RU2028581C1 - Способ аэроакустической диагностики проточной части авиационного газотурбинного двигателя - Google Patents

Способ аэроакустической диагностики проточной части авиационного газотурбинного двигателя Download PDF

Info

Publication number
RU2028581C1
RU2028581C1 SU4888278A RU2028581C1 RU 2028581 C1 RU2028581 C1 RU 2028581C1 SU 4888278 A SU4888278 A SU 4888278A RU 2028581 C1 RU2028581 C1 RU 2028581C1
Authority
RU
Russia
Prior art keywords
microphone
values
aerodynamic noise
unit
engine
Prior art date
Application number
Other languages
English (en)
Inventor
Ю.В. Виноградов
Н.И. Мангушев
В.И. Точилкин
В.И. Рысьев
Original Assignee
Казанский государственный технический университет им.А.Н.Туполева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Казанский государственный технический университет им.А.Н.Туполева filed Critical Казанский государственный технический университет им.А.Н.Туполева
Priority to SU4888278 priority Critical patent/RU2028581C1/ru
Application granted granted Critical
Publication of RU2028581C1 publication Critical patent/RU2028581C1/ru

Links

Abstract

Использование: в измерительной технике при диагностировании двигателей. Сущность изобретения: производят запуск источника воздухопитания - вентилятора 3 и выводят его на режим "холодной прокрутки". При этом происходит продувка диагностируемого блока камеры 1 сгорания. Затем микрофон 5 перемещают вдоль по периферии выходного среза 4, периодически производя замеры уровней звукового давления аэродинамического шума во всем диапозоне звукового спектра частот, при этом микрофон 5 занимает различные положения 11 по периферии среза 4, сохраняя направление строго к оси блока камеры 1, и находится на одном и том же расстоянии от выходного среза 4. Значения замеров микрофоном 5 преобразуются в уровни звукового давления аэродинамического шума в анализаторе 6 спектра. После каждого замера замеренные значения сравнивают в компараторе 7 с эталонными значениями исправного блока камеры 1, выданными на компаратор 7 из первого контрольного элемента 8. Если при всех замерах значения замеренных величин уровней звукового давления с достаточной точностью совпадают с эталонными, на регистрирующий прибор 10 подается сигнал - "блок камеры сгорания - исправен". 1 ил.

Description

Изобретение относится к измерительной технике, к способам диагностирования двигателей по изменению аэроакустических характеристик потока, протекающего через проточную часть авиационных газотурбинных двигателей.
Известен способ и устройство для акустического контроля машин и установок, основанные на анализе возникающих в процессе работы акустических колебаний, на сравнении замеренных значений с заданными эталонными.
Недостатком данного способа является малая точность диагностирования проточной части авиационных газотурбинных двигателей во всем диапазоне звуковых частот, что обусловлено следующим: наличие специального кожуха, фиксированное положение микрофона на значительном расстоянии от источников аэродинамического шума, что не позволяет точно диагностировать проточную часть авиационного газотурбинного двигателя. Невозможно выявлять многие характерные дефекты проточной части, их расположение, ориентацию и величину.
Цель изобретения является повышение точности диагностирования.
Поставленная цель достигается тем, что проточную часть продувают, замеряют с помощью микрофона акустические характеристики аэродинамического шума, возникающего в процессе работы и сравнивают их с эталонными значениями. Новым в данном способе является то, что с целью повышения точности путем диагностирования отдельных узлов проточной части двигателя во всем диапазоне звукового спектра частот, продувку каждого узла проводят от постороннего источника воздухопитания, в условиях свободного звукового поля, путем создания условий обтекания узлов, соответствующих режиму "холодной прокрутки" двигателя, микрофон при измерениях перемещают поперек выходной струи и вдоль наружной кромки выходного среза продуваемого узла, а в качестве эталонных значений принимают величины уровней звукового давления аэродинамического шума, генерируемого бездефектными узлами и узлами с дефектами, наиболее характерными для последних, затем определяют по максимальной величине звукового давления аэродинамического шума место расположения, ориентацию и величину дефекта.
В практике испытаний и доводки авиационных газотурбинных двигателей известны продувки отдельных узлов, модулей от постороннего источника воздухопитания в условиях свободного звукового поля, но в основном они проводятся с целью определения газодинамических или шумовых характеристик этих узлов модулей. В предлагаемом способе продувку каждого узла проточной части двигателя проводят от постороннего источника воздухопитания в условиях свободного звукового поля, но данные условия обеспечивают возможность более точного выделения отклонения акустических характеристик аэродинамического шума выходного потока, вызываемые дефектами узлов проточной части авиационных газотурбинных двигателей. Т.е. в данном варианте применения известного технического решения появляются новые свойства: использование аэроакустических характеристик потока на выходе из узлов в качестве диагностической информации о техническом состоянии проточной части двигателя. Использование в способе режима "холодной прокрутки", перемещение микрофона, использование в качестве эталонных значений величин уровней звукового давления аэродинамического шума, генерируемого бездефектными узлами и узлами с дефектами, наиболее характерными для последних, и определение по максимальной величине звукового давления аэродинамического шума расположение, ориентацию и величину дефекта заявителям в других технических решениях не встречалось, что позволяет сделать вывод, что взаимообусловленные признаки, характеризующие предложенный способ, обладают существенными отличиями.
Возможность достижения поставленной цели обусловлена особенностями работы авиационных газотурбинных двигателей (относительно большие расходы воздуха-газа) и особенностями изменения аэроакустических характеристик потока, протекающего по проточной части данных двигателей, вызванных возникновением дефектов. Большинство дефектов проточной части (прогары, сколы, забоины лопаток ротора и статора, нагарообразование и эрозия деталей проточной части) носят локальный характер и имеют сравнительно малые геометрические размеры. Акустическое звучание дефектов возможно лишь при обтекании их скоростным, турбулентным, воздушным или газовым потоком. Кроме того, обычно дефекты проточной части хорошо заэкранированы наружной герметичной оболочкой двигателя. Все это обусловливает сложность или невозможность определения многих дефектов (особенно на невращающихся деталях статора) через оболочку двигателя. С другой стороны, сравнительно хорошо сохраняющиеся вдоль по потоку локальные турбулентные пульсации (турбулентные следы), вызванные локальными дефектами, позволяют выявлять последние по изменению аэроакустических характеристик потока на выходе из узла.
Кроме того, сравнительно малые геометрические размеры дефектов и особенности их обтекания и переноса предопределяют их проявление в форме акустических колебаний высокой частоты. Особенность высокочастотных колебаний - значительное затухание при удалении от источника и малая энергоемкость, что делает нежелательным отнесение микрофона из ближней зоны на значительное расстояние.
На фиг.1 представлена принципиальная схема замеров для реализации предложенного способа аэроакустической диагностики проточной части авиационного газотурбинного двигателя при продувке, например, блока камеры сгорания.
В схему входят диагностируемый узел - блок камеры 1 сгорания, переходник 2, вентилятор 3, выходной срез 4 блока камеры 1 сгорания, микрофон 5, анализатор 6 спектра, компаратор 7, два контрольных элемента 8 и 9, регистрирующий прибор 10.
Для осуществления предложенного способа производят следующие действия. Отдельный узел, модуль авиационного газотурбинного двигателя, например блок камеры сгорания размещают в акустическом боксе (заглушенной камере), обеспечивающем условия свободного звукового поля, при помощи переходников 2 соединяют блок камеры 1 сгорания с источником воздухопитания - вентилятором 3. На выходном срезе 4 блока камеры 1 сгорания устанавливают микрофон 5. Микрофон 5 соединен с анализатором 6 спектра, который своим выходом соединен с компаратором 7, второй вход которого соединен с первым контрольным элементом 8. Выход компаратора 7 соединен с регистрирующим прибором 10, например цифровым дисплеем. Регистрирующий прибор соединен с вторым контрольным элементом 9.
Прежде чем начать диагностирование проточной части блока камеры 1 сгорания, в первый контрольный элемент 8 заносят заданные эталонные значения акустических характеристик аэродинамического шума, замеренные микрофоном 5 и преобразованные анализатором 6 спектра в уровни звукового давления аэродинамического шума во всем диапазоне звукового спектра частот, причем замеры проведены за исправным (бездефектным), эталонным блоком камеры 1 сгорания, продутом на режимах, соответствующих режиму "холодной прокрутки" двигателя. Во второй контрольный элемент 9 заносят заданные эталонные значения уровней звукового давления аэроакустического шума характерных дефектов и стадий их развития, также замеренные при продувке блоков камер 1 сгорания с дефектами на режиме "холодной прокрутки", при этом блоки камер 1 сгорания содержат заведомо известные характерные дефекты в различных стадиях развития.
После заполнения контрольных элементов 8 и 9 признаками: исправного эталона бездефектного блоков камеры сгорания в первый контрольный элемент 8 и эталонов дефектов и стадий их развития (блоков камер сгорания с дефектами) во второй контрольный элемент 9, производят запуск источника воздухопитания - вентилятора 3 и выводят его на режим "холодной прокрутки". При этом происходит продувка диагностируемого блока камеры 1 сгорания. Затем микрофон 5 перемещают вдоль по периферии выходного среза 4, периодически производя замеры уровней звукового давления аэродинамического шума во всем диапазоне звукового спектра частот, при этом микрофон 5 занимает различные положения 11 по периферии среза 4, сохраняя направление строго к оси блока камеры 1, и находится на одном и том же расстоянии от выходного среза 4. Значения замеров микрофоном 5 преобразуются в уровни звукового давления аэродинамического шума в анализаторе 6 спектра. После каждого замера замеренные значения сравнивают в компараторе 7 с эталонными значениями исправного блока камеры 1, выданными на компаратор 7 из первого контрольного элемента 8. Если при всех замерах значения замеренных величин уровней звукового давления с достаточной точностью совпадают с эталонными, на регистрирующий прибор 10 подается сигнал - "блок камеры сгорания - исправен". Если отклонение замеренных значений больше порогового, микрофон 5 перемещают в такое положение по периферии, где эти отклонения максимальны. В данном положении микрофона 5 производят контрольный замер параметров и после преобразований сравнивают с эталонным бездефектного узла в компараторе 7. На регистрирующий прибор 10 в этом случае, подают разницу эталонного и полученного сигнала, где последовательно сравнивают эту разницу с признаками и стадиями развития характерных дефектов, записанных во втором контрольном элементе 9. Если замеренные признаки дефектов совпадают с эталонными признаками и стадиями развития известных дефектов, то на регистрирующем приборе 10 высвечивается сигнал о наличии известного характерного дефекта и о стадии его развития. По положению микрофона 5 можно судить о положении дефекта (его ориентации) относительно оси диагностируемого узла блока камеры 1 сгорания. Возможно, что замеренные значения не совпадают ни с одним из признаков дефектов, занесенных во второй контрольный элемент 9. В этом случае на регистрирующем приборе 10 выдается сигнал, что дефект в блоке камеры 1 сгорания имеется, но идентификации не поддается и требует дополнительных исследований. Хотя ориентацию такого дефекта также определяют по положению микрофона 5, что облегчает задачу его поиска другими средствами.
Технико-экономические преимущества предлагаемого способа заключаются в возможности повысить точность аэроакустической диагностики технического состояния проточной части авиационного двигателя известными техническими средствами, что обеспечивается за счет выбора в качестве источника информации о техническом состоянии проточной части авиационных газотурбинных двигателей - аэроакустических характеристик потока, протекающего по узлам, модулям проточной части, а не общего шума двигателя, как в прототипе. Предлагаемое техническое решение позволяет преодолеть такие недостатки прототипа как: наличие звукоизолирующего кожуха, препятствующего нормальной работе двигателя из-за сложности подвода, выхлопа и звукоизоляции больших расходов воздуха и газа; невозможность определения стадии дефекта и их ориентации, а также локальных дефектов малых геометрических размеров.

Claims (1)

  1. СПОСОБ АЭРОАКУСТИЧЕСКОЙ ДИАГНОСТИКИ ПРОТОЧНОЙ ЧАСТИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, заключающийся в том, что проточную часть продувают, замеряют с помощью микрофона акустические характеристики аэродинамического шума, возникающего в процессе работы, и сравнивают их с эталонными значениями, отличающийся тем, что, с целью повышения точности путем диагностирования отдельных узлов поточной части двигателя во всем диапазоне звукового спектра частот, продувку каждого узла проводят от постороннего источника воздухопитания в условиях свободного звукового поля путем создания условий обтекания узлов, соответствующих режиму "холодной прокутки" двигателя, микрофон при измерениях перемещают поперек выходной струи и вдоль наружной кромки выходного среза продуваемого узла, а в качестве эталонных значений принимают величины уровней звукового давления аэродинамического шума, генерируемого бездефектными узлами и узлами с дефектами, наиболее характерными для последних, затем определяют по максимальной величине звукового давления аэродинамического шума место расположения, ориентацию и величину дефекта.
SU4888278 1990-12-07 1990-12-07 Способ аэроакустической диагностики проточной части авиационного газотурбинного двигателя RU2028581C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4888278 RU2028581C1 (ru) 1990-12-07 1990-12-07 Способ аэроакустической диагностики проточной части авиационного газотурбинного двигателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4888278 RU2028581C1 (ru) 1990-12-07 1990-12-07 Способ аэроакустической диагностики проточной части авиационного газотурбинного двигателя

Publications (1)

Publication Number Publication Date
RU2028581C1 true RU2028581C1 (ru) 1995-02-09

Family

ID=21548506

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4888278 RU2028581C1 (ru) 1990-12-07 1990-12-07 Способ аэроакустической диагностики проточной части авиационного газотурбинного двигателя

Country Status (1)

Country Link
RU (1) RU2028581C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2517264C2 (ru) * 2012-08-10 2014-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Способ диагностики технического состояния авиационных газотурбинных двигателей
RU2531057C2 (ru) * 2012-10-29 2014-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Способ измерения акустических характеристик газовых струй на срезе выходных устройств гтд и устройство для его осуществления
RU2634979C1 (ru) * 2017-02-02 2017-11-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Заглушенная камера для акустических и газодинамических измерений шумов элементов конструкции авиационных ГТД
RU2647261C2 (ru) * 2012-12-13 2018-03-15 Снекма Способ и устройство акустического обнаружения нарушения работы двигателя, снабженного активным контролем шума

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Международная заявка РСТ N 81/03702, кл. G 01H 1/00, 1989. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2517264C2 (ru) * 2012-08-10 2014-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Способ диагностики технического состояния авиационных газотурбинных двигателей
RU2531057C2 (ru) * 2012-10-29 2014-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Способ измерения акустических характеристик газовых струй на срезе выходных устройств гтд и устройство для его осуществления
RU2647261C2 (ru) * 2012-12-13 2018-03-15 Снекма Способ и устройство акустического обнаружения нарушения работы двигателя, снабженного активным контролем шума
RU2634979C1 (ru) * 2017-02-02 2017-11-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Заглушенная камера для акустических и газодинамических измерений шумов элементов конструкции авиационных ГТД

Similar Documents

Publication Publication Date Title
US5445027A (en) Method and apparatus for detecting and locating defects in a component of a turbine
EP1777514B1 (en) Method and apparatus for non-destructive testing of components of gas turbine engines made of monocrystalline materials
US20060283190A1 (en) Engine status detection with external microphone
US6473705B1 (en) System and method for direct non-intrusive measurement of corrected airflow
US20140007591A1 (en) Advanced tip-timing measurement blade mode identification
Mongeau et al. Sound generation by rotating stall in centrifugal turbomachines
US4829813A (en) Method and apparatus for nonintrusively determining mach number
RU2028581C1 (ru) Способ аэроакустической диагностики проточной части авиационного газотурбинного двигателя
US5517852A (en) Diagnostic performance testing for gas turbine engines
Moreau et al. Experimental Validation of an analytical prediction model for fan buzz-saw noise
Lepicovsky et al. Use of pressure-sensitive paint for diagnostics in turbomachinery flows with shocks
Köhler The Influence of the TCS on the Circumferential Mode Distribution in the Inlet of a Fanrig (UFFA)
RU2297613C2 (ru) Способ диагностики газотурбинного двигателя
RU2517264C2 (ru) Способ диагностики технического состояния авиационных газотурбинных двигателей
RU2118810C1 (ru) Способ диагностики технического состояния авиационных гтд
Mathioudakis et al. Casing vibration and gas turbine operating conditions
RU2111469C1 (ru) Способ диагностики колебаний рабочего колеса турбомашины
Bennett et al. Noise-source identification for ducted fan systems
Boyle et al. DGEN aeropropulsion research turbofan core/combustor-noise measurements: Experiment and modal structure at core-nozzle exit
Salze et al. New modular fan rig for advanced aeroacoustic tests-Acoustic characterization of the facility
RU2640972C1 (ru) Способ диагностики технического состояния двухконтурного газотурбинного двигателя при эксплуатации
Pečinka et al. Small Jet Engine Centrifugal Compressor Stability Margin Assessment
Boyle et al. DGEN Aeropropulsion Research Turbofan Core/Combustor-Noise Measurements—Experiment and Modal Structure at Core-Nozzle Exit
Miller et al. Acoustic Testing of a High-Tip-Speed Fan with Bypass-Duct Liners-Overview
Schuster et al. Comparison of In-Duct Phased Array Measurements