Electrolytic cell
US3976549A (en) Electrolysis method
US3855104A (en) PROCESS AND APPARATUS FOR THE ELECTROLYSIS OF HCl CONTAINING SOLUTIONS WITH GRAPHITE ELECTRODES WHICH KEEP THE CHLORINE AND HYDROGEN GASES SEPARATE
JPS6315354B2 (ru)
US4584080A (en) Bipolar electrolysis apparatus with gas diffusion cathode
US4969981A (en) Cell and method of operating a liquid-gas electrochemical cell
US4578159A (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
US3926769A (en) Diaphragm cell chlorine production
US4752369A (en) Electrochemical cell with improved energy efficiency
JPS59179793A (ja) フイルタ−プレス型電解槽
JPWO2015108115A1 (ja) イオン交換膜電解槽用陽極およびこれを用いたイオン交換膜電解槽
EP3161185B1 (en) Narrow gap, undivided electrolysis cell
JPH0680193B2 (ja) フイルタプレス型の電解槽
US3933603A (en) Electrolysis of alkali metal chloride
EP0668939B1 (en) Electrolytic cell and electrode therefor
EP0144567A2 (en) Process for the electrolysis of an aqueous alkali metal halide solution
US4048046A (en) Electrolytic cell design
US4127457A (en) Method of reducing chlorate formation in a chlor-alkali electrolytic cell
CA1338634C (en) Cell and method of operating a liquid-gas electrochemical cell
RU2126461C1 (ru) Способ хлорщелочного электролиза и диафрагменный электролизер