RU2054009C1 - Способ получения монодисперсного латекса - Google Patents

Способ получения монодисперсного латекса Download PDF

Info

Publication number
RU2054009C1
RU2054009C1 RU93027131A RU93027131A RU2054009C1 RU 2054009 C1 RU2054009 C1 RU 2054009C1 RU 93027131 A RU93027131 A RU 93027131A RU 93027131 A RU93027131 A RU 93027131A RU 2054009 C1 RU2054009 C1 RU 2054009C1
Authority
RU
Russia
Prior art keywords
parts
isoprene
latex
weight
polystyrene
Prior art date
Application number
RU93027131A
Other languages
English (en)
Other versions
RU93027131A (ru
Inventor
Н.И. Прокопов
В.Р. Черкасов
И.А. Грицкова
Н.В. Яшина
Н.Б. Ефремова
В.А. Быков
В.С. Подсидков
В.И. Коган
Original Assignee
Прокопов Николай Иванович
Черкасов Владимир Рюрикович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Прокопов Николай Иванович, Черкасов Владимир Рюрикович filed Critical Прокопов Николай Иванович
Priority to RU93027131A priority Critical patent/RU2054009C1/ru
Application granted granted Critical
Publication of RU2054009C1 publication Critical patent/RU2054009C1/ru
Publication of RU93027131A publication Critical patent/RU93027131A/ru

Links

Abstract

Использование: полимерные дисперсии могут быть использованы в качестве ионообменных смол, материалов для разного рода покрытий, а также в области биологии, биотехнологии, иммунологии, клинической медицины и т.д. Сущность изобретения: способ получения монодисперсного латекса с частицами типа "ядро-оболочка" путем эмульсионной полимеризации стирола в водной среде в присутствии радикального инициатора и диспергатора при нагревании с последующим добавлением к полученному полистирольному латексу изопрена при массовом соотношении изопрен: полистирол, равном 0,1-0,5:1, выдерживанием реакционной системы с последующим проведением полимеризации изопрена в присутствии 2,4-4,8 мас.ч. на 100 мас.ч. полистирола окислительно-восстановительной инициирующей системы с последующей модификацией полученного латекса при 30-60oС водным раствором серусодержащей аминокислоты при массовом соотношении полимер:аминокислота 1:(0,05-0,15) и pH 10-11.

Description

Изобретение относится к химии высокомолекулярных соединений, а именно к способу получения монодисперсных полимерных дисперсий с аминокислотными группами на поверхности частиц. Такие полимерные дисперсии могут быть использованы в качестве ионообменных смол, материалов для разного рода покрытий, а также в области биологии, биотехнологии, иммунологии, клинической медицине и т.д.
Известен способ получения полимерных дисперсий с размерами частиц 0,6-10 мкм, содержащих аминогруппы на поверхности частиц [1] Названные дисперсии получают путем каталитической полимеризации пара-аминостирола в присутствии минеральных и органических кислот с рК не большим 4,76 и добавок органических жидкостей, смешивающихся с водой и имеющих диэлектрическую проницаемость меньшую, чем у воды, в количестве 10-80% по отношению к воде. В результате получают полимерные частицы с узким распределением по размерам. Однако этот способ имеет ряд недостатков, существенно ограничивающих его применение.
Наиболее близким по технической сущности к предлагаемому является способ [2] получения монодисперсного латекса типа "ядро-оболочка" с размером частиц 0,7-1,4 мкм путем полимеризации стирола в водной среде при массовом соотношении стирол/вода, равном 1:8, в присутствии радикального инициатора и диспергатора при нагревании с последующим добавлением к полученному полистирольному латексу смеси мономеров стирола и изопрена, выдерживанием реакционной смеси при 0оС в течение 24 ч в присутствии радиального водорастворимого инициатора и последующей полимеризацией при 70оС.
К недостаткам указанного метода следует отнести отсутствие на поверхности таких микросфер функциональных групп, способных взаимодействовать с молекулами биолигандов, низкую концентрацию двойных связей на поверхности полимерных микросфер, а также узкий интервал размеров полимерных частиц, получаемых указанным методом.
Целью предлагаемого способа является получение изопренстирольных полимерных суспензий с узким распределением частиц по размерам и заданной концентрацией аминокислотных групп на поверхности латексных частиц.
Поставленная цель достигается путем получения монодисперсного латекса типа "ядро-оболочка" с размером частиц 0,05-1,5 мкм путем полимеризации стирола в водной среде в присутствии радикального инициатора и диспергатора при нагревании, добавлением к полученному затравочному латексу мономера изопрена, выдерживания реакционной смеси при 0-10оС в течение 5-24 ч с последующей полимеризацией в присутствии окислительно-восстановительной инициирующей системы и обработкой при 30-60оС полученного латекса 2%-ным раствором аминокислоты при массовом соотношении полимер/аминокислота, равном 1:0,01-0,15 при перемешивании и при рН, равным 10-11. В качестве аминокислот используют серусодержащие аминокислоты цистин или цистеин.
П р и м е р 1 (по прототипу). Процесс осуществляют в 4-горлой колбе емкостью 1 л, снабженной механической тефлоновой мешалкой, обратным холодильником и устройством для продувки инертного газа. В колбу, помещенную в термостат при 70оС, последовательно загружают 800 мас.ч. дистиллированной воды, содержащей 0,3 мас.ч. лаурилсульфата натрия и 100 мас.ч. стирола, продувают азотом в течение 15 мин. Затем вводят 1,0 мас.ч. инициатора персульфата калия и отмечают время начала полимеризации. Полимеризацию проводят при 70оС и скорости перемешивания 220 об/мин в течение 24 ч. Получают затравочный латекс с монодисперсными частицами, имеющими диаметр 0,92 мкм. В колбу, охлажденную до 0оС, при перемешивании вводят 350 мас.ч. 2,5% затравочного латекса, полученного на первой стадии, 230 мас.ч. стирола и 4,5 мас.ч. изопрена. Полученную систему перемешивают 24 ч при 0оС в атмосфере инертного газа (азота), затем температуру поднимают до 70оС и проводят полимеризацию мономеров в течение 15 ч. Полученные изопрен-стирольные полимерные частицы со структурой "ядро-оболочка" имеют средний размер 1,4 мкм.
П р и м е р 2 (по изобретению). 3-горлую колбу вместимостью 1 л с обратным холодильником, механической мешалкой и вводом для инертного газа помещают в термостат при 60оС. В колбу вводят 501 мас.ч. 0,2%-ного раствора персульфата калия и проводят при перемешивании дегазацию током инертного газа в течение 10 мин, затем в колбу вводят 100 мас.ч. стирола. Полимеризацию проводят при 60оС и перемешивании со скоростью 200 об/мин в течение 12 ч. По окончании полимеризации латекс чистят от непрореагировавшего инициатора.
Затем 3-горлую колбу вместимостью 1 л, снабженную механической мешалкой и вводом для инертного газа помещают в термостат при 0оС. В колбу заливают 100 мас.ч. затравочного латекса, полученного на 1 стадии и дистиллированной водой доводят его количество до 290 мас.ч. после чего доводят рН разбавленного латекса до 10 путем введения по каплям 10%-ного раствора гидроксида калия. Проводят дегазацию при перемешивании в токе инертного газа в течение 20 мин. Затем в колбу вводят раствор 0,01 мас.ч. (0,07 мас.ч. на 100 мас.ч. полистирола) гидроперекиси изопропилциклогексилбензола в 1,4 мас.ч. изопрена (10 мас. ч. на 100 мас.ч. полистирола). Набухание проводят в течение 10 ч в атмосфере инертного газа при перемешивании со скоростью вращения мешалки 220 об/мин. Затем в колбу последовательно вводят по 3,5 мл водных растворов компонентов окислительно-восстановительной системы (0,05 мас.ч. сульфата железа, 0,07 мас.ч. трилона Б и 0,21 мас.ч. ронгалита 2,35 мас.ч. на 100 мас. ч. полистирола). Полимеризацию проводят в атмосфере инертного газа при перемешивании при 50оС в течение 5 ч. После окончания полимеризации чистят латекс от водорастворимых низкомолекулярных веществ.
3-горлую колбу вместимостью 1 л с механической мешалкой помещают в термостат с температурой 50оС. В колбу загружают 100 мас.ч. изопрен-стирольного латекса, полученного на второй стадии и 25 мас.ч. 2%-ного раствора цистеина (10 мас. ч. на 100 мас.ч. полимера). Доводят рН реакционной среды 10% -ного раствором гидроксида калия до значения 10,0. Модификацию проводят при перемешивании со скоростью вращения мешалки 220 об/мин и 30оС в течение 3 ч, после чего латекс очищают от остатков непрореагировавшей аминокислоты.
В результате получают монодисперсные изопрен-стирольные микросферы с диаметром 1,5 мкм, коэффициентом вариации 3,0% и концентрацией аминокислотных групп на поверхности, равной 180 мкмоль/г полимера. Коэффициент вариации равен отношению среднеквадратичного отклонения от среднего диаметра частиц к величине среднего диаметра, умноженному на 100%
П р и м е р 3 (по изобретению). 3-горлую колбу на 50 м, снабженную механической мешалкой, обратным холодильником и вводом для инертного газа, помещают в термостат при 75оС. В колбу заливают 600 мас.ч. дистиллированной воды и последовательно растворяют 1,35 мас.ч. лаурилсульфата натрия и 0,55 мас.ч. хлорида натрия. Раствор дегазируют при перемешивании в течение 10 мин, после чего в колбу вводят 90 мас.ч. стирола, смесь дегазируют 5 мин, после чего вводят 0,25 мас.ч. бората натрия и 1,24 мас.ч. персульфата калия. Полимеризацию проводят при 75оС в течение 3 ч. Готовый латекс очищают от низкомолекулярных водорастворимых веществ.
Затем 3-горлую колбу вместимостью 100 мл, снабженную механической мешалкой и вводом для инертного газа помещают в термостат с температурой 10оС. В колбу заливают 100 мас.ч. затравочного латекса, полученный на 1 стадии, и дистиллированной водой доводят его количество до 225 мас.ч. после чего доводят рН разбавленного латекса до 10 путем введения по каплям 10%-ного раствора гидроксида калия. Проводят дегазацию при перемешивании в токе инертного газа в течение 20 мин. Затем в колбу вводят раствор 0,02 мас.ч. гидроперекиси изопропилциклогексилбензола в 4,5 мас.ч. изопрена (50 мас.ч. на 100 мас. ч. полистирола). Набухание проводят в течение 24 ч в атмосфере инертного газа при перемешивании со скоростью 150 об/мин. Затем в колбу последовательно вводят по 3,5 мл водных растворов компонентов окислительно-восстановительной системы (0,09 мас.ч. сульфата железа, 0,1 мас.ч. трилона Б и 0,22 мас.ч. ронгалита 4,5 мас.ч. на 100 мас.ч. полистирола). Полимеризацию проводят в атмосфере инертного газа при перемешивании и 10оС в течение 7 ч. После окончания полимеризации чистят латекс от водорастворимых низкомолекулярных веществ.
3-горлую колбу с механической мешалкой помещают в термостат с температурой 60оС. В колбу загружают 100 мас.ч. изопрен-стирольного латекса, полученного на второй стадии и 25 мас.ч. 2%-ного раствора цистеина (10 мас.ч. на 100 мас.ч. полимера). Доводят рН реакционной среды 10%-ным раствором гидроксида калия до значения 11. Модификацию проводят при перемешивании со скоростью вращения 150 об/мин и 60оС в течение 1 ч,после чего латекс очищают от остатков непрореагировавшей аминокислоты.
В результате получают монодисперсные изопрен-стирольные микросферы с диаметром 0,05 мкм, коэффициентом вариации 7,2% и концентрацией аминокислотных групп на поверхности, равной 250 мкмоль/г полимера.
П р и м е р 4. Способ осуществляют в соответствии с примером 2, но используют 15 мас.ч. цистеина на 100 мас.ч. полимера. Получают монодисперсные изопрен-стирольные микросферы с диаметром 1,5 мкм, коэффициентом вариации 3,4% и концентрацией аминокислотных групп на поверхности, равной 190 мкмоль/г полимера.
П р и м е р 5. Способ осуществляют в соответствии с примером 2, но используют 5 мас.ч. цистеина на 100 мас.ч. полимера. Получают монодисперсные изопрен-стирольные микросферы с диаметром 1,5 мкм, коэффициентом вариации 3,6% и концентрацией аминокислотных групп на поверхности, равной 60 мкмоль/г полимера.
П р и м е р 6. Способ осуществляют в соответствии с примером 2, но используют 10 мас.ч. цистеина на 100 мас.ч. полимера. Получают монодисперсные изопрен-стирольные микросферы с диаметром 1,5 мкм, коэффициентом вариации 3,6% и концентрацией аминокислотных групп на поверхности, равной 100 мкмоль/г полимера.
П р и м е р а 7. Способ осуществляют в соответствии с примером 3, но в качестве инициирующей окислительно-восстановительной системы используют 2,61 мас. ч. гидроперекиси изопропилбензола, 1,0 мас.ч. гидрохинона и 1,22 мас.ч. сульфита натрия на 100 мас.ч. полимера. Получают монодисперсные изопрен-стирольные микросферы с диаметром 0,05 мкм, коэффициентом вариации 8,0% и концентрацией аминокислотных групп на поверхности, равной 200 мкмоль/г полимера.
П р и м е р 6. Способ осуществляют в соответствии с примером 2, но в качестве инициирующей окислительно-восстановительной системы используют 1,5 мас. ч. гидроперекиси кумола, 1,7 мас.ч. сульфата железа (II) и 1,5 мас.ч. пирофосфата калия на 100 мас.ч. полимера. Получают монодисперсные изопрен-стирольные микросферы с диаметром 1,5 мкм, коэффициентом вариации 3,8% и концентрацией аминокислотных групп на поверхности, равной 95 мкмоль/г полимера.
П р и м е р 9. Способ осуществляют в соответствии с примером 3, но процесс обработки аминокислотой проводят при 30оС. Получают монодисперсные изопрен-стирольные микросферы с диаметром 0,05 мкм, коэффициентом вариации 7,7% и концентрацией аминокислотных групп на поверхности, равной 72 мкмоль/г полимера.

Claims (1)

  1. СПОСОБ ПОЛУЧЕНИЯ МОНОДИСПЕРСНОГО ЛАТЕКСА с частицами типа ядро-оболочка путем эмульсионной полимеризации стирола в водной среде в присутствии радикального инициатора и диспергатора при нагревании, добавления изопрена к полученному полистирольному латексу, выдерживания реакционной системы в присутствии радикального инициатора с последующей полимеризацией изопрена, отличающийся тем, что полимеризацию изопрена ведут в присутствии 2,4 - 4,8 мас.ч. на 100 мас.ч. полистирола окислительно-восстановительной инициирующей системы при массовом соотношении изопрен: полистирол 0,1 - 0,5:1 с последующей модификацией при 30 - 60oС полученного изопрен-стирольного латекса водным раствором серусодержащей аминокислоты при массовом соотношении полимер:аминокислота 1:0,5-0,15 при рН 10 - 11.
RU93027131A 1993-05-17 1993-05-17 Способ получения монодисперсного латекса RU2054009C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93027131A RU2054009C1 (ru) 1993-05-17 1993-05-17 Способ получения монодисперсного латекса

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93027131A RU2054009C1 (ru) 1993-05-17 1993-05-17 Способ получения монодисперсного латекса

Publications (2)

Publication Number Publication Date
RU2054009C1 true RU2054009C1 (ru) 1996-02-10
RU93027131A RU93027131A (ru) 1996-10-27

Family

ID=20141851

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93027131A RU2054009C1 (ru) 1993-05-17 1993-05-17 Способ получения монодисперсного латекса

Country Status (1)

Country Link
RU (1) RU2054009C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8790890B2 (en) 2011-10-03 2014-07-29 Obshhestvo S Organichennoi Otvetstvennost' Yu “Vitacel” Diagnostic method for connective tissue and its application
US9868826B2 (en) 2015-07-02 2018-01-16 Life Technologies Corporation Polymer substrates formed from carboxy functional acrylamide
US10202473B2 (en) 2012-02-09 2019-02-12 Life Technologies As Hydrophilic polymeric particles and methods for making and using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1616927, кл. C 08F112/08, 1990. Chang H.S., Chen S.A. Particle growth mechanism of large particle emulsifier-free emulsion polymerization of styrene//Makromol. Chem., Rapid Commun. - 1987.-v.8.-p.297-304. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8790890B2 (en) 2011-10-03 2014-07-29 Obshhestvo S Organichennoi Otvetstvennost' Yu “Vitacel” Diagnostic method for connective tissue and its application
US10202473B2 (en) 2012-02-09 2019-02-12 Life Technologies As Hydrophilic polymeric particles and methods for making and using same
US10246533B2 (en) 2012-02-09 2019-04-02 Life Technologies As Hydrophilic polymeric particles and methods for making and using same
US10947333B2 (en) 2012-02-09 2021-03-16 Life Technologies Corporation Hydrophilic polymeric particles and methods for making and using same
US11572427B2 (en) 2012-02-09 2023-02-07 Life Technologies Corporation Hydrophilic polymeric particles and methods for making and using same
US9868826B2 (en) 2015-07-02 2018-01-16 Life Technologies Corporation Polymer substrates formed from carboxy functional acrylamide
US10189956B2 (en) 2015-07-02 2019-01-29 Life Technologies As Polymer substrates formed from carboxy functional acrylamide

Similar Documents

Publication Publication Date Title
US6573313B2 (en) Amphiphilic core-shell latexes
SU576962A3 (ru) Способ получени пигментированных пористых гранул
US5373052A (en) Organic polymer microparticle and process for producing the same
JPS62283162A (ja) 三次元架橋された微小樹脂粒子およびその製造法
CN109535345B (zh) 基于半连续加料法制备聚合物的方法
RU2054009C1 (ru) Способ получения монодисперсного латекса
JPS61215602A (ja) 重合体粒子の製造方法
Uyama et al. Dispersion polymerization of N-vinylformamide in polar media. Preparation of monodisperse hydrophilic polymer particles
Huang et al. Synthesis and characterization of bisacrylamide microgels containing sulfo groups
CN112980826A (zh) 一种脂肪酶/聚丙烯酰胺水凝胶微球催化材料及其制备方法和应用
JP4009752B2 (ja) 狭い粒径分布を有する自己活性化ポリマー粒子及びその製造方法
CN115057965A (zh) 一种n-乙烯吡咯烷酮/1-乙烯基咪唑共聚物的制备方法
EP0943628B1 (en) Process for the preparation of dispersions of water-soluble polymers
JPS62204501A (ja) 磁性ミクロスフエアの製造方法
JP2679453B2 (ja) 重合体微粒子の製造方法
US7163998B2 (en) Stabilized polymer beads and method of preparation
CN1752119A (zh) 制备单分散聚丙烯酰胺微球的方法
KR100439279B1 (ko) 유중수형중합체유액의제조방법
JPH0548245B2 (ru)
CN109942737A (zh) 粒径均匀的两亲性聚合物微球材料、制备方法和应用
JPH10273503A (ja) ポリマー微粒子の製造法
JP2722661B2 (ja) 反応性ポリマー粒子の水性分散体の製造方法
Horák et al. Effect of reaction parameters on properties of dispersion-polymerized hydrophilic microspheres as supports for immobilization of proteins
JPH0689082B2 (ja) 単分散重合体の製造方法
EP0005924A1 (en) Process for mixing or reacting incompletely miscible phases