RU2019499C1 - Способ получения ортофосфорной кислоты особой чистоты - Google Patents

Способ получения ортофосфорной кислоты особой чистоты Download PDF

Info

Publication number
RU2019499C1
RU2019499C1 SU5038765A RU2019499C1 RU 2019499 C1 RU2019499 C1 RU 2019499C1 SU 5038765 A SU5038765 A SU 5038765A RU 2019499 C1 RU2019499 C1 RU 2019499C1
Authority
RU
Russia
Prior art keywords
phosphorus
phosphoric acid
impurities
stage
carried out
Prior art date
Application number
Other languages
English (en)
Inventor
Людмила Николаевна Филатова
Original Assignee
Людмила Николаевна Филатова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Людмила Николаевна Филатова filed Critical Людмила Николаевна Филатова
Priority to SU5038765 priority Critical patent/RU2019499C1/ru
Application granted granted Critical
Publication of RU2019499C1 publication Critical patent/RU2019499C1/ru

Links

Images

Abstract

Изобретение относится к технологии получения ортофосфорной кислоты особой чистоты и может быть применено в микроэлектронике для производства оптических кристаллов и в других областях техники. Способ получения ортофосфорной кислоты заключается в гидратации пентаоксида фосфора при 160 - 200°С. Гидратацию проводят в два этапа. Причем первый этап проводят 0,7 - 0,9 - кратным количеством воды от стехиометрического в присутствии 0,1 - 0,3 мас.% (по отношению к пентаоксиду фосфора) неорганического кислородосодержащего соединения фосфора, имеющего P - H - связи, а второй этап 0,3 - 0,1 - кратным от стехиометрического количества воды. В качестве соединения, содержащего P - H - связи используют низшие кислородные кислоты фосфора (фосфористая, метафосфористая, фосфорноватистая), а также их соли. Новый способ обеспечивает получение особо чистой фосфорной кислоты с минимально допустимым количеством примесей металлов, а также мышьяка и органических примесей. 1 з.п. ф-лы, 2 табл.

Description

Изобретение относится к технологии получения ортофосфорной кислоты особой чистоты и может быть применено в микроэлектронике, для производства оптических кристаллов и в других областях техники.
Известно, что, как отечественные, так и зарубежные технологии получения высокочистой фосфорной кислоты, основаны главным образом на химической очистке готового продукта - технической фосфорной кислоты. При этом чаще всего используется обработка сероводородом, либо серусодержащими сорбентами и экстрагентами (для очистки от примесей тяжелых металлов) [1 и 2], а также перекисью водорода (для очистки от органических примесей) [3]. Известно и комплексное применение ряда химических агентов, позволяющих очистить ортофосфорную кислоту от различных примесей. Известен способ [4], в котором ортофосфорную кислоту сначала очищают от органических примесей перекисью водорода, затем от непрореагировавшей перекиси водорода - с помощью ряда ортофосфорсодержащих соединений, восстанавливаемых в процессе разложения перекиси водорода до фосфора (PH3, Р3Н4, ортофосфористая, пиро- и метафосфористая кислоты). Затем фосфорную кислоту очищают от тяжелых металлов продуванием сероводородом и последующей фильтрацией на диатомитовой земле. Способ позволяет получать бесцветную ортофосфорную кислоту с содержанием тяжелых металлов менее 1˙10-5 мас.%.
Реализация всех этих способов требует дополнительного оборудования, больших материальных затрат. Возможности очистки ввиду сложного физико-химического состояния примесей в растворах H3PO4 этими методами также ограничены.
В настоящее время в микроэлектронике, отрасли, потребляющей высокочистую фосфорную кислоту, в связи с переходом на новый уровень интеграции резко повысились требования к этому продукту. Качественно новый уровень требований к чистоте фосфорной кислоты стимулировал новые технические решения в этой области. Так, появились технические решения, согласно которым, кислота получается чистой уже в процессе синтеза. Эти способы оказываются в некоторых случаях более эффективными и экономичными.
Так, в Японии [5] запатентован процесс получения высокочистой фосфорной кислоты, основанный на гидролизе оксихлорида фосфора. Оксихлорид фосфора РОСl3 предварительно подвергается ректификации, затем путем взаимодействия его с водой получают высокочистую фосфорную кислоту с содержанием микропримесей 10-5 мас.%. Недостатками этой технологии являются: высокая стоимость сырья, огромное количество НСl в качестве отхода производства, высокая токсичность хлоридов фосфора. Альтернативный путь синтеза высокочистой фосфорной кислоты с применением чистых исходных продуктов описан в известном способе [6]. Суть данного способа заключается в том, что пятиокись фосфора особой чистоты (для аналитических исследований) гидратируют парами дистиллированной воды в токе аргона при 50oC в течение трех дней с последующей ультрафильтрацией на мембране Sуnpor (0,23 нм). Продукт, получаемый таким способом, относится к категории особо чистых (содержание примесей катионов ниже 1 ˙ 10-4 мас.%) и удовлетворяет требованиям, предъявляемым к исходному сырью для получения монокристаллов, использующихся в ядерной технике.
Однако данный способ, являющийся несомненно эффективным, не обеспечивает в полной мере получения продукта для микроэлектроники, а также для аналитических исследований, по той причине, что не предусматривает очистку от примеси мышьяка, которая, в отличие от примесей катионов, содержится в исходном пентаоксиде фосфора особой чистоты в значительных количествах (10-2 - 10-4 мас.%).
Этот способ, кроме того, не обеспечивает очистку от углеродсодержащих примесей, которых особенно много в пентаоксиде фосфора (даже квалификации ос. ч. ) отечественного производства. Способ имеет и другие существенные недостатки - длительность осуществления (3 дня) и сложность аппаратурного оформления (процесс осуществляется в замкнутой системе, под давлением, в атмосфере аргона).
Новое изобретение направлено на получение особо чистой фосфорной кислоты с минимально допустимым количеством примесей металлов, особенно мышьяка и органических примесей.
Новое изобретение представляет собой способ получения ортофосфорной кислоты особой чистоты двухстадийной гидратацией пятиокиси фосфора водой при температуре 160-200oC и при осуществлении первого этапа гидратации 0,7-0,9-кратным от стехиометрического количеством воды в присутствии 0,1-0,3 мас.% (по отношению к пятиокиси фофора) неорганического кислородсодержащего соединения фосфора, имеющего Р-Н-связи, и при осуществлении второго этапа гидратации 0,3-0,1-кратным от стехиометрического количества воды в отсутствии добавок.
В качестве добавок неорганических фосфорсодержащих соединений с Р-Н-связями могут быть использованы кислородсодержащие кислоты фосфора, например фосфористая, метафосфористая, пирофосфористая, фосфорноватистая, а также их соли, например гипофосфиты.
Данный способ отличается от способа-прототипа условиями проведения гидратации, температурным режимом, количественным соотношением компонентов, а главное - применением добавки реагента, имеющего Р-Н-связи.
Механизм воздействия добавок объясняется тем, что они вступают в реакцию с пятиокисью фосфора согласно следующим реакциям:
4 Р2O5 + 10 H3PO2 = 10 H3PO4 + 8Po
4 P2O5 + 10 NaH2PO2 = 10 NaH2PO4 + 8Po
4 P2O5 + 5 H6P2O4 = 10 H2PO4 + 8Po
Одновременно с этими реакциями протекают аналогичные реакции данного реагента с некоторыми примесями, в первую очередь с мышьяком, который восстанавливается до металлического:
3 As2O3 + 9 H3PO2 = 6 Aso + 9H3PO3.
При этом выделяющийся на первой стадии гидролиза порошкообразный фосфор адсорбирует металлический мышьяк, а также другие мелко дисперсные частицы, выделяющиеся в процессе гидратации Р2O5, в том числе углеродсодержащие. Лучший результат получается при гидратации в присутствии фосфорноватистой кислоты или гипофосфита натрия, но для этой цели могут быть использованы и другие кислородные соединения фосфора, содержащие Р-Н-связи.
Количество вводимой на первой стадии гидролиза фосфорсодержащей добавки является оптимальным для адсорбции примесей.
Если брать количество добавки менее 0,1 мас.% от Р2O5, то не происходит полного восстановления примеси мышьяка до металлического и степень очистки от данной примеси резко снижается.
Превышение количества добавок выше 0,3 мас.% от Р2O5 нецелесообразно ввиду того, что эффективность очистки остается прежней, а увеличение массы осадка требует увеличения поверхности фильтра.
Максимальная эффективность процесса оцистки, совмещенной с гидролизом, обеспечивается проведением гидролиза в две стадии, причем на первой стадии добавляется лишь часть воды (0,7-0,9 от стехиометрического количества). Это объясняется тем, что лишь в условиях недостатка воды разложение фосфорсодержащей добавки идет с выделением фосфора, являющегося активным коллектором в процессе очистки. При этом идет полное разложение добавки и полное восстановление примесей мышьяка и углерода.
При проведении процесса в одну стадию часть добавки остается в получаемой кислоте неразложившейся, а часть разлагается по иному механизму, без выделения фосфора. Поэтому возникает проблема удаления избытка фосфорсодержащего соединения либо растворимых продуктов его разложения. Проведение гидролиза в две стадии в значительной степени снимает эту проблему. Добавление на первой стадии гидролиза меньших, чем 0,7 от стехиометрического количества воды, снижает эффективность очистки, так как в данном случае часть пятиокиси фосфора остается в твердом состоянии, а при этом примеси мышьяка и углерода не взаимодействуют с восстанавливающей фосфорсодержащей добавкой. Если брать на первой стадии больше, чем 0,9 от стехиометрии количества воды, то фосфорсодержащая добавка перестает разлагаться с выделением фосфора. Температурный режим проведения реакции гидролиза также существенно влияет на эффективность процесса получения особо чистой H3PO4.
Именно при температуре 160-200oC, оптимально при 165-170oC, осуществляется наиболее эффективно разложение фосфорсодержащей добавки до образования атомарного фосфора, являющегося коллектором примесей.
При более низких температурах резко уменьшается образование твердой фазы, соответственно не происходит достаточно полного концентрирования примесей коллектором, и снижается степень очистки.
При более высоких температурах снижается выход целевого продукта, при этом твердая фаза коллектора теряет оптимальную степень агрегации, ее частицы уменьшаются в размере и начинают проявлять склонность к пептизации, осадок плохо фильтруется, и степень очистки от мышьяка снижается.
Новый способ обеспечивает получение ортофосфорной кислоты с содержанием примесей металлов в количестве 10-5 - 10-7 мас.%, примеси мышьяка - 1˙10-6 - 5˙10-6 мас.%, углеродсодержащих примесей - менее 1˙10-4 мас.%, содержание взвешенных частиц - 300-500 частиц в 1 мл при диаметре частиц менее 0,5 мкм.
Способ позволяет существенно упростить аппаратурное оформление процесса, по сравнению со способом-прототипом, поскольку для достижения одной и той же степени чистоты в способе-прототипе необходима установка дополнительного оборудования для очистки.
Изобретение иллюстрируется следующими примерами.
П р и м е р 1. В реакторе из коррозионно-стойкого и термостойкого материала с рубашкой и водяным охлаждением смешивается 20 кг пентаоксида фосфора и 5 л воды (что составляет ≈0,7 от стехиометрического количества), в которой предварительно растворяют 50 г гипофосфита натрия (что составляет 0,25 мас.% от массы пентаоксида). Температуру реакционной смеси поддерживают 170oC, после выдерживания при этой температуре в течение 30 мин добавляют из мерника небольшими порциями еще 3 л особо чистой воды до стехиометрического количества и затем еще 5 л для получения ее 85%-ного раствора. После охлаждения реакционной смеси кислоту фильтруют через стеклянный фильтр Шотт N 4 или через тонковолокнистый фильтрующий материал типа ФПП.
Полученный продукт - бесцветный 85%-ный раствор ортофосфорной кислоты, содержит микропримеси катионов в количестве, мас.%: железо 5˙10-6; алюминий 1˙10-5; медь, никель, кобальт, марганец 5˙10-7; мышьяк 5 ˙10-6; углеродсодержащие примеси - менее 1˙10-4; содержание взвешенных частиц - 500 частиц в 1 мл (< 5 мкм).
П р и м е р 2. 20 кг фосфора смешивают с 8 л воды, содержащей 10 г гипофосфита натрия, в одну стадию при температуре 120-130oC. Полученный раствор после охлаждения до 40-50oC фильтруют через тонковолокнистый фильтр ФПП. Полученная фосфорная кислота серовато-желтого цвета, содержит примеси, мас. % : железо, алюминий 1˙10-5; медь, никель, мерганец 1˙10-6; мышьяк 8,5˙10-4; углерод - 6˙10-4; взвешиванные частицы 800 г в 1 мл.
Из приведенных примеров следует, что несоблюдение разработанных режимов гидролиза пятиокиси фосфора, а именно снижение количества добавки фосфорсодержащего соединения с Р-Н-связью за рамки требуемой нормы, снижение температуры и проведение гидролиза в одну стадию приводит к резкому снижению частоты продукта, главным образом, по примесям мышьяка и углерода.
Влияние режимов на эффективость предложенного способа иллюстрируется также табл. 1 и 2.

Claims (2)

1. СПОСОБ ПОЛУЧЕНИЯ ОРТОФОСФОРНОЙ КИСЛОТЫ ОСОБОЙ ЧИСТОТЫ гидратацией пентаоксида фосфора при повышенной температуре, отличающийся тем, что процесс гидратации проводят в два этапа, причем первый этап проводят 0,7-0,9-кратным от стехиометрического количеством воды в присутствии 0,1-0,3 мас.% по отношению к пентаоксиду фосфора неорганического кислородсодержащего соединения фосфора, имеющего Р-Н-связи, при 160-200oС, а второй этап - 0,3-0,1-кратным от стехиометрического количеством воды.
2. Способ по п. 1, отличающийся тем, что в качестве неорганического кислородсодержащего соединения фосфора, имеющего Р-Н-связи, используют низшие кислоты фосфора, а также их соли.
SU5038765 1992-04-20 1992-04-20 Способ получения ортофосфорной кислоты особой чистоты RU2019499C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5038765 RU2019499C1 (ru) 1992-04-20 1992-04-20 Способ получения ортофосфорной кислоты особой чистоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5038765 RU2019499C1 (ru) 1992-04-20 1992-04-20 Способ получения ортофосфорной кислоты особой чистоты

Publications (1)

Publication Number Publication Date
RU2019499C1 true RU2019499C1 (ru) 1994-09-15

Family

ID=21602525

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5038765 RU2019499C1 (ru) 1992-04-20 1992-04-20 Способ получения ортофосфорной кислоты особой чистоты

Country Status (1)

Country Link
RU (1) RU2019499C1 (ru)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 471322, кл. 423-321, 15.12.87. *
2. Авторское свидетельство СССР N 1576195, кл. B 01J 45/00, 08.03.90. *
3. Патент США N 4906445, кл. 423-321, 03.05.90. *
4. ЕПВ N 282003, кл. C 01B 25/254, 14.09.88. *
5. Патент США N 2670274, кл. 423-321, 23.02.54. *
6. Чехословацкий патент N 255561, кл. C 01B 25/20, 01.06.89. *

Similar Documents

Publication Publication Date Title
CN109052444B (zh) 利用甲基亚磷酸二乙酯生产中产生的副产物制备聚合氯化铝的方法
US3923966A (en) Direct manufacture of hydrogen peroxide from hydrogen sulfide
CN104724740B (zh) 一种高纯超细氢氧化铝粉的制备方法
CN115403019A (zh) 一种磷酸铁的制备方法
CN115321736A (zh) 一种草甘膦生产废水的处理方法及含磷废弃物的高值回用
CN1948236A (zh) 一种利用含钾岩石生产硫酸铵钾复合肥的方法
RU2019499C1 (ru) Способ получения ортофосфорной кислоты особой чистоты
CA1045339A (en) Process and apparatus for purifying wet-processed phosphoric acid
US4038071A (en) Process for the removal of mercury from aqueous solutions
US2193092A (en) Recovery of vanadium
US4380531A (en) Process for preparing phosphorus acid from industrial waste materials
US4134964A (en) Process and apparatus for purifying wet-processed phosphoric acid
CN1178769A (zh) 磷矿粉湿法生产饲料级磷酸氢钙的方法
US4637922A (en) Method for removing organic materials from a wet process phosphoric acid
US3993735A (en) Cleanup of wet process phosphoric acid
JP2535882B2 (ja) 精製リン酸中の溶解有機物の除去法
JPS6232125B2 (ru)
US4330515A (en) Preparation of phosphorous acid from industrial waste material containing phosphites
US3322805A (en) Process for the manufacture of lower alkyl arsinic acids and alkali metal salts thereof
US4379132A (en) Process for sodium hypophosphite
Sadiyeva et al. Recovery of Aluminum and Vanadium Compounds from Karatau Phosphorites for Application in the Synthesis of Aluminum-Vanadium Containing Carbon Nanoparticles
CN216273570U (zh) 一种处理复合盐中水溶性有机膦的装置
US2516988A (en) Method of producing purified brine
CN115724453B (zh) 一种磷酸铁母液的净化回收方法
JPS61141607A (ja) 燐酸溶液からの脱砒素化法