RU2042835C1 - Турбомашина - Google Patents

Турбомашина Download PDF

Info

Publication number
RU2042835C1
RU2042835C1 RU92011403/06A RU92011403A RU2042835C1 RU 2042835 C1 RU2042835 C1 RU 2042835C1 RU 92011403/06 A RU92011403/06 A RU 92011403/06A RU 92011403 A RU92011403 A RU 92011403A RU 2042835 C1 RU2042835 C1 RU 2042835C1
Authority
RU
Russia
Prior art keywords
diaphragm
channels
turbomachine
working
blades
Prior art date
Application number
RU92011403/06A
Other languages
English (en)
Other versions
RU92011403A (ru
Inventor
С.А. Масной
Original Assignee
Производственное Объединение Турбостроения "Ленинградский Металлический Завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Производственное Объединение Турбостроения "Ленинградский Металлический Завод" filed Critical Производственное Объединение Турбостроения "Ленинградский Металлический Завод"
Priority to RU92011403/06A priority Critical patent/RU2042835C1/ru
Publication of RU92011403A publication Critical patent/RU92011403A/ru
Application granted granted Critical
Publication of RU2042835C1 publication Critical patent/RU2042835C1/ru

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Использование: в энергетическом машиностроении в качестве турбомашины с ротором барабанной конструкции. Сущность изобретения: турбомашина содержит диафрагму 1 с направляющими лопатками 2 и диафрагменными лабиринтными уплотнениями 3, барабанный ротор 4 с рабочими лопатками 5 с хвостовыми промежуточными частями 6, имеющими сквозные перепускными каналы 7, суммарная проходная площадь которых составляет 0,005 0,075 от проходной площади каналов рабочих лопаток 5, при этом перепускные каналы 7 выполнены с поперечным сечением в форме поперечного сечения канала рабочих лопаток 5. 7 ил.

Description

Изобретение относится к энергетическому машиностроению и может быть использовано в турбомашинах с роторами барабанной конструкции в паровых и газовых турбинах.
Известно паровая турбина, состоящая из барабанного ротора с рабочими лопатками и направляющих лопаток, свободно закрепленных в статоре [1]
Недостатком этой паровой турбины является пониженная экономичность, обусловленная большими протечками пара через зазор между ротором и вершинами направляющих лопаток из-за отсутствия диафрагменных лабиринтных уплотнений. Кроме того, такая турбина отличается пониженной надежностью и экономичностью, обусловленными необходимостью вибрационной отстройки не только рабочих, но и направляющих лопаток, вплоть до установки в них демпферных проволочных связей, которые загромождают проточную часть и снижают экономичность турбины.
Наиболее близкой к предлагаемой по технической сущности и достигаемому результату является паровая турбина [2] содержащая диафрагму с направляющими лопатками и диафрагменными лабиринтными уплотнениями, барабанный ротор с рабочими лопатками, снабженными хвостовыми промтельными частями, а также средство для уменьшения поступления в основной поток (подсоса) пара, протекающего через диафрагменные лабиринтные уплотнения.
Это средство представляет собой перепускные каналы в диафрагме, предназначенные для отсоса из диафрагменных лабиринтных уплотнений части потока пара, протекающего через эти уплотнения, и направления его в диафрагму. Остальная же часть диафрагменной протечки поступает в основной поток (подсасывается) через зазор между диафрагмой и хвостовой промтельной частью рабочих лопаток и тем самым тормозит основной поток, при этом нормальный характер обтекания решетки рабочих лопаток искажается, увеличиваются аэродинамические потери, в результате чего снижается экономичность турбины. Недостатком этой турбины также является ее пониженная экономичность вследствие того, что энергия потока, протекающего через перепускные каналы диафрагмы и зазор между диафрагмой и хвостовой промтельной частью рабочих лопаток, не используется для выработки дополнительной мощности турбиной. В то же время эта паровая турбина, имея более сложную конструкцию, более надежная, чем указанная выше, так как размещение в диафрагме направляющих лопаток не требует их вибрационной отстройки.
Задачей изобретения является создание конструкции турбомашины с ротором барабанного типа, которая была бы более простой по конструкции, ограничивала бы поступление (подсос) в каналы рабочих лопаток протечки через диафрагменные лабиринтные уплотнения за счет отсоса этих протечек из зазора между диафрагмой и промтельной частью рабочих лопаток и обеспечивала бы использование энергии потока протечки для выработки турбомашиной дополнительной мощности.
Эта задача решается тем, что в турбомашине, содержащей диафрагму с направляющими лопатками и диафрагменными лабиринтными уплотнениями, барабанный ротор с рабочими лопатками, снабженными хвостовыми промтельными частями, по крайней мере в одной из хвостовых промтельных частей выполнены сквозные перепускные каналы, суммарная проходная площадь которых составляет 0,005-0,075 от проходной площади каналов рабочих лопаток ступени, при этом перепускные каналы выполнены с поперечным сечением в форме поперечного сечения канала рабочих лопаток ступени.
Выполнение перепускных каналов в промтельной части рабочих лопаток необходимо для обеспечения отсоса протечки из зазора между диафрагмой и указанной промтельной частью. При этом суммарная проходная площадь перепускных каналов в диапазоне 0,005-0,075 от проходной площади каналов рабочих лопаток обеспечивает в реальном диапазоне величин протечек и коэффициентов расхода наиболее эффективный отсос протечек для каждого выбранного режима.
Выполнение перепускных каналов с поперечным сечением в форме поперечного сечения каналов рабочих лопаток ступени обеспечивает аэродинамические потери в перепускных каналах, близкие к потерям в каналах рабочих лопаток, в результате чего обеспечиваются максимальные коэффициенты расхода через перепускные каналы промтельной части и тем самым обеспечивается максимальная пропускная способность указанных каналов.
Таким образом, все отличительные признаки изобретения необходимы для эффективного отсоса протечки из зазора между диафрагмой и промтельной частью рабочих лопаток. При этом организация отсоса диафрагменных протечек через промтельные части рабочих лопаток упрощает конструкцию турбомашины с ротором барабанного типа по сравнению с прототипом. Кроме того, выполнение перепускных каналов в промтельных частях рабочих лопаток и их профилирование предложенным образом позволяет использовать энергию отсасываемой диафрагменной протечки для выработки турбомашиной дополнительной мощности.
На фиг. 1 изображен продольный разрез турбомашины; на фиг. 2 и 3 развертки сечений А-А на фиг. 1 рабочих лопаток с криволинейным и прямолинейным профилем соответственно; на фиг. 4 и 5 развертки сечений Б-Б на фиг. 1 перепускных каналов с криволинейным и прямолинейным профилем соответственно; на фиг. 6 и 7 графические зависимости, обосновывающие оптимальность предложенного диапазона проходных площадей перепускных каналов.
Турбомашина содержит диафрагму 1 с направляющими лопатками 2 и диафрагменными лабиринтными уплотнениями 3, барабанный ротор 4 с рабочими лопатками 5 с хвостовыми промтельными частями 6, имеющими сквозные перепускные каналы 7, суммарная проходная площадь которых составляет 0,005-0,075 от проходной площади каналов 8 рабочих лопаток 5.
Линии обводов перепускных каналов в их поперечном сечении выполнены в направлении соответствующих линий обвода канала 8 рабочих лопаток 5 относительно окружной скорости U вращения ротора 4 турбомашины.
Входные сечения перепускных каналов 7 могут быть выполнены соосно с кольцевым диафрагменным зазором. Каналы 7 могут быть выполнены как в отдельных промтельных частях 6, так и сформированы на стыке смежных промтельных частей 6.
При работе турбомашины в зависимости от аэродинамических параметров потока рабочего тела, конструкции и эксплуатационного состояния диафрагменных лабиринтных уплотнений 3 часть основного потока протекает через эти уплотнения и поступает в зазор между диафрагмой 1 и хвостовой промтельной частью 6 рабочих лопаток 5, откуда этот поток через сквозные перепускные каналы 7 отсасывается за турбомашину (пунктир на фиг. 1), так как давление рабочей среды там ниже, чем давление перед рабочими лопатками 5.
Таким образом, ограничивается попадание (подсос) в рабочую решетку рабочего тела, не обладающего скоростью основного потока и его направлением и оказывающего тормозящее воздействие на основной поток, в результате чего характер обтекания решетки улучшается и КПД турбомашины возрастает. В каналах 7 поток меняет направление, при этом происходит передача энергии потока протечки хвостовым промтельным частям 6 и рабочим лопаткам 5 турбомашины, так как дополнительное окружное усилие суммируется с окружным усилием турбомашины и мощность ее возрастает. Величина дополнительной мощности, вырабатываемой с помощью перепускных, каналов 7, зависит от количества протекающего рабочего тела, его энергии и аэродинамики каналов 7.
Количество протекающего через каналы 7 рабочего тела определяется их суммарной проходной площадью Δ F, зависит от их пропускной способности, определяемой коэффициентами расхода протечки через них, и может составить до 5 от основного потока, протекающего через всю турбомашину.
Энергия потока, протекающего через перепускные каналы 7, определяется кинетической энергией потока, вытекающего из диафрагменных лабиринтных уплотнений 3, и потенциальной энергией потока при наличии перепада давления между входом и выходом из перепускных каналов 7. При этом общая величина энергии потока, протекающего через перепускные каналы 7, соответствует тепловому располагаемому перепаду на турбомашину.
Предлагаемое изобретение предназначено для реализации в паровых турбинах с роторами барабанной конструкции. При этом перепускные каналы 7, имеющие форму каналов 8 рабочих лопаток 5, обеспечивают аэродинамические потери, которые по данным испытаний составляют 8-10 чему соответствуют коэффициенты расхода μ=0,8-0,9.
Предложенные пределы размеров площадей Δ F каналов 7 обеспечивают эффективные режимы работы турбомашины, что подтверждают графики, изображенные на фиг. 6 и 7. На фиг. 6 видно, что в предложенном диапазоне при отношении суммарной проходной площади Δ F перепускных каналов 7 к проходной площади F каналов 8 рабочих лопаток 5, равном 0,005-0,075, обеспечивается отсос протечек до 2 при минимальных коэффициентах расхода μ=0,1-0,3. В то же время из этого графика видно, что для отсоса протечки, равной 5 от основного потока, минимальная величина μ 0,65, что подтверждает необходимость выполнения перепускных каналов 7 с поперечным сечением в форме поперечного сечения канала 8 рабочих лопаток 5. Из графика на фиг. 6 также видно, что величина коэффициента расхода μ влияет на конструкцию промтельной части 6: чем меньше μ, тем больше площадь Δ F и наоборот.
На фиг. 7 изображен график изменения КПД турбомашины в зависимости от площади Δ F перепускных каналов 7 в реальном диапазоне величин протечек и коэффициентов расхода, равных 0,5 и 1.
При построении графика использованы экспериментальные данные, полученные при испытаниях ступеней турбомашин в зависимости от формы каналов 8 рабочих лопаток 5, степени реактивности и других параметров. Этими опытами установлено, что при подсосе рабочего тела в основной поток потери пропорциональны величине подсасываемого рабочего тела.
В качестве исходного внутренний КПД принят равным 85 что соответствует среднему значению КПД турбомашины, не имеющей перепускных каналов. Из графика на фиг. 6 видно, что в предложенном диапазоне площадей перепускных каналов 0,005-0,075 зависимости
Figure 00000002
f
Figure 00000003
имеют экстремумы (точки 1-5), что свидетельствует об оптимальности выбранного диапазона для решения поставленной задачи.
Выполнение турбомашины согласно изобретению позволит повысить ее коэффициент полезного действия в среднем на 1,5-2,5% по сравнению с базовым образцом, в качестве которого может быть взят прототип.

Claims (1)

  1. ТУРБОМАШИНА, содержащая диафрагму с направляющими лопатками и диафрагменными лабиринтными уплотнениями, барабанный ротор с рабочими лопатками, образующими рабочие каналы, и перепускные каналы, отличающаяся тем, что перепускные каналы выполнены по меньшей мере в одном промежуточном теле с суммарной площадью проходного сечения 0,005 0,075 площади проходного сечения рабочих каналов, причем форма поперечного сечения каждого перепускного канала выполнена в форме поперечного сечения рабочего канала.
RU92011403/06A 1992-12-02 1992-12-02 Турбомашина RU2042835C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU92011403/06A RU2042835C1 (ru) 1992-12-02 1992-12-02 Турбомашина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU92011403/06A RU2042835C1 (ru) 1992-12-02 1992-12-02 Турбомашина

Publications (2)

Publication Number Publication Date
RU92011403A RU92011403A (ru) 1995-02-10
RU2042835C1 true RU2042835C1 (ru) 1995-08-27

Family

ID=20133471

Family Applications (1)

Application Number Title Priority Date Filing Date
RU92011403/06A RU2042835C1 (ru) 1992-12-02 1992-12-02 Турбомашина

Country Status (1)

Country Link
RU (1) RU2042835C1 (ru)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Патент ФРГ N 1272305, кл. F 01D 11/01, 1968. *
2. Заявка Великобритании N 1342663, кл. F 1T, 1974. *

Similar Documents

Publication Publication Date Title
SU857516A1 (ru) Выхлопной патрубок осевой турбины
US5290144A (en) Shroud ring for an axial flow turbine
Reid et al. The effect of stator-rotor hub sealing flow on the mainstream aerodynamics of a turbine
PL335864A1 (en) Flow passage or turbine vane surface structure
JP4180131B2 (ja) 多段式の翼構造
RU99101084A (ru) Турбина, а также способ охлаждения турбины
CS281991A3 (en) Turbine machine cascade provided with suction slots in the ceiling and/or the base and a turbine machine comprising such cascades
KR960008016A (ko) 병합 사이클 발전 플랜트
US6447247B1 (en) Steam turbine
US5997249A (en) Turbine, in particular steam turbine, and turbine blade
GB1301002A (en) Improvements relating to fluid-flow machines
Foley et al. Measurement of tip-clearance flow in a multistage, axial flow compressor
US3756740A (en) Turbine stage
RU2042835C1 (ru) Турбомашина
CZ279114B6 (cs) Stupeň turbiny
JPH11148307A (ja) タービンのシール構造
JPS58101299A (ja) 遠心圧縮機
WO2000061918A2 (en) Airfoil leading edge vortex elimination device
Denecke et al. Influence of rub-grooves on labyrinth seal leakage
SU791978A1 (ru) Лабиринтное уплотнение осевой турбомашины
Klemm et al. Application of a cross flow fan as wind turbine
US4573870A (en) Solid turbine wheel with guided discharge
WO2000008306A1 (en) Sealing arrangement for a turbomachine
SU1318700A2 (ru) Ступень осевой турбины
JPS5813041Y2 (ja) 蒸気タ−ビンの作動流体漏洩防止装置

Legal Events

Date Code Title Description
MZ4A Patent is void

Effective date: 20051114