RU2041395C1 - Насос-диспергатор - Google Patents

Насос-диспергатор Download PDF

Info

Publication number
RU2041395C1
RU2041395C1 SU5021211A RU2041395C1 RU 2041395 C1 RU2041395 C1 RU 2041395C1 SU 5021211 A SU5021211 A SU 5021211A RU 2041395 C1 RU2041395 C1 RU 2041395C1
Authority
RU
Russia
Prior art keywords
slots
stator
shell
toroidal chamber
pump
Prior art date
Application number
Other languages
English (en)
Inventor
Р.Б. Валитов
А.П. Щебланов
А.В. Казачанский
Н.Я. Миннуллина
Г.А. Сергеев
Original Assignee
Научно-исследовательский технологический институт гербицидов и регуляторов роста растений АН Башкортостана
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-исследовательский технологический институт гербицидов и регуляторов роста растений АН Башкортостана filed Critical Научно-исследовательский технологический институт гербицидов и регуляторов роста растений АН Башкортостана
Priority to SU5021211 priority Critical patent/RU2041395C1/ru
Application granted granted Critical
Publication of RU2041395C1 publication Critical patent/RU2041395C1/ru

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Использование: в области строительных материалов, в лакокрасочной промышленности, пищевой и других отраслях промышленности для проведения процессов с рабочими средами типа "жидкость жидкость", "жидкость газ" и "жидкость твердое тело". Сущность изобретения: насос диспергатор содержит разъемный корпус 1 со штуцерами подвода отвода рабочих сред и торообразной камерой 6, прорезной статор 8 и лопаточное центробежное колесо 21 с прорезной обечайкой 13. Обечайка 31 имеет на прорезях 14 закрытые с торцев скосы 16, переходящие в цилиндрические участки 17, образующие со статором 8 чередующиеся клиновидные полости 19 и радиальные зазоры 18. При периодическом перекрытии прорезей 10, 14 рабочая среда механически разделяется на микрообъемы, подвергается ударам, срезу, истиранию, раздавливанию, гидродинамическому воздействию пульсациями давления и кавитационному воздействию, что вызывает качественное перемешивание. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к химическому и нефтяному машиностроению, в частности к технике насосостроения, диспергирования и смешения в поле упругих колебаний звукового и ультразвукового диапазона частот.
Изобретение может найти применение в области строительных материалов, в лакокрасочной промышленности, пищевой и других отраслях промышленности для проведения процессов с рабочими средами "жидкость-жидкость", "жидкость-газ", "жидкость-твердое тело".
Известен насос-диспергатор, содержащий разъемный корпус, снабженный торообразной камерой, стационарными и подвижными патрубками подвода-отвода рабочих сред, прорезной статор со стабилизатором потока и коаксиально расположенное в них лопастное центробежное колесо, снабженное прорезной обечайкой.
Лопастное центробежное колесо нагнетает рабочую среду через прорези в статоре в торообразную камеру, где поток закручивается в кольцевой вихрь и поступает вновь на лопатки лопастного центробежного колеса, которыми вторично нагнетается и выбрасывается через периодически перекрывающиеся прорези обечайки и статора в торообразную камеру и т.д. Проходя через периодически перекрывающиеся прорези обечайки и статора, рабочая среда подвергается механическому разделению на множество объемов, ударам, истиранию, срезам и кавитационному воздействию полем звуковых и ультразвуковых колебаний, пульсаций давления и скоростей, что интенсифицирует процесс диспергирования. В торообразной камере продукт разделяется на крупную фракцию, которая отбрасывается центробежными силами к периферии и снова поступает на обработку в прорези обечайки и статора и на тонкодисперсную фракцию, которая отбирается из центра торообразной камеры через подвижный патрубок.
Недостатками насоса-базового образца является недостаточно качественное разделение продукта в поле центробежных сил кольцевого вихря, что отрицательно сказывается на качестве продукции и производительности в целом.
Кольцевой вихрь вращается вокруг своей кольцевой образующей оси с тангенциальной скоростью Vт и вместе с лопастным центробежным колесом вокруг его оси и оси приводного вала с окружной скоростью Vо.
Установлено, что чем больше Vт по сравнению с Vо, тем четче классификация, выше качество продукции с точки зрения тонкости диспергирования и больше производительность, так как повторному диспергированию подвергаются в основном только крупные твердые частицы, прошедшие селективную классификацию чем ближе Vт к Vо, тем лучше смешение и гомогенность.
Известны насосы-диспергаторы, которые обеспечивают тонкость диспергирования и гомогенность продукции. Данный насос-диспергатор аналог содержит в торообразной камере поперечные перегородки, которые уменьшают Vо кольцевого вихря до нуля.
Недостатком данного аналога является затененность торообразной камеры перегородками, что затрудняет формирование в ней тангенциальной скорости Vт и снижает ее величину из-за больших завихрений при обтекании перегородок.
Известны самостоятельно функционирующие технические решения (ТР) насосов-диспергаторов, устраняющие этот недостаток. Например известен насос-диспергатор без торообразной камеры, в котором статор снабжен косыми прорезями, направляющими обрабатываемый поток в сторону, противоположную вращению центробежного лопастного колеса и тем самым гасящим окружную составляющую скорости Vo кольцевого вихря.
Недостатками данного технического решения является значительный расход энергии на создание противовеса и недостаточное эффективное использование такого решения. В процессе диспергирования давление, плотность, температура, вязкость изменяются, что нарушает соотношение Vт и Vо и не позволяет их рассчитывать с достаточной точностью, что обусловливает неустойчивость работы насоса-диспергатора.
Известен насос-диспергатор, имеющий лопатки центробежного колеса со скошенными на периферии торцами, которые образуют со статором клиновидные полости. При малых расходах жидкости силы давления в клине выжимают жидкость через прорези с высокой скоростью без разрыва потока. Использование клинового эффекта, т.е. высоких давлений расширяет диапазон устойчивой работы насоса-диспергатора.
Однако диспергирующая способность такого технического решения небольшая из-за того, что выброс потока через прорези статора хотя и происходит с большой скоростью, но без его разрыва, и следовательно, в процессе диспергирования не реализуются кавитационные явления и гидродинамические.
Известен насос-диспергатор (прототип), содержащий разъемный корпус со штуцерами подвода-отвода рабочих сред, торообразную камеру изменяемого объема и прорезной статор, приводной вал и смонтированное на нем лопаточное центробежное колесо, снабженное прорезной обечайкой.
При вращении приводного вала лопастное центробежное колесо нагнетает рабочую среду в периодически перекрывающие прорези обечайки и статора, где она подвергается механическому, гидродинамическому и кавитационному воздействию, диспергируется и попадает в торообразную камеру. В торообразной камере возникает кольцевой вихрь, тангенциальная составляющая скорости Vт которого создает центробежное поле. Частицы рабочей среды разделяются в этом поле на тонкодисперсную фракцию, которая отводится через свой штуцер в виде готовой продукции и крупнодисперсную фракцию, которая по линии рециркуляции направляется в центробежное лопастное колесо на повторное диспергирование. Изменяя объем торообразной камеры, увеличивают или уменьшают Vт, а следовательно, качество диспергирования.
Основными недостатками насоса-диспергатора являются недостаточная производительность из-за циркуляции части обработанной рабочей среды через лопаточное центробежное колесо при небольших напорах и сложность конструкции.
Целью изобретения является повышение производительности и упрощение конструкции.
Это достигается тем, что насос-диспергатор, содержащий разъемный корпус со штуцерами подвода-отвода рабочих сред и торообразной камерой, прорезной статор и приводное лопаточное центробежное колесо, имеющее прорезную обечайку, имеет на прорезях обечайки, закрытые с торцов скосы, переходящие в цилиндрические участки, образующие со статором радиальные зазоры, а статор снабжен прорезью, имеющей односторонний скос, минимум одной (регулировочной).
Выполнение на прорезях обечайки скосов закрытыми с торцов позволяет уменьшить утечки через радиальные зазоры и тем самым создать в клиновидых полостях между обечайкой и статором "гидравлический клиновой эффект", давление в котором на порядок превышает давление напора лопаток центробежного колеса. Это создает высокие радиальные скорости выброса потока из прорезей статора и, следовательно, большую скорость Vт закрутки потока в кольцевой вихрь. А это формирует сильное центробежное поле в торообразной камере, что повышает качество классификации твердых дисперсных частиц и производительность процесса диспергирования.
Клиновидные полости увеличивают время воздействия импульсов высоких давлений на рабочую среду, что также положительно отражается на производительности.
Выполнение на прорезях обечайки скосов закрытыми с торцов и переходящих в цилиндрические участки позволяет четко перекрывать ими прорези статора и тем самым разрывать поток, что ведет к возникновению кавитационных явлений в торообразной камере, которые интенсифицируют процесс диспергирования, а также к созданию в радиальном зазоре пульсаций давления с большим градиентом. При этом лопаточное центробежное колесо приобретает чередующиеся между собой "выпуклости" в виде цилиндрических участков и "впадины" в виде клиновидных полостей. А это позволяет повысить напор за счет разницы статического давления в "выпуклостях" и "впадинах". Во "впадинах" давление больше, что создает поршневой эффект, а в "выпуклостях" меньше, что увеличивает расход через радиальный зазор между обечайкой и статором. Кроме того, "выпуклости" и "впадины" создают гидродинамические пульсации давления.
Снабжение статора минимум одной (регулировочной) прорезью, имеющей односторонний скос, позволяет изменять окружную "вредную" скорость Vо кольцевого вихря до минимального значения, в частности путем выполнения, например "вручную", одностороннего скоса преимущественно в сторону, противоположную вращению лопаточного центробежного колеса.
Если случайно окажется Vо направленной в сторону, противоположную вращению лопастного центробежного колеса, и будет иметь большую величину, то можно в других прорезях скосы выполнить в требуемую сторону или под другим углом.
Направление скорости Vо зависит от поверхности трения лопаточного центробежного колеса 12 и обечайки 13, взаимодействующих с рабочей средой в торообразной камере 6;
от соотношения числа прорезей 14 и 10;
от величины зазора 18;
от конструктивных особенностей элементов 1, 4, 5, 6, 9, 10, 12;
от параметров рабочей среды (вязкость, плотность, расход).
Но наибольшее влияние оказывает форма и направление прорезей 10.
Поэтому, выполняя в прорезях 10 скосы под углом 0-45о, можно эффективно изменять направление скорости Vт и этим воздействовать на Vо. Чем больше скосов и чем больше их угол, тем выше эффект. Это позволяет отказаться от регулирования объема торообразной камеры и площади проходных сечений циркуляционных каналов и заменить их скосом минимум в одной из прорезей статора.
Сравнительный анализ с прототипом показал, что в нем отсутствуют признаки, сходные с предлагаемыми, следовательно ТР отвечает критерию "новизна".
На фиг. 1 приведена конструкция насоса-диспергатора, продольный разрез; на фиг. 2 разрез А-А на фиг. 1.
Насос диспергатор содержит разъемный корпус 1 со штуцером 2 для ввода сырья, штуцером 3 для ввода компонентов, периферийным патрубком 4 для вывода крупнодисперсной фракции, центральным подвижным патрубком 5 для отбора и вывода тонкодисперсной фракции и торообразной камерой 6 для озвучивания и классификации в ней продукта. В разъемном корпусе 1 с помощью дистанционной уплотнительной прокладки 7 укреплен статор 8, имеющий бурт 9 с закрытыми радиальными прорезями 10. Коаксиально статору 8 на приводном валу 11 закреплено лопаточное центробежное колесо 12. Колесо 12 имеет выполненную с ним заодно или отдельно обечайку 13, снабженную радиальными прорезями 14 и, закрытыми с торцов буртами 15, скосами 16, переходящими в цилиндрические участки 17 и образующими со статором 8 чередующие радиальные зазоры 18 и клиновидные полости 19. В покрывном диске колеса 12 выполнены отверстия 20, соединяющие межлопаточные каналы колеса 12 с коллекторной полостью 21 и штуцером 3 ввода компонентов.
В ведущем диске колеса 12 выполнены разгрузочные отверстия 22. Обечайка 13 и бурт 9 статора 8 могут быть цилиндрическими или коническими. Последнее предпочтительнее, так как имеется возможность регулировать радиальные зазоры 18 путем изменения толщины дистанционной уплотнительной прокладки 7. Разъемный корпус 1 крепится на фонаре 23 типового центробежного насоса известным способом, например, с помощью крепежных элементов 24. Одна или несколько радиальных прорезей 10 в статоре 8 могут иметь односторонние скосы, направленные предпочтительно в сторону, противоположную вращению лопаточного центробежного колеса 12.
Разгрузочные отверстия 22 выполняют две следующие функции:
уменьшают осевое усилие на приводной вал 11 со стороны лопастного центробежного колеса 12;
осуществляют циркуляцию рабочей среды, просачивающейся через радиальный зазор 18 за колесо 12 в его межлопаточные каналы, прорези 14 и снова в радиальный зазор 18. Тем самым исключается сепарация рабочей среды в межлопаточных каналах колеса 12, что положительно сказывается на качестве продукции.
Работа насоса-диспергатора в режимах суспендирования, эмульгирования, смешения, гомогенизации, перекачивания и классификации осуществляется следующим образом.
Рабочая среда, например, суспензия подается по штуцеру 2 в закрытое лопаточное центробежное колесо 12, которое нагнетает ее и выбрасывает через периодически перекрывающиеся прорези 14 обечайки 13 и прорези 10 статора 8 в торообразную камеру 6. Стенки торообразной камеры 6 закручивают поток в кольцевой вихрь. В результате вращения кольцевого вихря вокруг своей кольцевой образующей оси со скоростью Vт и вместе с лопаточным центробежным колесом 12 вокруг оси приводного вала с окружной скоростью Vо, в торообразной камере 6 создается центробежное поле. Это центробежное поле полезно используется для классификации твердых частичек суспензии по крупности: крупные частицы отбрасываются к периферии торообразной камеры 6 и либо отбираются через периферийный патрубок 4, либо переносятся закрученным потоком по стенкам торообразной камеры 6 и засасываются в зону выкида струй из прорезей 10 статора 8 и/или в радиальный зазор 18 на повторное диспергирование. Мелкая, тонкодисперсная фракция отбирается из зоны оси кольцевого вихря и отводится через центральный подвижный патрубок 5 к потребителю в виде готовой продукции.
При периодическом перекрытии прорезей 10, 14 рабочая среда механически разделяется на микрообъемы, подвергается ударам, срезу, истиранию, раздавливанию, гидродинамическому воздействию пульсациями давления и кавитационному воздействию, что вызывает измельчение твердых частичек и их качественное перемешивание. Далее частички попадают с потоком рабочей среды на повторную классификацию в торообразную камеру 6. Для создания эффективного центробежного поля Vт кольцевого вихря должна быть максимальной, а Vо минимальной. (Кольцевой вихрь при Vо= 0 неустойчивый). Получить максимальную Vт можно, если увеличить радиальную скорость выброса потока рабочей среды через прорези 10 статора 8 и увеличить импульс, т.е. время действия этой скорости на вращающийся в торообразной камере 6 кольцевой вихрь. Это требование выполняется следующим образом.
При вращении лопастного центробежного колеса 12, в клиновидных полостях 19 между обечайкой 13, ее буртами 15 и статором 8 образуются "гидравлические клинья", давление в которых на порядок превышает давление, развиваемое лопатками центробежного колеса 12. Это давление осуществляет всестороннее сжатие твердых частичек рабочей среды в клиновидных полостях 19 при перекрытых прорезях 10, 14 и выброс потока с большой скоростью из клиновидных полостей 19 через прорези 10 статора 8 в торообразную камеру 6 при совпадении прорезей с клиновидными полостями 19. В результате большей длины клиновидных полостей 19 по сравнению с прорезями 10 время воздействия этой высокой скорости на вращающийся вихрь увеличивается. При этом давление в клиновидных полостях 19 резко падает. Частички суспензии под воздействием внутреннего давления "взрываются". Разрыв жидкости сопровождается кавитационными и гидроакустическими явлениями, которые интенсифицируют процесс диспергирования.
Лопаточное центробежное колесо позволяет повысить напор и расход не только из-за реализации эффекта "гидравлического клина", но и реализации "поршневого эффекта", обусловленного разницей статического давления в выпуклостях, т.е. в радиальных зазорах 18, расположенных в зонах цилиндрических участков 17 и впадинах, обусловленных клиновидными полостями 19.
При вращении лопастного центробежного колеса жидкость будет двигаться в противоположную вращению сторону в радиальном зазоре 18 с большей скоростью над цилиндрическими участками 17, чем над клиновидными полостями 19. Поэтому статическое давление над цилиндрическими 17 будет меньше, что вызывает подсос в радиальный зазор 18 рабочей среды из торообразной камеры 6 и лопастного центробежного колеса 12. А это увеличивает расход рабочей среды через диспергирующие органы, т.е. производительность насоса-диспергатора.
Насос-диспергатор в режимах газификации, дегазации, классификации, отмывки, очистки работает следующим образом.
Рабочая среда, например нефть, подлежащая обессоливанию и обезвоживанию, подается в штуцер 2, а вода в штуцер 3. В силу разницы давлений в межлопаточных каналах центробежного колеса 12 и коллекторной полости 21, вода засасывается через отверстия 20 в полость центробежного колеса 12.
Лопаточное центробежное колесо 12 нагнетает нефть и воду через прорези 10, 14 в торообразную камеру 6. Проходя через периодически перекрывающиеся прорези 14, 10, клиновидные полости 19 и радиальный зазор 18, нефть и вода подвергаются механической, гидродинамической и кавитационной обработке. В результате компоненты рабочей среды диспергируются до молекулярного состояния и выделения растворенных газов и выбрасываются в торообразную камеру 6. В торообразной камере 6 струи дисперсной смеси, вылетающей из прорезей 10 статора 8, эжектируют находящиеся в их зоне действия слои рабочей среды и закручивают их в кольцевой вихрь. В кольцевом вихре создается центробежное поле, которое разделяет рабочую среду на более плотные компоненты воду, которая отбрасывается к периферии и удаляется через патрубок 4 и легкие газ, нефть, которые забираются и отводятся из торообразной камеры 6 через центральный подвижной патрубок 5.
Если требуется дегазировать нефть, то газонефтяную эмульсию, отбираемую через патрубок 5, подвергают дальнейшей обработке в другом насосе-диспергаторе или в том же, но с отбором газа через центральный подвижный патрубок 5, воды через периферийный патрубок 4, а нефти через третий технологический патрубок, выполненный аналогично патрубку 5 (третий патрубок не показан), но настраиваемый по радиусу своим заборником между центром и периферией торообразной камеры 6.
При газификации жидкости последняя подается через штуцер 2, а газ через штуцер 3. Отбор газифицированной жидкости производят только через центральный подвижный патрубок 5 при закрытом периферийном патрубке 4.
При мокрой очистке, например, дымовых газов жидкость подается через штуцер 2, а очищаемые дымовые газы через штуцер 3. При движении промывной жидкости по межлопаточным каналам колеса 12 она подсасывает дымовые газы через отверстие 20 и вместе с ними поступает на диспергирование в рабочие органы 14, 10, 18, 19 и далее в торообразную камеру 6, где разделяется на очищенный газ отводимый через центральный подвижный патрубок 5 и загрязненную жидкость, отводимую через периферийный патрубок 4.
Работа насоса-диспергатора в режиме тепло-массообменного аппарата осуществляется так. При проведении тепло-массообменных процессов, например реакции хлорирования фенола, расплавленный фенол подается по штуцеру 2 в лопаточное центробежное колесо 12, а хлор в виде газа подается через штуцер 3, коллекторную полость 21 и отверстия 20 в межлопаточные каналы колеса 12. Лопаточное центробежное колесо 12 нагнетает смесь через рабочие органы 10, 14, 18, 19 в торообразную камеру 6. При этом происходит реакция хлорирования с образованием хлорфенола и абгаза. Хлорфенол удаляется из торообразной камеры 6 через периферийный патрубок 4 в виде готовой продукции, а абгаз через центральный подвижный патрубок 5.
Технико-экономическая эффективность насоса-диспергатора заключается в повышении производительности, многофункциональности и упрощении конструкции.
Другим преимуществом является возможность настройки насоса-диспергатора на оптимальный режим работы путем определения окружности скорости Vо вращения вихря, например, путем перемещения патрубка 5 или поворотом его заборника и определения Vо с последующим ее уменьшением путем выполнения в прорезях 10 односторонних скосов. Кроме того, по сравнению с прототипом он имеет более высокий технический уровень.

Claims (2)

1. НАСОС-ДИСПЕРГАТОР, содержащий разъемный корпус со штуцерами подвода-отвода рабочих сред и торообразной камерой, прорезной статор и лопаточное центробежное колесо, имеющее прорезную обечайку, отличающийся тем, что обечайка имеет на прорезях закрытые с торцов скосы, переходящие в цилиндрические участки, образующие со статором чередующиеся клиновидные полости и радиальные зазоры.
2. Насос-диспергатор по п.1, отличающийся тем, что статор снабжен минимум одной прорезью, имеющей односторонний скос.
SU5021211 1991-07-15 1991-07-15 Насос-диспергатор RU2041395C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5021211 RU2041395C1 (ru) 1991-07-15 1991-07-15 Насос-диспергатор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5021211 RU2041395C1 (ru) 1991-07-15 1991-07-15 Насос-диспергатор

Publications (1)

Publication Number Publication Date
RU2041395C1 true RU2041395C1 (ru) 1995-08-09

Family

ID=21593931

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5021211 RU2041395C1 (ru) 1991-07-15 1991-07-15 Насос-диспергатор

Country Status (1)

Country Link
RU (1) RU2041395C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD2246C2 (ru) * 2001-09-28 2004-02-29 Сочиетатя Пе Акциунь "Молдовахидромаш" Лопаточный отвод центробежного насоса
WO2013100799A1 (ru) * 2011-12-26 2013-07-04 Hakimov Raschid Harisovich Диспергатор

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1465100, кл. B 01F 7/28, 1987. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD2246C2 (ru) * 2001-09-28 2004-02-29 Сочиетатя Пе Акциунь "Молдовахидромаш" Лопаточный отвод центробежного насоса
WO2013100799A1 (ru) * 2011-12-26 2013-07-04 Hakimov Raschid Harisovich Диспергатор

Similar Documents

Publication Publication Date Title
US5492654A (en) Method of obtaining free disperse system and device for effecting same
RU2041395C1 (ru) Насос-диспергатор
RU2124550C1 (ru) Способ переработки тяжелого углеводородного сырья и устройство для его осуществления
RU2304019C2 (ru) Кавитационный смеситель
RU2335337C2 (ru) Роторно-пульсационный аппарат
RU54816U1 (ru) Устройство приготовления водно-мазутной эмульсии
RU2215574C2 (ru) Устройство для растворения, эмульгирования и диспергирования жидкотекучих сред
RU2084274C1 (ru) Диспергатор
RU2344874C1 (ru) Способ диспергирования жидкостей, их смесей и взвесей твердых тел в жидкостях
RU2429066C1 (ru) Устройство для физико-химической обработки жидкой среды
RU2158629C1 (ru) Роторно-диспергирующий аппарат
RU2016250C1 (ru) Роторный канальный насос-диспергатор
SU1535608A1 (ru) Кавитатор
SU944627A1 (ru) Аппарат дл приготовлени бурового раствора
RU2317849C2 (ru) Гидроударно-кавитационный диспергатор для приготовления углерод-углеродных композиций
RU2215203C2 (ru) Диспергатор примесей в текучей среде
RU2040962C1 (ru) Роторный диспергатор
RU1813541C (ru) Диспергатор
SU1079284A2 (ru) Мельница мокрого помола
RU2063795C1 (ru) Роторный аппарат
RU2264850C2 (ru) Диспергатор
RU1801565C (ru) Роторный аппарат
SU1720700A2 (ru) Вихревой гомогенизатор-смеситель
RU1789256C (ru) Смеситель
RU2016643C1 (ru) Диспергатор