RU2024100C1 - Способ изготовления клистронов - Google Patents

Способ изготовления клистронов

Info

Publication number
RU2024100C1
RU2024100C1 SU5015303A RU2024100C1 RU 2024100 C1 RU2024100 C1 RU 2024100C1 SU 5015303 A SU5015303 A SU 5015303A RU 2024100 C1 RU2024100 C1 RU 2024100C1
Authority
RU
Russia
Prior art keywords
resonators
gaps
klystron
klystrons
resonator
Prior art date
Application number
Other languages
English (en)
Inventor
С.В. Кузнецов
В.И. Пасманник
О.П. Петрова
Д.Л. Хаджи
Original Assignee
Научно-исследовательский институт "Титан"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-исследовательский институт "Титан" filed Critical Научно-исследовательский институт "Титан"
Priority to SU5015303 priority Critical patent/RU2024100C1/ru
Application granted granted Critical
Publication of RU2024100C1 publication Critical patent/RU2024100C1/ru

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Microwave Tubes (AREA)

Abstract

Изобретение относится к электронной технике, в частности к конструированию и технологии изготовления электровакуумных приборов СВЧ, а именно клистронов. Сущность изобретения: способ включает операции установления ВЧ-зазоров и нагрузки резонаторов путем нанесения на поверхности поглощающего ВЧ-энергию материала, например альсифера. Целью изобретения является упрощение технологии, повышение качества и надежности работы клистрона. При изготовлении блока резонаторов на всю его длину вставляют единую пролетную трубу, которую паяют с перемычками между резонаторами, затем с помощью электроискровой обработки прорезают в трубе в установленных местах ВЧ-зазоры. 7 ил.

Description

Изобретение относится к электронной технике, в частности к конструированию и технологии изготовления электровакуумных приборов СВЧ, и связано с коренным изменением стадии изготовления резонаторного блока клистрона на этапе получения требуемой соосности пролетных каналов, заданной величины высокочастотных (ВЧ) зазоров и мест их расположения в резонаторах, а также необходимой шероховатости поверхности резонаторов, покрываемой поглощающим ВЧ-энергию материалом, например альсифером.
Известные, традиционные способы изготовления клистронов, используемые для сборки резонаторных блоков, заключаются в следующем. Пролетные трубы требуемой длины закрепляют в торцах резонаторов, например, с помощью пайки или сварки, формируя ВЧ-зазор. При этом повторяемость резонансной частоты резонаторов обеспечивается исключительно соблюдением допуска на величину ВЧ-зазора, который получают при известных способах за счет выдерживания допусков на длину труб и допусков на толщину прокладок, вставляемых между трубами при их сборке и пайке или сварке с резонаторами. Набег допусков, как правило, превышает расчетные значения величины ВЧ-зазора, что приводит к необходимости доработки корпусов резонаторов после пайки пролетных труб, а это существенно усложняет технологию изготовления клистронов.
Другим важным требованием при изготовлении резонаторного блока клистронов, которое чрезвычайно трудно выполнить при известных способах, является достижение соосности пролетных труб, так как от этого зависит величина токопрохождения. При известных способах изготовления соосность обеспечивается за счет использования оснастки в виде стержней, вставляемых на всю длину в пролетные каналы или в технологические отверстия. Однако допуска на изготовление стержней и их недостаточная механическая жесткость, а также набег допусков на диаметры каналов пролетных труб или технологических отверстий при характерном для клистронов большом отношении длины к диаметру не позволяют обеспечить повторяемость требуемой соосности пролетных труб, что отрицательно сказывается на выходных параметрах клистронов.
Указанные выше недостатки особенно проявляются при использовании традиционных способов для изготовления клистронов коротковолнового диапазона частот и многолучевых клистронов с пролетными трубами "сотовой" конструкции.
Для широкополосных клистронов с целью обеспечения равномерности усиления в рабочей полосе частот определенные резонаторы дополнительно "подгружают" путем нанесения на их поверхность в требуемом месте материала, поглощающего ВЧ-энергию, например альсифера, в виде покрытия определенной толщины. Обычно для обеспечения прочного сцепления материала покрытия с поверхностью резонатора ее в этих местах обрабатывают до шероховатости 5,0; 12,5, в то время как остальная поверхность резонатора должна иметь шероховатость в пределах 1,6; 3,2. Согласно принятой технологии, например в соответствии с техническими условиями ШЖ0.014.000 ТУ, шероховатость поверхности 5,0; 12,5 получают любым механическим способом (резанием, накаткой, надиром), дробеструйной обработкой или путем нанесения слоя гальванического никеля Н9; Н12. Указанные методы позволяют производить обработку поверхности на требуемой площади лишь при условии свободного подхода инструмента к этой поверхности, а в случае никелирования - при надежной "защите" остальной поверхности от попадания на нее никеля. На практике конфигурация резонаторов (особенно в случае моноблочной конструкции резонаторного блока) достаточно сложная и обработка ее до нужной шероховатости затруднена. В результате часто не удается нанести поглощающее покрытие в нужном месте резонатора на поверхность требуемых формы и размеров. Это обстоятельство приводит к существенным разбросам по величине добротности резонаторов по сравнению с требуемой величиной, что ухудшает характеристики клистрона, в частности, по равномерности усиления в заданной полосе частот.
Прототипом изобретения является клистрон с резонаторами, выполненными в виде отдельных блоков. Необходимые частоты резонаторов получают за счет величин ВЧ-зазоров, выставляемых с помощью специальных прокладок, которыми обеспечивают требуемое расстояние от торцов трубы до торцов резонатора. Резонаторы после их пайки с трубами и демонтажа прокладок соединяют в общий блок с помощью съемных струбцин или стяжек, проводят "холодные измерения", затем сваривают вакуумноплотно аргонодуговой сваркой. Требуемую величину добротности резонаторов достигают с помощью покрытия или сплавом альсифер, поглощающим ВЧ-энергию, который заранее наносят на поверхность резонаторов, а во время "холодных изменений" регулируют степень "нагружения", удаляя частично покрытие механическим путем.
При изготовлении клистрона с применением известных приемов перечисленные выше недостатки усложняют технологический процесс, так как приводят к необходимости многократно повторять операции сборки и "холодных измерений" для обеспечения требуемой величины ВЧ-зазоров и, кроме того, требуют проведения промежуточной механической обработки торцов резонаторов или напайки на эти торцы дополнительного металла в виде колец определенной толщины. При этом возникают дополнительные трудности с подбором величин добротности резонаторов, так как лишь при получении требуемой добротности обеспечивается равномерность усиления в рабочей полосе частот. Более того, при данном способе изготовления клистрона, как впрочем и при других известных способах, из-за технологических разбросов по допускам на пролетные трубы и корпуса резонаторов, а также детали оправок, применяемых для сборки, "холодных измерений", пайки и сварки, часто не удается обеспечить оптимальные значения величин ВЧ-зазоров и добротностей резонаторов, что отрицательно сказывается на выходных параметрах клистрона. Известно, например, как существенно снижается выходная мощность и КПД клистронов (≈ на 20%) при отклонении значений добротности предвыходного и выходного резонаторов от оптимальных всего на 5-10%.
Необходимую величину токопрохождения при изготовлении клистронов известными способами, в том числе и клистрона-прототипа, обеспечивают за счет соосности катодов с каналами пролетных труб на всей длине резонаторного блока, которая теоретически для клистронов миллиметрового и сантиметрового диапазона не должна превышать ± 0,02± 0,1 мм в зависимости от диаметра отверстий пролетных труб и величины его заполнения электронным потоком. При изготовлении блока резонаторов клистрона-прототипа, как отмечалось выше, сборку и сварку отдельных резонаторов после их пайки с пролетными трубами производят, используя стержни, которые вставляют в отверстия пролетных труб с целью обеспечения из соосности.
Очевидно, что для обеспечения высокого КПД клистрона при прочих равных условиях необходимо хорошее токопрохождение. При этом для фокусировки электронного потока с небольшим заполнением κ ≈ 0,2-0,3 необходимо использовать сильное магнитное поле, что требует существенных энергозатрат и приводит к увеличению габаритов фокусирующей системы. Снизить магнитное поле без ухудшения параметров клистрона можно при условии увеличения заполнения до величины κ ≈ 0,7-0,9, но в этом случае даже незначительные технологические отклонения приводят к нарушению токопрохождения и выходу прибора из строя.
Целью изобретения является упрощение технологии, повышение качества и надежности работы клистронов.
Цель достигается тем, что при изготовлении блока резонаторов клистрона на всю его длину вставляют единую пролетную трубу, производят ее пайку с перемычками между резонаторами, затем с помощью электроискровой обработки, например, проволочным или пластинчатым электродом прорезают в трубе в установленных местах ВЧ-зазоры заданной величины и нарезают при необходимости на торцах труб, образующих эти зазоры, канавки, а поверхности резонаторов, предназначенные для нанесения поглощающей ВЧ-энергию покрытия, предварительно обрабатывают до шероховатости от 5,0 до 12,5, получаемой электроискровой обработкой с помощью специального электрода, повторяющего форму обрабатываемой поверхности.
Способ поясняется фиг.1-7 и осуществляется следующим образом. В корпус 1 блока резонаторов устанавливают пролетную трубу 2, выдерживая с помощью оправки требуемое расстояние до торцов корпуса, и производят пайку пролетной трубы с корпусом, например, припоями ПСр72В или ПЗлСрН75В. Затем с помощью электроискровой обработки проволочным электродом нарезают в пролетной трубе в установленных местах ВЧ-зазоры 3 (фиг.2) заданной величины с точностью не хуже ± 0,02 мм, формируя тем самым электродинамическую систему из нужного числа резонаторов 4 (фиг.1) пролетных труб 5 требуемой длины (фиг. 2). Указанную операцию выполняют, в частности, на станке типа А.207.61 по режиму: U= 1,8-2 кВ, I=0,08-0,1 А, что позволяет обеспечить требуемую величину зазора и необходимую частоту поверхности (не хуже 3,2). На торцах полученных пролетных труб при необходимости нарезают канавки 6 (фиг.4 и 6) для подавления вторичноэлектронного резонансного разряда. Нарезку канавок осуществляют электроискровой обработкой проволочным электродом на станке типа А.207.78/79 по режиму: U=1,8-2 кВ, I=0,08-0,1 А.
Если соотношение диаметра пролетного канала и длины трубы превышает 1: 10, то пролетную трубу изготавливают из отдельных частей, которые соединяют между собой с помощью пайки или диффузионной сварки, совмещая пролетные каналы между собой. При этом заготовки отдельных частей трубы выполняют с припуском на окончательную обработку, которую проводят после пайки трубы так, чтобы был выдержан требуемый допуск на отклонение диаметров пролетных каналов относительно внешней базовой цилиндрической поверхности.
Обработку поверхности резонаторов 7 с чистотой 12,5 (фиг.5 и 7) для нанесения на нее покрытия, поглощающего ВЧ-энергию, по предлагаемому способу производят электроискровой обработкой с помощью электрода 8 требуемой формы (фиг. 5) на станке типа А.207.40 по режиму: U=1,5 кВ, I=0,5 А. Причем обработку можно производить как до пайки пролетной трубы с корпусом блока резонаторов, так и после пайки и окончательной нарезки ВЧ-зазоров.
Предложенный способ изготовления клистронов позволяет существенно упростить технологию, так как не требует использования высокоточных, конструктивно сложных приспособлений для обеспечения требуемой точности по величине ВЧ-зазоров между пролетными трубами и соосности пролетных каналов. Кроме того, предложенный способ дает возможность осуществлять сборку электродинамической системы с более высокой точностью, чем все известные способы, а также обеспечивает лучшую повторяемость размеров ВЧ-зазоров и значений добробностей резонаторов. Указанные обстоятельства способствуют повышению надежности работы клистронов за счет стабильности параметров.

Claims (1)

  1. СПОСОБ ИЗГОТОВЛЕНИЯ КЛИСТРОНОВ, включающий операции установления высокочастотных зазоров и нагрузки резонаторов путем нанесения на поверхности поглощающего ВЧ-энергию материала, например альсифера, отличающийся тем, что, с целью упрощения технологии, повышения качества и надежности в работе клистрона, при изготовлении блока резонаторов на всю его длину вставляют единую пролетную трубу, которую паяют с перемычками между резонаторами, затем с помощью электроискровой обработки, например, проволочным или пластинчатым электродом прорезают в трубе в установленных местах высокочастотные зазоры заданной величины и нарезают при необходимости на торцах трубы, образующих эти зазоры, канавки, а поверхности резонаторов, предназначенные для нанесения поглощающего покрытия, обрабатывают до шероховатости от 5,0 до 12,5 получаемой электроискровой обработкой с помощью специального электрода, повторяющего форму требуемой поверхности.
SU5015303 1991-07-09 1991-07-09 Способ изготовления клистронов RU2024100C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5015303 RU2024100C1 (ru) 1991-07-09 1991-07-09 Способ изготовления клистронов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5015303 RU2024100C1 (ru) 1991-07-09 1991-07-09 Способ изготовления клистронов

Publications (1)

Publication Number Publication Date
RU2024100C1 true RU2024100C1 (ru) 1994-11-30

Family

ID=21590925

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5015303 RU2024100C1 (ru) 1991-07-09 1991-07-09 Способ изготовления клистронов

Country Status (1)

Country Link
RU (1) RU2024100C1 (ru)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Кацман Ю.А. Приборы СВЧ. М.: Высшая школа, 1983, с.164-165. *
Лебединский С.В. и др. Научно-технический отчет N 588. Шифр 2234. М.: НИИ Титан, 1980, (разделы 5.2.3,6.3. 1, 6.3.2, 7.7, 7.8). *

Similar Documents

Publication Publication Date Title
US4268778A (en) Traveling wave device with unific slow wave structure having segmented dielectric support
RU2024100C1 (ru) Способ изготовления клистронов
US4227065A (en) Method of joining current conducting components of wave guide elements and producing of the same
US4695766A (en) Traveling wave tube and its method of construction
KR100341661B1 (ko) 마그네트론장치및그제조방법
US3423632A (en) Electron discharge device construction
US6025681A (en) Dielectric supported radio-frequency cavities
US4951380A (en) Waveguide structures and methods of manufacture for traveling wave tubes
US3271614A (en) Electron discharge device envelope structure providing a radial force upon support rods
US4797995A (en) Method of fabricating a hollow squarax inner conductor
KR20050026596A (ko) 전자레인지용 마그네트론
EP1249030B1 (en) Magnetron anodes
US3322996A (en) Electron discharge devices and molybdenum slow wave structures, the molybdenum slow wave structures having grain alignment transverse to the electron path
JP4038883B2 (ja) 高周波型加速管
JPH08273549A (ja) 広帯域進行波管
JPH0130322B2 (ru)
US11337298B2 (en) Radio frequency electron accelerator for local frequency modulation and frequency modulation method thereof
JPH0124836Y2 (ru)
JP3399703B2 (ja) 平板型マグネトロン用陽極及びその製造方法
RU2211501C2 (ru) Сверхвысокочастотный прибор с замедляющей системой "клеверный лист"
JP2597386B2 (ja) ジャイロトロン
JPH04280037A (ja) マイクロ波管
RU2189660C1 (ru) Замедляющая система для лампы бегущей волны миллиметрового диапазона
RU2080683C1 (ru) Способ изготовления и сборки электронной пушки с анодным блоком свч лампы о-типа
Hansborough Development of 400-to 450-MHz RFQ resonator-cavity mechanical designs