RU2054031C1 - Смазочная композиция для приработки двигателей внутреннего сгорания - Google Patents

Смазочная композиция для приработки двигателей внутреннего сгорания Download PDF

Info

Publication number
RU2054031C1
RU2054031C1 RU93046491A RU93046491A RU2054031C1 RU 2054031 C1 RU2054031 C1 RU 2054031C1 RU 93046491 A RU93046491 A RU 93046491A RU 93046491 A RU93046491 A RU 93046491A RU 2054031 C1 RU2054031 C1 RU 2054031C1
Authority
RU
Russia
Prior art keywords
running
internal combustion
engine
coolant
friction
Prior art date
Application number
RU93046491A
Other languages
English (en)
Other versions
RU93046491A (ru
Inventor
И.И. Телицин
А.Ю. Попков
П.И. Лавин
Original Assignee
Товарищество с ограниченной ответственностью - Научно-внедренческое предприятие "АПТ - Экология"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Товарищество с ограниченной ответственностью - Научно-внедренческое предприятие "АПТ - Экология" filed Critical Товарищество с ограниченной ответственностью - Научно-внедренческое предприятие "АПТ - Экология"
Priority to RU93046491A priority Critical patent/RU2054031C1/ru
Application granted granted Critical
Publication of RU2054031C1 publication Critical patent/RU2054031C1/ru
Publication of RU93046491A publication Critical patent/RU93046491A/ru

Links

Images

Landscapes

  • Lubricants (AREA)

Abstract

Сущность изобретения: смазочная композиция для приработки двигателей внутреннего сгорания содержит воду и 10 - 15% смазочного компонента, представляющего собой растительный экстрат, полученный экстрагированием твердой фракции свиного навоза экстрагентом, содержащим растворимые соли металлов. 6 ил.

Description

Изобретение относится к смазочным композициям для приработки механизмов и может быть использовано, например, для приработки двигателей внутреннего сгорания (ДВС).
Приработка ДВС является сложным и трудоемким процессом в автомобилестроении, испытании, эксплуатации и ремонте двигателей.
Приработка ДВС это изменение геометрии поверхности трения и физико-механических свойств поверхностных слоев материала в начальный период трения, проявляющееся при постоянных внешних условиях в уменьшении силы трения, температуры и интенсивности изнашивания.
Геометрия поверхностей трения характеризуется, во-первых, шероховатостью, во-вторых, отклонениями от правильной геометрической формы. Величины допустимых отклонений от правильной геометрической формы устанавливаются исходя из необходимости обеспечения работоспособности сопряжения в пределах ресурса работы двигателя.
Одной из целей приработки ДВС является достижение в условиях стендовой приработки шероховатости поверхностей, близкой той, которая устанавливается в эксплуатации после завершенной приработки.
Существенную роль в характере протекания приработки ДВС играет смазка, которая выполняет следующие функции: разделяет трущиеся поверхности и уменьшает площадь непосредственного контакта механических поверхностей; охлаждает поверхность трения деталей и смывает с них или вымывает из зазоров частицы металлов и их окислов, оказывает абразивное воздействие на поверхности трения.
В качестве смазки применяют масло. Но масло с низкой вязкостью не обеспечивает надежное разделение поверхности трения, а масло с высокой вязкостью плохо протекает через зазоры, плохо охлаждает поверхность трения и плохо вымывает продукты окислов металлов, частицы металлов.
Кроме того, при 80-100оС нет значительной разницы в условиях вязкости. Температура масла в значительной степени зависит от температуры охлаждающей жидкости. Для снижения трения и изнашивания разнообразных узлов трения широко используют смазочные материалы. Наиболее распространенными и широко применяемыми являются жидкие и пластичные смазочные материалы. Смазочный материал определяет потери на трение в трибосопряжениях. Триботехнические характеристики смазочного материала выявляются по антифрикционным и противоизносным свойствам.
Наибольшее проявление антифрикционных и противоизносных свойств смазочных материалов трибосопряжений происходит в условиях граничной смазки, которая определяется специфическим взаимодействием смазочного материала и твердого тела в результате физической адсорбции, хемосорбции или химической реакции.
Существенное уменьшение трения и изнашивания трущихся тел в условиях граничной смазки наблюдается при образовании на их поверхности адсорбционного слоя молекул поверхностно-активных веществ (ПАВ), присутствующих в смазочных материалах. Молекулы ПАВ и их ассоциаты, входящие в граничный смазочный слой, образуют на металле достаточно прочный и гибкий ворс, принимающий на себя контактную нагрузку.
В пределах данной заявки рассматриваются только моторные смазочные материалы, применяемые при приработке двигателей внутреннего сгорания (ДВС).
Из отечественных смазочных материалов, применяемых при приработке и эксплуатации ДВС следует указать такие, например, как ЗИМОЛ (РкН-800; РсН-200; Из-29; dи, мм, 0,65), УНИОЛ-1 (РкН-12060; РсН-2500; Из-51; dи, мм-0,34).
ЗИМОЛ в своем составе содержит нефтяное масло, литиевое мыло, присадки, фторопласт. УНИОЛ-1 содержит: нефтяное масло, комплексное кальциевое мыло, присадки (см. "Смазочные материалы". Справочник, М. "Машиностроение", 1989, с.174).
Для получения смазок в качестве базовых масел используют фракцию парафиновых смазочных масел, фракцию нефтяных смазочных масел, экстракт селективной очистки парафинового сырья (см. Кламанн Д. "Смазки и родственные продукты", М. Химия, 1988, с.265-266).
В качестве смазки можно рассматривать также и смазочно-охлаждающие жидкости (СОЖ), которые удаляют частицы металлов и их окислов, снижают трение, уменьшают износ и тепловыделение, действуют одновременно как охладитель.
Основой для СОЖ служат минеральные масла различного строения и вязкости; применяют также синтетические эфиры и производные растительных и животных масел главным образом в качестве присадок в силу их полярности. К СОЖ, смешиваемым с водой, добавляют анионо-активные или неионные эмульгаторы, анионо-активные продукты действуют в то же время как антикоррозионные агенты. Неионные эмульгаторы менее чувствительны к солям, обусловливающим жесткость воды. Не смешиваемые с водой СОЖ содержат небольшие количества эмульгаторов. Ингибиторы коррозии (аминные соли, сульфонаты, бензотриазолы) добавляют для защиты деталей от коррозии, от появления белых пятен, от обесцвечивания цветных металлов.
Спирты, добавляемые в качестве промоторов, обеспечивают высокую стабильность при хранении концентратов эмульсий для СОЖ, смешиваемых с водой. Металлические мыла, высшие спирты и силоксаны добавляют в качестве антипенных соединений. В СОЖ, смешиваемых с водой, добавляют также бактерициды, которые защищают эмульсии от заражения бактериями, плесенью и дрожжевыми грибками и продлевают срок службы жидкостей.
Для улучшения смазывающих свойств в СОЖ добавляют присадки, способные образовывать адсорбционные или реакционные слои на металлической поверхности.
В качестве моющего средства, применяемого для мойки деталей и сборочных единиц ДВС можно рассмотреть синтетическое моющее средство МС-5, в состав которого входит: кальцинированная сода 46% триполифосфат натрия 24% метасиликат натрия 24% поверхностно-активные вещества 6% (ОС-20, синтанол ДС-6, сантамид-5).
В последние годы получают развитие двигатели с водным охлаждением фирмы Klockner-Humbold-Deutz. Обосновывается преимущество двигателей жидкостного охлаждения по сравнению с воздушным. Эти преимущества сводятся к более эффективному теплоотводу и лучшему регулированию теплового режима двигателя при эксплуатации. Внедрение таких двигателей с непосредственным впрыском и использованием интегрального насоса открывает новые возможности в двигателестроении, обеспечивая снижение шума работы двигателя, расхода топлива и эмиссии вредных примесей в выпускных газах, более эффективно использование мощностных данных. При этом основное внимание уделяется резкому снижению содержания вредных примесей в отработавших газах за счет установки фильтров или специальных нейтрализаторов (РЖ ВИНИТИ "Автомобильный транспорт", реф. 9Б64, 1992). Это дорогостоящие испытания. Фимой уже израсходовано более 300 млн. марок. В дальнейшем планируется рассмотреть еще три проекта в этом направлении суммарной стоимостью 600 млн. марок.
Известен способ обкатки двигателя внутреннего сгорания по авт.св. СССР N 1663476, кл. C 01 M 15/00, в котором в систему охлаждения двигателя заливают технологическую жидкость, содержащую медь и другие компоненты. После обкатки технологическую жидкость сливают, меняют масляный фильтр и заливают в систему свежее масло, а в надпоршневую полость цилиндра заливают технологическую жидкость в объеме, равном V (0,02-0,05)V1 K, где V1 рабочий объем цилиндра, К коэффициент потерь степени компрессии цилиндра.
Известны методы очистки топливной системы автомобилей фирмы Ligui-Moly (швейцарское отделение фирмы Accumula- toren-Fabrik Oerlikon). Фирма Ligui-Moly предлагает высокоэффективные присадки для очистки топливной системы двигателей, которые совместно с известными методами фирмы Fet Clean-Gerat быстро очищают топливную систему двигателей без их разборки. Очистка производится путем впрыскивания бензина в композиции с присадкой в систему двигателя при давлении 0,2-0,5 бар. Система очищается на 90% (РЖ ВИНИТИ "Автомобильный транспорт", 1992, реф. 7Б61).
Известны охлаждающие водные эмульсии по пат. США N 948521 кл. C 10 M 173/00, 1990.
Охлаждающие водные эмульсии содержат: 30-40% воды, 30-40% растительного масла, 1-5% фосфатида (лецитин, цефалин), 0,5-2% кремнеземного загустителя и 20-30% эмульгатора, в состав которого входит смесь анионного ПАВ и неионного моющего вещества. В качестве анионного ПАВ используют сульфаты жирных кислот, сульфонаты алкилбензола или алкилфеноксида с С420 алкилами. В качестве неионогенного моющего вещества используют С420 алкилбензосульфонаты, диэтаноламин или этоксиилрованные спирты.
Известна рабочая жидкость по заявке Японии N 1-13520 (890307), кл. C 10 M 173/00. Рабочая жидкость на водной основе содержит: 1-9% минерального масла; 0,1-2% нефтяных сульфонатов; 0,1-20, ПАВ продукта присоединения (1-10М) этиленоксида и моно- и/или диглицирида и 0,1-2% мыла на основе жирных кислот.
Известна смазочная композиция для пары трения по авт.св. СССР N 1752190, кл. C 10 M 173/02, содержащая мас. олеиновая кислота 0,2-0,3; глицерин 5-10; пропиленгликоль 1,25-5,5; вода остальное.
Известны функциональные водные структуpированные ПАВ по заявке ЕПВ N 0430602, кл. C 10 M 173/02, которые могут быть использованы в качестве функциональных жидкостей.
Известны водные жидкости для гидросистем содержащие: 5-30% алкилполигликозида, 0-20% добавок ПАВ; 0-10% добавок, которые не являются ПАВ, и воду остальное. (Германия, заявка N 3926697, 91.02.15, С 10 M 173/02).
Известная смазочная композиция по авт.св. СССР N 1253991, содержащая воду и полимер (полиуретан).
Известен состав для приработки по авт.св. СССР N 1641872, кл. C 10 M 173/02, состоящий из следующих композиций, мас. глицерин 35-40; полиэтиленгликоль 25-30, расширенный графит 1-2; вода до 100% (прототип).
Рассмотренные составы смазок и СОЖ либо дорогие, либо оказывают неблагоприятное влияние на условия работы в производственных помещениях, т.к. применение масла и эмульсии в технологических пределах приработки ДВС сопровождаются выгоранием масла и загрязнением воздуха, а промышленные стоки после приработки ДВС существенно загрязняют окружающую среду.
Поставлена задача уменьшения загрязнения окружающей среды, улучшения условий работы, снижения времени приработки и повышение смазочных свойств.
Кроме того, применение предлагаемой смазочной композиции позволяет сократить один технологический предел, а именно мойку деталей и сборочных единиц ДВС т.к. операции смазки и мойки совмещаются.
Поставленные задачи решены путем применения в качестве смазочной композиции для прикатки и мойки ДВС экстракта растительного конденсированного из вторичного сырья твердой фракции навоза (фекона). Фекон получают путем переработки растительных остатков, в качестве которых используют твердую фракцию свиного навоза, которая содержит до 40% остатков растительных кормов. Исходное сырье экстрагируют экстрагентом, приготовленным на основе пароконденсата и растворимых солей металлов, например, таких как Mo, Ba, Pb, Co, V, C2, Zn, Fe, Sn, Ni, Ci, Mn из расчета на 100 литров пароконденсата в мг: Mo 17,0; Ba 85,0; Pb 42,5; Co 18,0: Ni 4,0; C2 2,0; Zn 11,5; Fe 275,0; Sn 42,5; Ni 4,0; Cv 85,0; Mn 425,0.
Высушенная масса фекона сходна с природным мумие. Субстанцию фекона растворяют в воде. Готовят 10-15%-ный водный раствор путем тщательного перемешивания и последующей фильтрации раствора через несколько слоев марли. Полученный раствор используют в качестве смазки, СОЖ и моющей жидкости при приработке ДВС.
Для оценки фекона, как составного компонента композиции для прикатки ДВС его эффективность сравнивалась с 12%-ным раствором эмульсии на основе эмульсоля ЭТГ и с пальмовым маслом. Сравнительные испытания проводились институтом Машиноведения (Уральское отделение Российской академии наук) на машине трения СМТ-1.
Исследовались следующие СОЖ: раствор Фекона; 12%-ная эмульсия на основе ЭТГ, пальмовое масло.
Испытываемые образцы представляли собой пары трения: вращающиеся и неподвижные диски, соприкасающиеся по торцовым поверхностям с усилием прижатия 13 кг. Удельная нагрузка в контакте составляла 1,7 кг/см2. Линейные скорости при числе оборота шпинделя СМТ-1 W 500, 1000, 1500 об/мин, составляли соответственно 1,85; 3,70 и 5,55 м/с. Вращающееся кольцо изготовлено из высокоуглеродистой закаленной стали ШХ-15, невращающиеся кольца изготовлены из стали ШХ-15, невращающиеся кольца изготовлены из СТ3, ВТ1-0, 12х18Н19Т.
Результаты исследований обработаны методом сплайн-интерполяции на ПК ИБМ. На фиг. 1 показана зависимость полного давления металла на валки от степени деформации сплава ВТ1-0 при приработке с различными СОЖ; на фиг.2 зависимость полного давления металла на валки от степени деформации стали 1 при приработке с различными СОЖ; на фиг.3 зависимость полного давления металла на валки от степени деформации стали 12Х18Н10Т при приработке с различными СОЖ; на фиг.4 сравнительная эффективность раствора фекона и пальмового масла в опыте с мягкой сталью; на фиг.5 сравнительная эффективность раствора фекона и пальмового масла в опыте с титановым сплавом; на фиг.6 сравнительная эффективность фекона и пальмового масла в опыте с нержавеющей сталью.
На фиг.1, 2 и 3 показаны зависимости полного давления на валки при приработке без СОЖ, со cмазкой с маслом, со смазкой эмульсией ЭГТ (для стали 1) и со смазкой на основе водного раствора фекона (эмульсией, составной частью которой является фекон). Приработка проводилась на лабораторном дуо с диаметром валков 250 мм на образцах размером 100х300 мм (300 вдоль приработки) и толщиной 1,9 мм для стали 1; 2,5 мм для титанового сплава ВТ1-0 и 3,8 мм для стали 12х18Н10Т. Запись давления металла на валки проводилась с использованием месдоз на осциллографе Н071.4. Анализируя фиг.1, 2 и 3, видно, что чем меньше давление металла на валки, тем СОЖ более эффективна.
Для оценки фекона, как составного компонента СОЖ, его эффективность по отношению к 12%-ной эмульсии на основе эмульсола ЭТГ сравнивалась с таким же показателем пальмового масла. Под эффективностью в данном случае понимается отношение коэффициентов трения (в процентах) оцениваемой СОЖ к базовой на аналогичных парах трения. Анализируя фиг.4, 5 и 6, видно, что эффективность СОЖ, составной частью которой является фекон оказывается, практически, идентичной эффективности пальмового масла в опыте с мягкой сталью (фиг.4), существенно (в 1,5-3 раза) выше в опыте с титаном (фиг.5) и ниже в опыте с нержавеющей сталью (фиг. 6). В последнем случае характер кривых показывает более высокую эффективность СОЖ с использованием фекона при скоростях выше 5,2 м/с.
Таким образом, применение водного раствора фекона в качестве основного компонента СОЖ исключает применение масел и эмульсий на масляной основе, улучшает условия труда, исключает ряд технологических переделов.
Кроме того, рассматривая систему в комплексе: переработка свиного навоза на рафинат и фекон (безотходная, экологически чистая технология и применение фекона в качества СОЖ (очистка промышленных стоков путем исключения из стоков масел и эмульсий) можно сделать вывод о том, что предлагаемое решение имеет большое народнохозяйственное значение.

Claims (1)

  1. СМАЗОЧНАЯ КОМПОЗИЦИЯ ДЛЯ ПРИРАБОТКИ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ, содержащая воду и смазочный компонент, отличающаяся тем, что в качестве смазочного компонента содержит растительный экстракт, полученный экстрагированием твердой фракции свиного навоза экстрагентом, содержащим растворимые соли металлов, при следующем соотношении компонентов, мас.%:
    Смазочный компонент - 10 - 15
    Вода - До 100
RU93046491A 1993-09-30 1993-09-30 Смазочная композиция для приработки двигателей внутреннего сгорания RU2054031C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93046491A RU2054031C1 (ru) 1993-09-30 1993-09-30 Смазочная композиция для приработки двигателей внутреннего сгорания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93046491A RU2054031C1 (ru) 1993-09-30 1993-09-30 Смазочная композиция для приработки двигателей внутреннего сгорания

Publications (2)

Publication Number Publication Date
RU2054031C1 true RU2054031C1 (ru) 1996-02-10
RU93046491A RU93046491A (ru) 1996-10-27

Family

ID=20147923

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93046491A RU2054031C1 (ru) 1993-09-30 1993-09-30 Смазочная композиция для приработки двигателей внутреннего сгорания

Country Status (1)

Country Link
RU (1) RU2054031C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2545078C2 (ru) * 2009-08-07 2015-03-27 Басф Се Смазочная композиция, включающая алкилэфиркарбоновую кислоту

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Смазочные материалы, Справочник, М.: Машиностроение, 1989, с.174. Кламанн Д., Смазки и родственные продукты. М.: Химия, 1988, с.265-266. Авторское свидетельство СССР N 1663476, кл. C 01M 15/00, 1990. РЖ ВИНИТИ Автомобильный транспорт, 1992, реф.7Б61. Патент США N 4948521, кл. C 10M173/00, 1990. Заявка Японии N 1-13520, кл. C 10M173/00, 1989. Авторское свидетельство СССР N 1752190, кл. C 10M173/02, 1991. Заявка ЕР N 0430602, кл. C 10M173/02, 1991. Заявка Германии N 3926397, кл. C 10M173/02, 1991. Авторское свидетельство СССР N 1253991, кл. C 10M173/02, 1986. Авторское свидетельство СССР N 1641872, кл. C 10M173/02, 1990. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2545078C2 (ru) * 2009-08-07 2015-03-27 Басф Се Смазочная композиция, включающая алкилэфиркарбоновую кислоту

Similar Documents

Publication Publication Date Title
Masjuki et al. The effect of palm oil diesel fuel contaminated lubricant on sliding wear of cast irons against mild steel
GB1569387A (en) Hybrid lubricant including particles of polytetrafluoroethylene
JPH04516B2 (ru)
Kajdas Additives for metalworking lubricants‐a review
Randles Esters
CN114317087A (zh) 一种利用再生润滑油制备的半合成金属切削液及其制备方法
US2682489A (en) Rust preventing compositions and process
CN102268315B (zh) 船用油组合物及其用途
RU2054031C1 (ru) Смазочная композиция для приработки двигателей внутреннего сгорания
US2790778A (en) Rust preventive compositions containing amidodicarboxylic acids
CN109504513B (zh) 一种水溶性不锈钢无缝钢管冷轧液及其制备方法
KR100953264B1 (ko) 베어링용 수용성 연삭 가공액 및 그 사용 방법
US2516838A (en) Soluble oil base
Crawford et al. Miscellaneous additives and vegetable oils
CN106085561A (zh) 一种矿物油基耐低温高抗磨润滑油
JP2604166B2 (ja) 潤滑油
RU2144944C1 (ru) Концентрат смазочно-охлаждающей жидкости
CN1195048C (zh) 微孔型复合添加剂
Bray et al. Improvements in diesel-engine lubricating oils
RU2064971C1 (ru) Присадка к смазочным материалам и техническим жидкостям
CN114686898B (zh) 一种润滑脂清洁剂及其制备方法与应用
CN107987932B (zh) 一种润滑型水溶性钢球精研液的配置方法
Furey et al. Applications of the concept of tribopolymerisation in fuels, lubricants, metalworking, and ‘minimalist’lubrication
To‘rayev et al. MOTOR OILS, PROPERTIES AND THEIR COMPOUNDS CHANGES
SU1049526A1 (ru) Смазочно-охлаждающа жидкость дл механической обработки металлов