RU2031850C1 - Устройство для очистки и обеззараживания водных сред - Google Patents

Устройство для очистки и обеззараживания водных сред Download PDF

Info

Publication number
RU2031850C1
RU2031850C1 RU93009567A RU93009567A RU2031850C1 RU 2031850 C1 RU2031850 C1 RU 2031850C1 RU 93009567 A RU93009567 A RU 93009567A RU 93009567 A RU93009567 A RU 93009567A RU 2031850 C1 RU2031850 C1 RU 2031850C1
Authority
RU
Russia
Prior art keywords
tube
ultraviolet radiation
source
storage capacitor
radiation
Prior art date
Application number
RU93009567A
Other languages
English (en)
Other versions
RU93009567A (ru
Inventor
В.П. Архипов
А.С. Камруков
П.А. Овчинников
И.И. Теленков
С.Г. Шашковский
М.С. Яловик
Original Assignee
Малое научно-производственное предприятие "Мелитта"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Малое научно-производственное предприятие "Мелитта" filed Critical Малое научно-производственное предприятие "Мелитта"
Priority to RU93009567A priority Critical patent/RU2031850C1/ru
Application granted granted Critical
Publication of RU2031850C1 publication Critical patent/RU2031850C1/ru
Publication of RU93009567A publication Critical patent/RU93009567A/ru

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

Использование: для обработки жидких сред с целью их обеззараживания, в частности природных и сточных вод. Сущность изобретения: устройство содержит герметичный корпус 1, снабженный входным 2 и выходным 3 отверстиями для пропускания обрабатываемой жидкости. В корпусе продольно расположен источник 4 УФ-излучения, который представляет собой трубку, заполненную воздухом или инертным газом, например ксеноном. Концы трубки закреплены в торцевых стенках корпуса 1 посредством уплотнения 5 и гаек 6. Концы трубки снабжены электродами 7, подключенными к блоку 8 питания, который содержит выпрямитель 9 тока, накопительный конденсатор 10, генератор 11 высоковольтных импульсов и схему 12 управления. 1 ил.

Description

Изобретение относится к обработке жидких сред с целью их обеззараживания, очистки от растворенных органических примесей и может быть использовано при очистке сточных и природных вод, обеззараживания и стерилизации воды, используемой для питья, в пищевой промышленности, фармацевтике и т.д.
Известно устройство УФ-обработки жидкостей, содержащее герметичный корпус, внутри которого продольно расположена трубка с размещенным в ней источником УФ-излучения, концы которой жестко закреплены в торцах корпуса. Корпус имеет входное и выходное отверстия для подачи и отвода обрабатываемой жидкости. В процессе обработки жидкость проходит по камере, образованной внутренней поверхностью корпуса и наружной поверхностью трубки с источником УФ-излучения. Концы трубки закреплены в корпусе таким образом, что они выступают наружу и образуют электрические клеммы, с помощью которых на источник УФ-излучения подают электрический ток.
Данное устройство обладает достоинствами, связанными с конкретным конструктивным выполнением, позволяющим повысить экономичность и коэффициент полезного действия, что обусловлено высокой степенью использования УФ-излучения за счет продольного расположения трубки с источником и продольного направления потока жидкости в корпусе.
Известное устройство имеет, однако, ряд недостатков, обусловленных свойствами используемого в нем источника УФ-излучения в виде ртутно-кварцевой лампы непрерывного излучения с линейчатым спектром излучения. Из-за низкой интенсивности излучения таких ламп очистка водных сред от растворенных органических соединений с помощью такого устройства требует большого времени обработки, что обусловливает низкую производительность.
Принципиальные ограничения связаны также с линейчатым спектром излучения лампы, вследствие чего ожидать какой-либо эффект от использования такого устройства можно лишь при условии попадания наиболее интенсивной линии спектра ртути ( λ = =2537 А) в полосу поглощения растворенного вещества. Аналогичные недостатки проявляет известное устройство и при дезинфекции (или стерилизации) водных сред. Кроме того, все известные устройства на основе ртутно-кварцевых ламп непрерывного излучения требуют при использовании значительного времени (5-10 мин) для разогрева лампы и выхода ее на рабочий режим. При этом пары ртути, находящиеся в таких лампах, являются высокотоксичным веществом, вследствие чего утилизация ламп, выработавших срок службы, или устранение заражений, произошедших при разрушении колбы из-за неосторожного обращения или аварии, представляет серьезную экологическую проблему.
Цель изобретения - значительно расширить номенклатуру органических соединений, видов бактерий и штаммов микроорганизмов и вирусов, эффективно удаляемых и инактивируемых из обрабатываемой водной среды, увеличить глубину очистки (в ряде случаев до 100%), снизить энергетические затраты, необходимые для очистки или обеззараживания некоторого объема водной среды, повысить производительность, обеспечить практически мгновенную готовность устройства к работе, достичь полной экологической безопасности при работе и утилизации источников УФ-излучения.
Для этого в устройстве для очистки и обеззараживания водных сред, содержащем герметичный корпус с входным и выходным отверстиями, размещенный в нем электроразрядный источник УФ-излучения, выполненный в виде трубки из прозрачного для УФ-излучения материала с электродами на концах, и блок питания, снабженный системой инициирования разряда и подключенный к источнику УФ-излучения, трубка источника УФ-излучения заполнена инертным газом или воздухом, блок питания содержит высоковольтный выпрямитель тока и накопительный конденсатор, а система инициирования разряда выполнена в виде генератора высоковольтных импульсов, при этом параметры устройства связаны между собой следующими соотношениями:
Figure 00000002
> 0,3 (1) и
Figure 00000003
>1, (2) где R - расстояние между трубкой и внутренней стенкой корпуса, м;
l - расстояние между электродами источника УФ-излучения, м;
f - частота повторения импульсов УФ-излучения, Гц;
Q - объемный расход обрабатываемой водной среды, м3/с;
W - электрическая энергия, запасенная в накопительном конденсаторе, Дж;
d - внутренний диаметр трубки источника УФ-излучения, м;
L - индуктивность разрядного контура, образованного источником УФ-излучения, накопительным конденсатором и элементами системы инициирования разряда, Гн;
с - емкость накопительного конденсатора, Ф;
А = 2˙109 Вт/м2 - постоянный коэффициент.
На чертеже представлена конструкция устройства для очистки и обеззараживания водных сред со схемой блока питания и управления работой устройства.
Устройство содержит герметичный цилиндрический корпус 1, выполненный из материала, непрозрачного для УФ-излучения, и снабженный входным 2 и выходным 3 отверстиями для пропускания обрабатываемой жидкости. В корпусе продольно расположен источник 4 УФ-излучения в виде трубки из прозрачного для УФ-излучения материала, заполненной воздухом или инертным газом (например, Хе). Концы трубки герметично закреплены в торцевых стенках корпуса 1 посредством уплотнений 5 и гаек 6.
Возможна также иная форма корпуса, например прямоугольная, и иное расположение трубки источника 4 УФ-излучения, например поперечное. На работоспособность устройства и достигаемый технический результат это не влияет. Трубка служит источником УФ-излучения, представляя собой импульсную газоразрядную лампу. Концы трубки снабжены электродами 7, подключенными к блоку 8 питания. Блок 8 питания содержит высоковольтный выпрямитель 9 тока, который служит источником постоянного напряжения, накопительный конденсатор 10, генератор 11 высоковольтных импульсов и схему 12 управления.
Накопительный конденсатор 10 подключен к высоковольтному выпрямителю 9. Источник 4 УФ-излучения и накопительный конденсатор 10 образуют разрядный контур, с которым индуктивно связан генератор 11 высоковольтных импульсов. Такая связь осуществляется посредством, например, импульсного трансформатора (на чертеже не показан), входящего в состав генератора 11 высоковольтных импульсов.
В устройстве использован высоковольтный выпрямитель тока с напряжением 1-5 кВ.
Генератор 11 высоковольтных импульсов представляет собой формирователь импульсов амплитудой 20-40 кВ, длительностью 0,1-1,3 мкс и частотой повторения, определяемой схемой 12 управления.
Схема 12 управления содержит генератор тактовых импульсов, задающий частоту повторения импульсов излучения, источник опорного напряжения, компаратор, сравнивающий напряжение между обкладками накопительного конденсатора 10 с опорным напряжением, органы управления, позволяющие устанавливать необходимые для конкретного использования значения частоты повторения импульсов и энергии, запасаемой накопительным конденсатором 10.
Устройство работает следующим образом.
Вода, которую необходимо подвергнуть очистке или обеззараживанию, подается через входное отверстие 2 в канал, образованный внутренней поверхностью корпуса 1 и наружной поверхностью трубки. В этом канале вода подвергается УФ-обработке импульсным УФ-излучением, причем расход воды и частота импульсов связаны с геометрическими параметрами устройства соотношением (1).
Формирование импульса УФ-излучения обеспечивается взаимодействием блока 8 питания с источником излучения.
В начальный момент времени инертный газ, находящийся в трубке, состоит из электрически нейтральных атомов, свободные носители заряда отсутствуют, и электрическое сопротивление между электродами 7 бесконечно велико.
Схема 12 управления включает высоковольтный выпрямитель 9, который заряжает накопительный конденсатор 10 до тех пор, пока напряжение на нем не сравняется с опорным. В этот момент схема 12 управления выключает высоковольтный выпрямитель 9. Благодаря соединению блока 8 питания с источником УФ-излучения разность потенциалов между обкладками конденсатора 10 через генератор 11 высоковольтных импульсов оказывается приложенной к электродам 7.
Затем схема 12 управления вырабатывает импульс запуска генератора 11 высоковольтных импульсов, который работает в ждущем режиме и на каждый импульс от схемы управления формирует один высоковольтный импульс амплитудой 20-40 кВ. Импульс такой амплитуды вызывает электрический пробой межэлектродного промежутка, в котором появляются свободные носители заряда (электроны), приобретающие большую кинетическую энергию в электрическом поле межэлектродного промежутка. При соударении электронов с атомами инертного газа последние ионизируются, число носителей заряда увеличивается. В результате такого лавинообразного развития процесса разряда накопительного конденсатора 10 в трубке образуется высокотемпературная плазма (Т ≃ 10000-15000 К), излучение которой характеризуется сплошным спектром высокой интенсивности в УФ-области. Импульс излучения прекращается по мере разряда конденсатора 10. В конкретных примерах выполнения длительность импульса УФ-излучения составляет от 35 до 500 мкс.
После окончания разряда конденсатора 10 условия для образования и разгона свободных носителей заряда в межэлектродном промежутке исчезают, плазма быстро остывает, инертный газ деионизируется, и устройство приходит в исходное состояние. В дальнейшем процесс повторяется благодаря работе схемы 12 управления, которая фактически синхронизирует работу остальных узлов и задает период повторения импульсов УФ-излучения.
Для обеспечения высокой интенсивности излучения в УФ-области спектра за счет формирования сплошного спектра и сдвига максимума спектральной плотности излучения в УФ-область необходимо соблюдение параметров, отвечающих соотношению (2).
УФ-излучение через прозрачную трубку попадает в воду и проходит сквозь ее толщу размером R -
Figure 00000004
, разлагая при этом растворенные органические загрязнения (вплоть до СО2 и Н2О) и уничтожая бактерии и микроорганизмы, т.е. наряду с очисткой осуществляется также и бактерицидное воздействие. При непрерывной прокачке обрабатываемой водной среды через корпус 1 и периодическом облучении короткими импульсами УФ-излучения выполнение соотношения (1) гарантирует обработку каждого элементарного объема водной среды.
Преимущества предложенного устройства заключаются в универсальности воздействия на водные среды с различными примесями и бактериологическим загрязнением (за счет сплошного спектра излучения), существенном сокращении необходимого времени обработки, т. е. в увеличении производительности за счет высокой интенсивности обработки, практически мгновенной готовности к действию, определяемой временем заряда накопительного конденсатора (0,05-1 с), повышении безопасности при работе и утилизации использованных ламп за счет наполнения трубки безвредными инертными газами или воздухом.
Эти преимущества обусловлены также существенным снижением суммарной энергетической дозы, необходимой для минерализации органических примесей и уничтожения бактерий, что достигается за счет использования высокоинтенсивного импульсного УФ-излучения сплошного спектра, которое характеризуется большей глубиной проникновения и меньшими пороговыми дозами, необходимыми для минерализации и обеззараживания, чем излучение линейчатого спектра. Кроме того, при использовании высокоинтенсивного импульсного УФ-излучения для обеззараживания высокая эффективность обработки достигается и за счет превышения скорости подавления микроорганизмов в водной среде над скоростью их естественного собственного размножения. При использовании же низкоинтенсивного облучения даже при увеличении длительности обработки может иметь место обратный эффект за счет адаптации микроорганизмов.
В одном из вариантов выполнения устройство имеет размеры корпуса: ⌀ 80 мм, длина 450 мм; габариты блока питания и управления 500х350х250 мм; потребляемая электрическая мощность 1 кВт, частота повторения импульсов излучения 0,7 Гц; диаметр трубки 16 мм; длина межэлектродного промежутка 250 мм; наполнение трубки - ксенон.
Экспериментальные исследования такого устройства показали, что для полного разрушения фенола в дистиллированной воде при концентрации 0,1-0,4 мг/л и общем объеме обрабатываемой воды 15 л достаточно обработки в течение 14 мин.
Для экспериментов по обеззараживанию воды использовался вариант выполнения устройства с диаметром корпуса 70 мм, длиной 350 мм, частотой следования импульсов 25 Гц. Объектом исследования являлась вода, зараженная спорами сибиреязвенных вакцинных штаммов. При исходной концентрации 104-105 спор в 1 л получено полное обеззараживание воды для объемного расхода воды через устройство до 3 м3/ч.
Приведенные результаты подтверждают высокую эффективность устройства при очистке и обеззараживании водных сред.
Кроме того, предлагаемое устройство успешно используется для очистки водных сред от нефтепродуктов, поверхностно-активных веществ, ядохимикатов.

Claims (1)

  1. УСТРОЙСТВО ДЛЯ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДНЫХ СРЕД, содержащее герметичный корпус с входным и выходным отверстиями, размещенный в нем электроразрядный источник ультрафиолетового излучения, выполненный в виде трубки из прозрачного для ультрафиолетового излучения материала с электродами на концах, и блок питания, снабженный системой инициирования разряда и подключенный к источнику ультрафиолетового излучения, отличающееся тем, что трубка источника ультрафиолетового излучения заполнена инертным газом или воздухом, блок питания содержит высоковольтный выпрямитель тока и накопительный конденсатор, а система инициирования разряда выполнена в виде генератора высоковольтных импульсов, при этом параметры устройства связаны между собой соотношениями
    Figure 00000005

    Figure 00000006

    где R - расстояние между трубкой и внутренней стенкой корпуса, м;
    l - расстояние между электродами источника ультрафиолетового излучения, м;
    f - частота повторения импульсов ультрафиолетового излучения, Гц;
    Q - объемный расход обрабатываемой водной среды, м3/с;
    W - электрическая энергия, запасенная в накопительном конденсаторе, Дж;
    d - внутренний диаметр трубки источника ультрафиолетового излучения, м;
    L - индуктивность разрядного контура, образованного источником ультрафиолетового излучения, накопительным конденсатором и элементами системы инициирования разряда, Гн;
    C - емкость накопительного конденсатора, Ф;
    A = 2 · 109 Вт/м2 - постоянный коэффициент.
RU93009567A 1993-02-26 1993-02-26 Устройство для очистки и обеззараживания водных сред RU2031850C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93009567A RU2031850C1 (ru) 1993-02-26 1993-02-26 Устройство для очистки и обеззараживания водных сред

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93009567A RU2031850C1 (ru) 1993-02-26 1993-02-26 Устройство для очистки и обеззараживания водных сред

Publications (2)

Publication Number Publication Date
RU2031850C1 true RU2031850C1 (ru) 1995-03-27
RU93009567A RU93009567A (ru) 1996-06-20

Family

ID=20137619

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93009567A RU2031850C1 (ru) 1993-02-26 1993-02-26 Устройство для очистки и обеззараживания водных сред

Country Status (1)

Country Link
RU (1) RU2031850C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042624A1 (fr) * 1997-06-23 1998-10-01 Soloviev, Evgeny Vladimirovich Procede et dispositif de traitement de liquide, d'air et de surfaces aux rayons ultraviolets
RU2602090C1 (ru) * 2015-11-02 2016-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Устройство для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов
RU173571U1 (ru) * 2017-05-22 2017-08-31 Общество с ограниченной ответственностью "Научно-исследовательский институт источников света имени А.Н. Лодыгина" Устройство для обеззараживания питьевой воды в быту ультрафиолетовым излучением
RU2646438C1 (ru) * 2016-12-21 2018-03-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Устройство фотохимической обработки для установок очистки и обеззараживания воды
RU211306U1 (ru) * 2021-10-27 2022-05-31 Общество с ограниченной ответственностью "ФЕРАН" Устройство для плазмохимической очистки стоков от микробиологических загрязнений

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент США N 4255663, кл. A 61L 2/10, опубл.1981. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042624A1 (fr) * 1997-06-23 1998-10-01 Soloviev, Evgeny Vladimirovich Procede et dispositif de traitement de liquide, d'air et de surfaces aux rayons ultraviolets
US6264802B1 (en) 1997-06-23 2001-07-24 Alexandr Semenovich Kamrukov Method and device for UV treatment of liquids, air and surfaces
RU2602090C1 (ru) * 2015-11-02 2016-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Устройство для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов
RU2646438C1 (ru) * 2016-12-21 2018-03-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Устройство фотохимической обработки для установок очистки и обеззараживания воды
RU173571U1 (ru) * 2017-05-22 2017-08-31 Общество с ограниченной ответственностью "Научно-исследовательский институт источников света имени А.Н. Лодыгина" Устройство для обеззараживания питьевой воды в быту ультрафиолетовым излучением
RU211306U1 (ru) * 2021-10-27 2022-05-31 Общество с ограниченной ответственностью "ФЕРАН" Устройство для плазмохимической очистки стоков от микробиологических загрязнений

Similar Documents

Publication Publication Date Title
US6558638B2 (en) Treatment of liquids
US5965093A (en) Decontamination system with improved components
CA2126935C (en) Method and apparatus for water decontamination using electrical discharge
US6264802B1 (en) Method and device for UV treatment of liquids, air and surfaces
WO1996001791B1 (en) Decontamination system with improved components
WO2007147097A2 (en) Fluid treatment using plasma technology
Ghasemi et al. A review of pulsed power systems for degrading water pollutants ranging from microorganisms to organic compounds
EP1069932A1 (en) Treatment of liquids
RU2031850C1 (ru) Устройство для очистки и обеззараживания водных сред
RU2326820C1 (ru) Способ очистки и стерилизации жидких или газообразных сред и устройство для его осуществления
RU2236060C1 (ru) Газоразрядный источник ультрафиолетового излучения
RU2031659C1 (ru) Устройство для обеззараживания воздуха и поверхностей
KR100902138B1 (ko) 오존을 이용한 폐수 정화 장치
WO2002098799A1 (en) Treatment of liquids
RU2142915C1 (ru) Способ обработки водных сред, содержащих органические примеси
RU2092191C1 (ru) Установка для обеззараживания и дезодорации воздуха
WO2004088706A2 (en) Ultraviolet lamp
RU119736U1 (ru) Устройство для обеззараживания водных сред
SU1263643A1 (ru) Устройство дл обеззараживани воды электрическими разр дами
RU2031851C1 (ru) Способ очистки сточных вод от органических веществ
JP2001293067A (ja) パルスパワーを用いた液体中大容量ストリーマ状放電の生成法
Sinaga et al. Water treatment using plasma generated by high voltage Tesla transformer to eliminate Escherichia Coli bacteria
KR101599733B1 (ko) 플라즈마를 이용한 액체 처리 장치
RU2234470C2 (ru) Способ и система очистки воды
RU93009567A (ru) Устройство для очистки и обеззараживания водных сред

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100227