RU2039880C1 - Воздухозаборник турбореактивного двигателя самолета - Google Patents

Воздухозаборник турбореактивного двигателя самолета Download PDF

Info

Publication number
RU2039880C1
RU2039880C1 SU914894876A SU4894876A RU2039880C1 RU 2039880 C1 RU2039880 C1 RU 2039880C1 SU 914894876 A SU914894876 A SU 914894876A SU 4894876 A SU4894876 A SU 4894876A RU 2039880 C1 RU2039880 C1 RU 2039880C1
Authority
RU
Russia
Prior art keywords
housing
profiled
engine
aircraft
air intake
Prior art date
Application number
SU914894876A
Other languages
English (en)
Inventor
Гриб Губерт
Original Assignee
Мту Моторен-Унд Турбинен-Унион Мюнхен Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мту Моторен-Унд Турбинен-Унион Мюнхен Гмбх filed Critical Мту Моторен-Унд Турбинен-Унион Мюнхен Гмбх
Application granted granted Critical
Publication of RU2039880C1 publication Critical patent/RU2039880C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/042Air intakes for gas-turbine plants or jet-propulsion plants having variable geometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0226Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes comprising boundary layer control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0266Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants
    • B64D2033/0286Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants for turbofan engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Использование: в самолетостроении. Сущность изобретения: воздухозаборник турбореактивного двигателя содержит по меньшей мере один профилированный участок, размещенный в верхней по отношению к самолету зоне входной кромки корпуса двигателя, и второй профилированный участок, размещенный в нижней по отношению к самолету зоне входной кромки двигателя, установленные с возможностью регулирования положения, с образованием целевого верхнего и нижнего каналов и поворота вокруг горизонтальной оси. Щелевые каналы имеют синусоидальную форму по высоте. Верхний канал ориентирован по ходу движения воздуха в радиальном направлении наружу, а нижний внутрь. 10 ил.

Description

Изобретение относится к двигателям.
Известен воздухозаборник к турбореактивному двигателю самолета, содержащий размещенные по окружности входной кромки корпуса двигателя профилированные участки и установленные между корпусом и отдельными профилированными участками, срабатывающие при изменении давления исполнительные механизмы, причем профилированные участки установлены с возможностью автоматического регулирования их положения с помощью установочных механизмов с образованием щелевых каналов (см. выложенную заявку ДЕ 2048588, кл. F 02 C 7/04, 1971).
Наличие воздухозаборника к турбореактивным двигателям служит для возможно полного предотвращения отделения воздушного потока вследствие невыгодного направления поступающего воздушного потока как на внутренней, так и на наружной сторонах корпуса двигателя. Невыгодное направление воздушного потока в области передней кромки корпуса может приводить к отделению воздушного потока, в частности, при старте, т.е. при разбеге и при взлете, а также во время набора высоты.
Особенно критическим является отделение воздушного потока сверху на наружной стороне корпуса из-за того, что тогда воздушный поток поступает на обычно размещенное за ней крыло самолета по невыгодному направлению, чего следует избегать. Такая ситуация возникает при большом угле атаки двигателя или самолета, например, в момент ротации при наборе высоты. Кроме того, при этом, например, в случае двухконтурного турбовинтового двигателя существует опасность критического в отношении поступления воздуха на лопасти отделения воздушного потока вниз на внутренней стороне корпуса, что может отрицательно сказываться на безопасности полета.
Недостаток известного воздухозаборника к турбореактивному двигателю самолета заключается в том, что вследствие автоматического регулирования положения профилированных участков могут возникать обусловленные вибрацией проблемы. Кроме того, влияние на направление воздушного потока на наружной стороне корпуса невозможно. Наряду с этим конструкция известного воздухозаборника сравнительно сложна из-за наличия нескольких профилированных участков.
Целью изобретения является повышение безопасности полета при одновременном упрощении конструкции.
Цель достигается в предлагаемом воздухозаборнике к турбореактивному двигателю самолета, содержащем по меньшей мере один размещенный по окружности выходной кромки корпуса двигателя профилированный участок и по меньшей мере один установочный механизм, установленный между корпусом и профилированным участком, установленным с возможностью регулирования положения с помощью установочного механизма с образованием щелевого канала, за счет того, что профилированный участок размещен в верхней по отношению к самолету зоне кромки корпуса, а канал направлен назад вверх.
Предпочтительно профилированный участок и примыкающая к нему кромка корпуса выполнены с обеспечением ориентированного радиально наружу и вниз по течению воздуха направления канала. При этом канал, образующийся при выдвигании размещенного на верхней стороне корпуса профилированного участка, имеет конфигурацию, обеспечивающую поступление воздушного потока с внутренней стороны корпуса, его направление через канал косо вверх на наружную сторону корпуса. Таким образом эффективно предотвращается отделение воздушного потока сверху на наружной стороне корпуса.
Предлагаемый воздухозаборник может содержать дополнительный профилированный участок, размещенный в нижней зоне кромки корпуса. В этом случае дополнительный профилированный участок и нижняя зона кромки корпуса выполнены с обеспечением ориентированного радиального внутрь и вниз по течению воздуха направления нижнего канала, образующегося при выдвижении дополнительного профилированного участка. Таким образом, нижний канал, при выдвижении дополнительного профилированного участка образующийся на нижней стороне корпуса, имеет конфигурацию, позволяющую поступление воздушного потока снаружи через канал, что предотвращает отделение воздушного потока вниз на внутренней стороне корпуса. Это означает, что задние стороны обоих установленных с возможностью регулирования положения профилированных участков имеют разную конфигурацию.
Главное преимущество изобретения заключается в том, что в результате выдвижения профилированного участка и, при его наличии, дополнительного профилированного участка надежно предотвращается отделение воздушного потока. Благодаря этому в случае самолета с двухконтурным турбовинтовым двигателем, снабженным предлагаемым воздухозаборником, возможен больший угол атаки без отделения воздушного потока, что также приводит к повышению безопасности полета в таких условиях.
Кроме того, выгодна возможность выполнения корпуса с ротационно-симметричной наружной конфигурацией и с оптимальной в отношении аэродинамического сопротивления, т. е. узкой, формой, причем нет необходимости учитывать вышеописанные случаи невыгодного направления воздушного потока. Конкретные геометрию и конфигурацию профилированных участков можно выбрать в соответствии с описанными ниже, особенно критическими вариантами невыгодного направления воздушного потока.
Согласно предпочтительной форме выполнения предлагаемого воздухозаборника профилированные участки установлены с возможностью поворота вокруг горизонтальной оси. При этом каждый такой участок на концах с помощью шарниров закреплен с возможностью поворота на корпусе, причем установочные механизмы воздействуют на середину соответствующего профилированного участка.
Данная форма выполнения имеет то преимущество, что такой воздухозаборник можно намного эффективнее механически регулировать, чем известные заслонки или кольца. Выгодно и то, что достигается при- мерно синусоидальная форма канала по высоте, соответствующая желаемому импульсу по окружности, содействующему течению воздуха, т. е. создается распределяемый по окружному участку профилированного участка воздушный поток, расход которого соответствует степени склонности и отделению воздушного потока, имеющейся на соответствующем окружном участке.
На фиг. 1 показана схема поступления воздушного потока при большой мощности и большом угле атаки; на фиг. 2 схема поступления воздушного потока при небольшой мощности и большом угле атаки; на фиг. 3 изображен турбореактивный двигатель, снабженный предлагаемым водухозаборником, с выдвинутыми профилиро- ванными участками, осевой разрез; на фиг. 4 то же, причем представлен и установочный механизм; на фиг. 5 передний участок корпуса с двумя вдвинутыми профилированными участками, осевой разрез; на фиг. 6 то же, но с одним профилированным участком; на фиг. 7 корпус согласно фиг. 5, вид спереди; на фиг. 8 представлена схема высоты канала как функция окружного угла; на фиг. 9 схема угловых корреляций; на фиг. 10 входная кромка корпуса, продольный разрез.
На фиг. 1 и 2 схематически представлены две особенно критические ситуации. На фиг. 1 представлена ситуация двигателя при большой мощности и большом угле атаки β, т.е. воздух по направлению стрелки 1 поступает в корпус 2. Такая ситуация возникает, например, при старте самолета. Линии 3 и 4 точек полного торможения потока имеют выпуклую наружу форму, что означает, что в корпус 2 всасывается большое количество воздуха. При этом на нижней кромке корпуса возникает сильная тенденция к отделению воздушного потока (стрелка 5). Такое отделение отрицательно сказывается на размещенной за кромкой лопасти, и поэтому его следует избежать, так как при этом имеется опасность отделения лопастей, лопасти подвергаются сильной механической нагрузке и, кроме того, возникает значительный шум.
Представленная на фиг. 2 ситуация большого угла атаки β при работающем на холостом ходу двигателе или при выключенном двигателе также является критической, В этом случае в корпус 2 поступает лишь небольшое количество воздуха, так что линии 3 и 4 точек полного торможения потока имеют выпуклую внутрь форму. В таком случае, в частности, имеется опасность отделения воздушного потока на верхней кромке корпуса 2 (стрелка 6). Такого отделения следует избегать потому, что оно может отрицательно сказываться на размещенном за кромкой крыле самолета.
На фиг. 3 представлен снабженный предлагаемым воздухозаборником двухконтурный туpбовинтовой двигатель, содержащий два ротора 7,8, размещенных в корпусе 2. Вниз по течению воздушного потока за задним ротором 8 воздушный канал 9 разделяется на байпасный канал 10 и впуск 11 приводящего роторы 7, 8 центрального двигателя 12. Центральный двигатель содержит компрессор 13 среднего давления, компрессор 14 высокого давления, камеру 15 сгорания, турбину 16 высокого давления, соединенную с помощью на представленных на чертеже валов с компрессором 14 высокого давления, и турбину 17 низкого давления, таким же образом соединенную с компрессором 13 среднего давления и с обоими роторами 7, 8, вращающимися в противоположных направлениях. При этом турбина 17 низкого давления может быть выполнена в виде турбины со встречным вращением роторов, с помощью двух вращающихся в противоположных направлениях валов соединенной с роторами 7, 8, или одна единственная турбина 17 низкого давления с помощью одного вала соединена с передачей, распределяющей создаваемую турбиной 17 мощность на оба ротора 7,8.
Корпус 2 с помощью размещенных по окружности ребер 18 жесткости соединен с центральным двигателем 12, а последний закреплен на самолете, в частности на его крыле, с помощью крепежного приспособления 19.
Согласно изобретению на входной кромке 20 корпуса 2 по меньшей мере в одном секторе выполнен профилированный участок 21 и 22 соответственно в виде участка кольца, установленный на корпусе 2 с возможностью регулирования положения так, что между профилированным участком 21, 22 и корпусом 2 образуется канал 23 и 24 соответственно. Согласно представленной на фиг. 5 форме выполнения и наверху, и внизу размещены профилированные участки 21, 22. Однако в случае необходимости возможно использование лишь одного участка 21 или 22, размещенного или внизу, или наверху, как показано на фиг. 6, если в другой зоне благодаря другим мероприятиям или специальной конфигурации существует лишь небольшая склонность к отделению воздушного потока, или если такая склонность вообще отсутствует.
Однако особенно предпочтительно выполнение верхнего 21 и нижнего 22 профилированных участков, причем благодаря независимому регулированию положения достигается поступление воздушного по тока на корпус 2 без каких-бы то ни было явлений отделения.
Профилированные участки 21, 22 установлены с возможностью регулирования положения по направлению оси двигателя с помощью установочных механизмов 25, 26, предпочтительно установленных в корпусе 2. Установочные механизмы 25, 26, могут быть выполнены в виде гидравлических цилиндров, шпинделей или других пригодных приспособлений.
На фиг. 5 показан предлагаемый воздухозаборник с вдвинутыми профилированными участками 21, 22, т.е. в данном случае участки 21, 22 прилегают к корпусу 2, так что каналы 23, 24, образующиеся при выдвинутом состоянии этих участков 21, 22 (см. фиг. 3),закрыты.
Важным признаком изобретения является направление каналов 23, 24 (в плоскости чертеже они направлены снизу с левой стороны, вверх с первой стороны), так как таким образом достигается желаемый проход воздуха. Соответственно на фиг. 1 показан случай при большом угле атаки при большой мощности двигателя, т.е. воздух набегает в направлении, показанном стрелкой 1. Линии 3 и 4 означают линии торможения потока, а стрелкой 5 показана тенденция срыва потока на нижней внутренней поверхности 27 корпуса 2. Соответственно фиг. 2 показывает случай для большого угла атаки при низкой мощности двигателя, причем тенденция срыва потока наступает на верхней внешней поверхности 28 корпуса 2, что показано стрелкой 6.
На фиг. 7 представлен корпус 2, причем в верхнем секторе 29 установлен профилированный участок 21, а в нижнем секторе 30 профилированный участок 22. Оба сектора 29, 30 охватывают примерно одну четверть окружности корпуса 2, т.е. угол φo к горизонтали составляет примерно 45о. Однако в зависимости от конкретных требований данный угол может быть меньше или больше.
Профилированные участки 21, 22 закреплены на корпусе 2 с помощью шарниров 31, причем последние размещены на окружных концах 32 участков 21, 22. Установочные механизмы 25, 26 (фиг. 3) воздействуют на профилированные участки 21, 22 в местах 33, 34 крепления, находящихся в середине участков 21, 22. Предпочтительно шарниры 31 снабжены горизонтальными болтами, с одной стороны размещенными в соответствующем участке 21, 22, а с другой на примыкающих участках 35, 36 входной кромки корпуса 2.
На фиг. 8 представлена диаграмма, на которой ширина канала (фиг. 10) показана в виде функции вписанного угла φo (фиг. 7).Ширина S канала зависит от угла α на который профилированный участок 21, 22 выдвинут относительно вертикали (фиг. 3 или 9). Ширина канала 23 у верхнего профилированного участка 21 представлена пределами угла от 40 до 140о (на фиг. 8 этот случай обозначен словом "наверху"), а ширина канала 23 у нижнего профилированного участка 22 пределами угла от 220 до 320о (на фиг. 8 этот случай обозначен словом "внизу"). Данные на ординате в каждом конкретном случае зависят от выбираемого угла наклона α, причем конкретная ширина S каналов определяется по уравнению
S= tg α˙ R˙(sinφ-sinφo), где α угол наклона выдвинутого профилированного участка 21 или 22 относительно к вертикальной оси корпуса 2 плоскости;
R радиус корпуса;
φ- угол против направления часовой стрелки относительно горизонтали;
φo- угол, под которым установлены шарниры 31.
На фиг. 8 в качестве примера угол φo составляет 45о, что означает, что каждый профилированный участок 21, 22 охватывает одну четверть окружности корпуса 2.
На фиг. 9 показано отношение для ширины S каналов, на основе которой была составлена диаграмма фиг. 8, причем видны угловые корреляции. В частности, представлены максимальная ширина S каналов, равна 90о, имеющаяся в высшей точке корпуса 2, и Sφ что соответствует соответственно меньшей ширине канала по обеим сторонам максимума.
На фиг. 10 представлена верхняя зона входной кромки 20 корпуса 2, причем профилированный участок 21 находится в выдвинутом положении. При этом образуется канал 23 длиной l и шириной S. Ширина канала 31 составляет примерно 1/5 до 1/3 его длины, причем длина l равна примерно 1,5 кратной толщине d корпуса 2. Предпочтительно канал 23 имеет дугообразно изогнутую назад форму с тем, чтобы обеспечить хорошее обтекание воздуха по наружной поверхности 28 корпуса 2.
Предлагаемый воздухозаборник снабжен блоком 37 управления (фиг. 4), подключенным через сигнальные линии 38, 39 к установочным механизмам 25, 26. На вход линии блока 37 управления подаются четыре параметра режима полета и двигателя, а именно числа М набегающего потока, угол атаки β (фиг. 1 и 2), угол ε под которым установлены лопасти, степень дросселирования δ двигателя. В зависимости от этих параметров блок 37 управления по сигнальным линиям 38, 39 управляет вдвиганием (Е) и выдвиганием (А) профилированных участков 21, 22.

Claims (1)

  1. ВОЗДУХОЗАБОРНИК ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ САМОЛЕТА, содержащий по меньшей мере один профилированный участок, размещенный в верхней по отношению к самолету зоне входной кромки корпуса двигателя, первый установочный механизм, установленный между корпусом и первым профилированным участком, второй профилированный участок, размещенный в нижней по отношению к самолету зоне входной кромки корпуса двигателя, второй установочный механизм, установленный между корпусом и вторым профилированным участком, причем профилированные участки установлены с возможностью регулирования положения с помощью установочных механизмов с образованием щелевых верхнего и нижнего каналов и поворота вокруг горизонтальной оси, отличающийся тем, что, с целью повышения безопасности полета, щелевые каналы имеют синусоидальную форму по высоте, при этом верхний канал ориентирован по ходу движения воздуха в радиальном направлении наружу, а нижний внутрь.
SU914894876A 1990-03-22 1991-03-21 Воздухозаборник турбореактивного двигателя самолета RU2039880C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4009223A DE4009223A1 (de) 1990-03-22 1990-03-22 Propfan-turbotriebwerk
DEP4009223.2 1990-03-22

Publications (1)

Publication Number Publication Date
RU2039880C1 true RU2039880C1 (ru) 1995-07-20

Family

ID=6402820

Family Applications (1)

Application Number Title Priority Date Filing Date
SU914894876A RU2039880C1 (ru) 1990-03-22 1991-03-21 Воздухозаборник турбореактивного двигателя самолета

Country Status (6)

Country Link
US (1) US5177957A (ru)
JP (1) JPH05312055A (ru)
DE (1) DE4009223A1 (ru)
FR (1) FR2660013B1 (ru)
GB (1) GB2242937B (ru)
RU (1) RU2039880C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672015C1 (ru) * 2017-08-04 2018-11-08 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Промежуточный корпус компрессора двухконтурного турбореактивного двигателя

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156362A (en) * 1991-05-31 1992-10-20 General Electric Company Jet engine fan nacelle
FR2685385B1 (fr) * 1991-12-24 1995-03-31 Snecma Moteur de propulsion a cycle variable pour avion supersonique.
CN1105827C (zh) * 1995-12-20 2003-04-16 谢逢申 移出式超扇发动机
US6619030B1 (en) 2002-03-01 2003-09-16 General Electric Company Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors
US6732502B2 (en) 2002-03-01 2004-05-11 General Electric Company Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor
US7055306B2 (en) 2003-04-30 2006-06-06 Hamilton Sundstrand Corporation Combined stage single shaft turbofan engine
US7104068B2 (en) * 2003-08-28 2006-09-12 Siemens Power Generation, Inc. Turbine component with enhanced stagnation prevention and corner heat distribution
US20050274103A1 (en) * 2004-06-10 2005-12-15 United Technologies Corporation Gas turbine engine inlet with noise reduction features
US8839805B2 (en) * 2006-10-12 2014-09-23 United Technologies Corporation Passive boundary layer bleed system for nacelle inlet airflow control
US8844553B2 (en) * 2006-10-12 2014-09-30 United Technologies Corporation Passive boundary layer bleed system for nacelle inlet airflow control
US7797944B2 (en) * 2006-10-20 2010-09-21 United Technologies Corporation Gas turbine engine having slim-line nacelle
US7870721B2 (en) * 2006-11-10 2011-01-18 United Technologies Corporation Gas turbine engine providing simulated boundary layer thickness increase
US8408491B2 (en) * 2007-04-24 2013-04-02 United Technologies Corporation Nacelle assembly having inlet airfoil for a gas turbine engine
US8205430B2 (en) * 2007-05-16 2012-06-26 United Technologies Corporation Variable geometry nacelle assembly for a gas turbine engine
US8727267B2 (en) * 2007-05-18 2014-05-20 United Technologies Corporation Variable contraction ratio nacelle assembly for a gas turbine engine
US8402739B2 (en) * 2007-06-28 2013-03-26 United Technologies Corporation Variable shape inlet section for a nacelle assembly of a gas turbine engine
US9228534B2 (en) * 2007-07-02 2016-01-05 United Technologies Corporation Variable contour nacelle assembly for a gas turbine engine
US9004399B2 (en) 2007-11-13 2015-04-14 United Technologies Corporation Nacelle flow assembly
US8186942B2 (en) * 2007-12-14 2012-05-29 United Technologies Corporation Nacelle assembly with turbulators
US8192147B2 (en) * 2007-12-14 2012-06-05 United Technologies Corporation Nacelle assembly having inlet bleed
KR100938547B1 (ko) * 2007-12-21 2010-01-25 한국항공우주연구원 틸트-덕트 비행체 및 상기 비행체의 자세제어
EP2157299A1 (en) 2008-07-17 2010-02-24 United Technologies Corporation Nacelle assembly for a gas turbine engine with variable shape inlet section, corresponding gas turbine engine and operating method
DE102011103163A1 (de) * 2011-06-01 2012-12-06 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinentriebwerk mit teleskopartigem Lufteinlass der Triebwerksverkleidung
FR3001257B1 (fr) * 2013-01-18 2018-05-11 Safran Aircraft Engines Manche d'entree d'air acoustiquement optimisee
CN104691741B (zh) * 2013-12-06 2017-11-10 中国航发商用航空发动机有限责任公司 航空发动机短舱
US10294862B2 (en) 2015-11-23 2019-05-21 Rolls-Royce Corporation Turbine engine flow path
US20170283081A1 (en) * 2016-04-05 2017-10-05 Rohr, Inc. Securing a translating fanlet for an aircraft propulsion system nacelle
DE102017106954A1 (de) * 2017-03-31 2018-10-04 Rolls-Royce Deutschland Ltd & Co Kg Triebwerksgondel für ein Turbofan-Triebwerk
US20180371995A1 (en) * 2017-06-26 2018-12-27 The Boeing Company Rotating devices for mitigation of adverse flow conditions in an ultra-short nacelle inlet
US10815811B2 (en) 2017-11-28 2020-10-27 General Electric Company Rotatable component for turbomachines, including a non-axisymmetric overhanging portion
FR3101854B1 (fr) * 2019-10-15 2024-05-31 Inst Superieur De L Aeronautique Et De L Espace Nacelle de turbomachine
CN112824663B (zh) * 2019-11-20 2022-07-12 中国航发商用航空发动机有限责任公司 航空发动机
KR102448609B1 (ko) * 2021-01-25 2022-09-28 주식회사 니나노컴퍼니 지능형 입구 박리 제어가 가능한 고중량 드론용 덕티드 프로펠러 시스템

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB633695A (en) * 1946-02-15 1949-12-19 Louis Breguet Rotary propeller
US3059878A (en) * 1958-11-26 1962-10-23 Rolls Royce Auxiliary air intakes for jet engines adapted for vertical take-off
US3222863A (en) * 1963-10-07 1965-12-14 Boeing Co Aerodynamic inlet
US3446223A (en) * 1966-02-04 1969-05-27 Lockheed Aircraft Corp Air intake for gas turbine engines
GB1190774A (en) * 1967-04-05 1970-05-06 Rolls Royce Improvements relating to the Silencing of Gas Turbine Engines
GB1228806A (ru) * 1968-07-04 1971-04-21
FR1589899A (ru) * 1968-10-24 1970-04-06
GB1312619A (en) * 1969-10-03 1973-04-04 Secr Defence Air intakes for gas turbine engines
US3618876A (en) * 1969-12-22 1971-11-09 Boeing Co Aircraft engine leading edge auxiliary air inlet
US3664612A (en) * 1969-12-22 1972-05-23 Boeing Co Aircraft engine variable highlight inlet
GB1336724A (en) * 1970-11-03 1973-11-07 Secr Defence Gas turbine engine air intakes
GB1353678A (en) * 1971-09-15 1974-05-22 Rolls Royce Air intake for a gas turbine engine
US4047911A (en) * 1973-04-12 1977-09-13 Dornier Gmbh Air intake with deflecting device against foreign objects impinging in the initial direction of air flow at engine nacelles
US4132240A (en) * 1977-03-28 1979-01-02 General Electric Company Variable double lip quiet inlet
US4620679A (en) * 1984-08-02 1986-11-04 United Technologies Corporation Variable-geometry inlet
DE3720318A1 (de) * 1987-06-19 1989-01-05 Mtu Muenchen Gmbh Gondel fuer strahltriebwerke
US5014933A (en) * 1989-04-27 1991-05-14 The Boeing Company Translating lip aircraft cowling structure adapted for noise reduction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Заявка ФРГ 2048588, кл. F 02C 7/04, опублик. 1971. *
Патент Великобритании 1249609, кл. F 02C 7/04, опублик. 1971. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672015C1 (ru) * 2017-08-04 2018-11-08 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Промежуточный корпус компрессора двухконтурного турбореактивного двигателя

Also Published As

Publication number Publication date
GB9106194D0 (en) 1991-05-08
GB2242937B (en) 1994-08-31
JPH05312055A (ja) 1993-11-22
DE4009223A1 (de) 1991-09-26
FR2660013B1 (fr) 1995-03-03
US5177957A (en) 1993-01-12
DE4009223C2 (ru) 1992-02-06
GB2242937A (en) 1991-10-16
FR2660013A1 (fr) 1991-09-27

Similar Documents

Publication Publication Date Title
RU2039880C1 (ru) Воздухозаборник турбореактивного двигателя самолета
US4865268A (en) Jet engine nacelle
US4947642A (en) Propfan turbo-engine
US4446696A (en) Compound propulsor
US3997132A (en) Method and apparatus for controlling tip vortices
JP4463810B2 (ja) 航空機用エンジン装置
US4248566A (en) Dual function compressor bleed
CA2206638C (en) Centrifugal compressor hub containment assembly
RU2094639C1 (ru) Силовая установка с воздушным винтом или пропеллером (варианты)
US20120068021A1 (en) Craft and method for assembling craft with controlled spin
JP2005127323A (ja) 固定ジオメトリ入口を備えたfladeガスタービンエンジン
JPS61125998A (ja) 羽根を支持する手段
BRPI0800373B1 (pt) sistema de motor de turbina a gás
US6168485B1 (en) Pump jet with double-walled stator housing for exhaust noise reduction
BRPI0407675B1 (pt) Bocal de escapamento convergente
GB2220705A (en) Fan having non-uniformly spaced blades
GB1171001A (en) Axial Flow Propeller Fan.
US5311736A (en) Variable cycle propulsion engine for supersonic aircraft
GB2226854A (en) A bypass turbofan jet engine subassembly
US4211514A (en) Mixed flow fan
JPS60501910A (ja) 軸流フアン
CN104011358A (zh) 具有低风扇压力比的燃气涡轮发动机
JPH061057B2 (ja) パワータービンの換気装置
US3487880A (en) Variable pitch fans
US4172361A (en) Gas turbine stator structure