RU2018504C1 - Способ получения взрывчатой эмульсии типа вода в масле - Google Patents

Способ получения взрывчатой эмульсии типа вода в масле Download PDF

Info

Publication number
RU2018504C1
RU2018504C1 SU864028650A SU4028650A RU2018504C1 RU 2018504 C1 RU2018504 C1 RU 2018504C1 SU 864028650 A SU864028650 A SU 864028650A SU 4028650 A SU4028650 A SU 4028650A RU 2018504 C1 RU2018504 C1 RU 2018504C1
Authority
RU
Russia
Prior art keywords
emulsion
water
oxidizing agent
temperature
phase
Prior art date
Application number
SU864028650A
Other languages
English (en)
Inventor
Ханс Эхрнстрем
Гуннар Экман
Original Assignee
Нитро Нобель АБ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Нитро Нобель АБ filed Critical Нитро Нобель АБ
Application granted granted Critical
Publication of RU2018504C1 publication Critical patent/RU2018504C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase
    • C06B47/145Water in oil emulsion type explosives in which a carbonaceous fuel forms the continuous phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Catalysts (AREA)
  • Fats And Perfumes (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Использование: способ получения взрывчатых веществ. Сущность изобретения: растворяют в воде часть окислителя, смешивают полученный раствор с топливной фазой, содержащей горючее и эмульгатор при температуре 60 - 100°С и содержании воды в полученной эмульсии 5 - 18%, растворяют в воде оставшуюся часть окислителя и смешивают ее с микросферами из неорганического или термопластического органического материала или с газовыделяющим агентом, причем содержание воды в получаемой смеси 25 - 60%, затем обе смеси перемешивают при температуре не выше 40°С. В смеситель обе смеси подают по общему шлангу, в котором эмульсию транспортируют в центральной части, а вторую смесь - в виде жидкого кольца, окружающего эмульсию. 1 з.п. ф-лы, 1 табл.

Description

Изобретение относится к способам получения взрывчатых веществ, в частности к способам получения "взрывчатой эмульсии типа "вода в масле", представляющей собой дисперсную гидрофильную фазу окислителя, содержащую окисляющие соли, диспергированную в непрерывной липофильной фазе топлива, содержащей горючие материалы, активизирующиеся за счет диспергированных в эмульсии пустот.
При изготовлении взрывчатых композиций такого типа возникают проблемы с вводом пустот из-за необходимости регулирования размера пустот, равномерного их распределения. Процесс ввода пустот осложнен также различием плотности компонентов композиции.
Известен ряд способов ввода пустот во взрывчатые эмульсии. В готовую смесь могут механически вводиться воздух или другой газ. Разделение газа на достаточно мелкие пузырьки является сложной задачей, для решения которой простые мешалки обычно непригодны. Частичное растворение свободного газа, слипание пузырьков, а также утечка газа отрицательно влияет на долгосрочную стабильность эмульсии.
Известны способы вспенивания взрывчатых эмульсий на месте изготовления путем введения вспенивающих (газовыделяющих) агентов [1,2,3]. Недостатком этих известных способов являются трудности дозировки и распределения газовыделяющего агента в эмульсии.
Преимущество ввода в эмульсию ячеистых материалов по сравнению с пузырьками свободного газа состоит в возможности изоляции пустот от структуры эмульсии и увеличении времени сохранения стабильности.
Однако ввод таких материалов в эмульсию представляет собой медленную и сложную операцию, обусловленную хрупкостью частиц, сопротивлением смачиванию тонкоизмельченного, легкого и пылевидного материала, а также его способностью захватывать и вносить в эмульсию нерегулируемые объемы воздуха.
Известен способ получения эмульсии с добавлением ячеистых материалов в соляной раствор до ввода дополнительной топливной фазы [4]. Указанный способ требует интенсивного перемешивания для перехода эмульсии "масло в воде" в эмульсию типа "вода в масле", причем значительная часть процесса осуществляется в активизированном газом взрывчатом составе.
Наиболее близким техническим решением является способ получения эмульсии типа "вода в масле", заключающийся в растворении окислителей в воде при повышенной температуре, добавлении горючего и эмульгатора, получении эмульсии при температуре 70-100оС, введении газосодержащего сенсибилизатора.
Недостатком известного способа является повышенная опасность приготовления взрывчатой эмульсии вследствие необходимости поддерживания высокой температуры [5].
Целью изобретения является повышение безопасности и упрощение окончательного приготовления сенсибилизированной эмульсии.
Поставленная цель достигается тем, что в способе получения взрывчатой эмульсии типа "вода в масле", заключающемся в растворении окислителя в воде, добавлении горючего и эмульгатора, получении эмульсии при нагревании, введении газосодержащего сенсибилизатора, в воде растворяют часть окислителя, получая эмульсию при температуре 60-100оС, которая выше температуры кристаллизации раствора окислителя при содержании воды в эмульсии 5-18 мас. % , оставшуюся часть окислителя растворяю в воде и добавляют микросферы из неорганического или термопластического органического материала или газовыделяющее вещество при содержании воды в получаемой смеси 25-60 мас.%, затем обе смеси перемешивают на месте использования взрывчатой эмульсии при температуре не выше 40оС, которая выше температуры кристаллизации водного раствора оставшейся части окислителя. При этом обе смеси подают в смеситель по общему шлангу, в котором эмульсию транспортируют в центральной части шланга, а вторую смесь - в виде жидкого кольца, окружающего эмульсию.
Исходная эмульсия, приготовленная из топливной фазы и первой части фазы окислителя, не содержит активных пустот и имеет резко отрицательный кислородный баланс, что обусловливает ее безопасность.
Вторая часть является безопасным продуктом из-за отсутствия горючего материала и относительно высокого содержания воды.
Наличие в исходной эмульсии относительно высокого количества топливной фазы обусловливает интенсивное разделение капель фазы окислителя и снижает потребность в интенсивном перемешивании второй части фазы окислителя, в котором могут присутствовать чувствительные полые частицы. В ходе операции окончательного перемешивания исходная эмульсия служит в качестве затравочной эмульсии, способствующей быстрому формированию целевой эмульсии типа "вода в масле", что позволяет использовать простые мешалки.
При использовании второй части окисляющей композиции с более низкой температурой кристаллизации, чем первая часть, окончательное перемешивание проводят при температуре не выше 40оС, предпочтительно при температуре окружающей среды и ниже. Низкая температура кристаллизации второй части окислителя позволяет также уменьшить потребность в перемешивании.
Подачу компонентов осуществляют по общему шлангу, причем исходную эмульсию подают по центру таким образом, чтобы она была окружена второй частью окислителя, обладающего соответствующим свойством текучести, которое обусловливает его использование в качестве смазывающего агента для исходной эмульсии.
Основную часть топливной фазы обычно составляет углеродсодержащее масло и/или парафиновый компонент, назначение которого состоит в повышении вязкости. Могут быть иcпользованы и другие модификаторы вязкоcти, например полимерные материалы. Топливная фаза должна иметь достаточно малую вязкость и обладать текучестью при температуре процесса приготовления как исходной, так и целевой эмульсии.
Рекомендуется включать весь или практически весь эмульгатор в исходную эмульсию в качестве части исходной топливной фазы.
В качестве эмульгатора используют эфиры сорбитана и жирных кислот, гликолевые эфиры, ненасыщенные замещенные оксазолины, соли жирных кислот и их производные.
Основными компонентами фазы окислителя являются нитраты щелочных или щелочно-земельных металлов, нитрат аммония, перхлораты, растворенные в малом количестве воды.
Рекомендуется использовать несколько окисляющих солей для того, чтобы поддерживать в растворе высокую концентрацию солей.
Фаза окислителя может содержать также агенты, понижающие температуру кристаллизации, например мочевину или формамид.
После эмульгирования до состояния отдельных капель фаза окислителя должна находиться при температуре выше температуры кристаллизации.
Согласно изобретению фазу окислителя делят на две части, из которых первую часть смешивают с топливной фазой с получением исходной эмульсии, вторую часть, соединенную с обеспечивающим создание пустот материалом, смешивают с исходной эмульсией в ходе второй операции перемешивания.
При содержании воды в исходной эмульсии 5-18 мас.% эмульгирование проводят при температуре 60-100оС, которая выше температуры кристаллизации раствора первой части окислителя.
В предпочтительном варианте температура кристаллизации второй части окислителя должна быть ниже температуры кристаллизации первой части. Для этого повышают содержание воды во второй части окислителя, а именно количество воды во второй части окисляющей композиции составляет 25-60 мас.%, при этом температура кристаллизации второй части должна быть не выше 40оС, в предпочтительном варианте ниже 20оС.
Для получения целевой эмульсии желаемой плотности во вторую часть окислителя включают достаточное количество создающего пустоты материала, предпочтительно от 0,1 до 1,3 г/cм2.
В качестве материала, создающего пустоты, используют микросферы из неорганического или термопластического органического материала, предпочтительно сферические микрогранулы С15/250, выпускаемые "ЗМ Сomp", сферические микрогранулы дискретного термопластика на основе хлорвинилидена, содержащего смесь мономера, например "Expancel". Размеры пустот должны лежать в диапазоне от 10 до 150 мкм.
Также в качестве материала, создающего пустоты, можно использовать газовыделяющие вещества: нитрозосоединение, боргидрид, диизоцианат, перекиси. Такой агент может относиться к типу однокомпонентного вещества, активизированного нагревом, и в этом случае он может быть включен во вторую часть фазы окислителя, причем в момент смешения исходной эмульсии она находится в нагретом состоянии. Агент может состоять из нескольких компонентов, реагирующих друг с другом при перемешивании. И в этом случае по меньшей мере один из этих компонентов должен содержаться во второй фазе окислителя, а по меньшей мере один - в исходной эмульсии.
Преимущество полых частиц состоит в том, что они значительно увеличивают объем композиции окислителя, не влияя на процесс кристаллообразования ни первой, ни второй части фазы окислителя.
Операция окончательного перемешивания облегчается при смешении примерно равных объемов исходной эмульсии и второй композиции окислителя. Объем второй композиции окислителя должен составлять предпочтительно не меньше 30% от объема эмульсии в целом.
Также операция перемешивания облегчается, если вязкость исходной эмульсии и второй композиции окислителя при соответствующей температуре примерно одинакова. Обычно вторая композиция окислителя имеет более низкое значение вязкости. Вязкость может быть увеличена за счет подходящего выбора количественного отношения соли и полых частиц или за счет использования добавок загустителей, например хьюаровой смолы и других естественных смол и т.п.
В загустевшей жидкости процесс сегрегации частиц продлевается. В предпочтительном варианте различие значений вязкости в момент перемешивания не должно превышать 25000 МПа˙ с (сП).
Окончательное перемешивание может проводиться в достаточно простых мешалках. Предпочтительным способом подачи компонентов по отдельности, но в одной трубе является способ подачи исходной эмульсии по центру таким образом, чтобы она была окружена второй частью окислителя, обладающего соответствующими свойствами текучести для использования его в качестве смазочного агента, в особенности при использовании дискретных частиц в виде сферических микрогранул.
Концентричная система подачи реализована посредством выполнения на входе трубы центрального и кольцевого отверстий.
П р и м е р 1. Готовят предварительную эмульсию, содержащую 48,28 кг нитрата аммония, 9,79 кг нитрата натрия и 9,32 кг воды при температуре 70оС. При этой же температуре проводят эмульгирование раствора в топливной фазе, содержащей 4,59 кг минерального масла и 1,0 кг эмульгатора сорбитанмоноолеата. Вязкость полученной исходной эмульсии при температуре 20оС составляет ≈40000 МПа ˙ с.
Готовят водный раствор второй части окислителя, содержащий 9,32 кг воды, 9,32 кг нитрата аммония и 5,59 кг нитрата натрия. Температура кристаллообразования этого раствора меньше 0оС. В него добавляют при перемешивании 2,8 кг сферических микрогранул из неорганического материала, поставляемых "ЗМ Сomp" под маркой С 15/250, плотность которых 150 кг/см3.
Объемное соотношение предварительной эмульсии и второй части окислителя 60:40, обе смеси смешивают в ленточно-винтовой мешалке при температуре около 20оС со скоростью 50-60 об/мин.
Получают эмульсию плотностью 1,07 г/см3.
Испытания: эмульсия детонирует от капсюля N 8 в заряде диаметром 25 мл, скорость детонации 4260 м/с.
П р и м е р 2. Повторяют процедуру по примеру 1, за исключением того, что водный раствор второй части окислителя содержит 2,0 кг тех же сферических микрогранул. Получают эмульсию плотностью 1,17 г/см3.
Испытания. Эмульсия детонирует в ПВХ-трубке размером 39×550 мм от взрывателя, содержащего 3 г пентаэритриттетранитрата, скорость детонации 4800 м/с.
П р и м е р 3. Готовят предварительную эмульсию, содержащую 50,0 кг нитрата аммония, 10,0 кг нитрата натрия, 10,0 кг воды и 0,010 кг винной кислоты при температуре 75оС. При этой же температуре проводят эмульгирование раствора в топливной фазе, содержащей 5,0 кг минерального масла и 1,0 кг сорбитанмоноолеата. Вязкость полученной эмульсии ≈ 33000 мПа ˙с.
Готовят водный раствор второй части окислителя, содержащий 10,0 кг нитрата аммония, 4,0 кг нитрата натрия, 0,010 кг нитрита натрия и 10,0 кг воды.
Обе смеси смешивают в ленточно-винтовой мешалке при температуре около 20оС. Через несколько минут после начала газообразования плотность стабилизируется и составляет 1,11 г/см3.
Испытания. Эмульсия детонирует в пластмассовой трубке размером 32×550 мм от взрывателя, содержащего 3 г пентаэритриттетранитрата, скорость детонации 3920 м/с.
Остальные примеры приведены в таблице.

Claims (2)

1. СПОСОБ ПОЛУЧЕНИЯ ВЗРЫВЧАТОЙ ЭМУЛЬСИИ ТИПА ВОДА В МАСЛЕ, заключающийся в растворении окислителя в воде, добавлении горючего и эмульгатора, получении эмульсии при нагревании, введении газосодержащего сенсибилизатора, отличающийся тем, что, с целью повышения безопасности и упрощения окончательного приготовления сенсибилизированной эмульсии, в воде растворяют часть окислителя, получают эмульсию при 60 - 100oС, которая выше температуры кристаллизации раствора окислителя при содержании воды в эмульсии 5 - 18 мас.%, оставшуюся часть окислителя растворяют в воде и добавляют микросферы из неорганического или термопластического органического материала и газовыделяющее вещество при содержании воды в получаемой смеси 25 - 60 мас.%, затем обе смеси перемешивают на месте использования взрывчатой эмульсии при температуре не выше 40oС, которая выше температуры кристаллизации водного раствора оставшейся части окислителя.
2. Способ по п.1, отличающийся тем, что обе смеси подают в смеситель по общему шлангу, в котором эмульсию транспортируют в центральной части шланга, а вторую смесь - в виде жидкого кольца, окружающего эмульсию.
SU864028650A 1985-12-23 1986-12-22 Способ получения взрывчатой эмульсии типа вода в масле RU2018504C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8506119A SE451196B (sv) 1985-12-23 1985-12-23 Forfarande for framstellning av ett emulsionssprengemne av typ vatten-i-olja och en oxidationskomposition for anvendning av forfarandet
SE8506119-0 1985-12-23

Publications (1)

Publication Number Publication Date
RU2018504C1 true RU2018504C1 (ru) 1994-08-30

Family

ID=20362595

Family Applications (1)

Application Number Title Priority Date Filing Date
SU864028650A RU2018504C1 (ru) 1985-12-23 1986-12-22 Способ получения взрывчатой эмульсии типа вода в масле

Country Status (12)

Country Link
US (1) US4737207A (ru)
EP (1) EP0228354B1 (ru)
AT (1) ATE57519T1 (ru)
AU (1) AU578851B2 (ru)
CA (1) CA1257773A (ru)
DE (1) DE3674995D1 (ru)
HK (1) HK12391A (ru)
NO (1) NO166853C (ru)
RU (1) RU2018504C1 (ru)
SE (1) SE451196B (ru)
ZA (1) ZA869056B (ru)
ZW (1) ZW24286A1 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836870A (en) * 1987-10-01 1989-06-06 Mitchell Chemical Co. Emulsion-type explosive compositions
US4830687A (en) * 1987-11-23 1989-05-16 Atlas Powder Company Stable fluid systems for preparing high density explosive compositions
GB8802209D0 (en) * 1988-02-02 1988-03-02 Canadian Ind Chemical foaming of emulsion explosive compositions
US5271779A (en) * 1988-02-22 1993-12-21 Nitro Nobel Ab Making a reduced volume strength blasting composition
SE8800593L (sv) * 1988-02-22 1989-08-23 Nitro Nobel Ab Spraengaemneskomposition
CA2040346C (en) * 1991-04-12 2001-06-12 Fortunato Villamagna Explosive comprising a foamed sensitizer
US5456729A (en) * 1992-04-09 1995-10-10 Ici Canada Inc. Sensitizer and use
US5490887A (en) * 1992-05-01 1996-02-13 Dyno Nobel Inc. Low density watergel explosive composition
DE19539209A1 (de) * 1995-10-21 1997-04-24 Dynamit Nobel Ag Rieselfähige Emulsions-ANFO-Sprengstoffe
US5670739A (en) * 1996-02-22 1997-09-23 Nelson Brothers, Inc. Two phase emulsion useful in explosive compositions
US6113715A (en) * 1998-07-09 2000-09-05 Dyno Nobel Inc. Method for forming an emulsion explosive composition
CA2627469A1 (en) * 2005-10-26 2007-05-03 Newcastle Innovation Limited Gassing of emulsion explosives with nitric oxide
PE20080896A1 (es) * 2006-08-29 2008-08-21 African Explosives Ltd Sistema explosivo que tiene una emulsion basica y una solucion sensibilizante
US20110132505A1 (en) * 2007-01-10 2011-06-09 Newcastle Innovation Limited Method for gassing explosives especially at low temperatures
RS53094B (en) * 2009-11-12 2014-06-30 Ael Mining Services Limited USE OF SENSIBLE COMPOSITIONS FOR EXPLOSIVES
CN102173967B (zh) * 2011-01-17 2012-09-19 广东宏大爆破股份有限公司 一种乳化炸药及其制备方法
NZ737652A (en) 2013-02-07 2018-11-30 Dyno Nobel Inc Systems for delivering explosives and methods related thereto
FR3014689B1 (fr) * 2013-12-17 2017-09-08 Oreal Emulsion eau-dans-huile comprenant un ester d'acide gras et de polyol, une cire d'abeille et des particules de polymeres expanses
AU2016314774B2 (en) 2015-09-01 2021-02-04 The University Of Sydney Blasting agent
RU2759888C1 (ru) 2018-02-20 2021-11-18 Дино Нобель Инк. Ингибированные эмульсии для применения при взрывных работах в реакционноспособном грунте или в условиях высоких температур

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397097A (en) * 1966-07-12 1968-08-13 Du Pont Thickened aqueous inorganic oxidizer salt blasting compositions containing gas bubbles and a crystal habit modifier and method of preparation
US3713919A (en) * 1970-08-17 1973-01-30 Du Pont Chemical foaming of water-bearing explosives with n,n'-dimitrosopentamethylene-tetramine
US3711345A (en) * 1970-08-18 1973-01-16 Du Pont Chemical foaming of water-bearing explosives
US3790415A (en) * 1970-08-18 1974-02-05 Du Pont Chemical foaming and sensitizing of water-bearing explosives with hydrogen peroxide
FR2115514A5 (ru) * 1970-11-23 1972-07-07 Lacam Guy
US3706607A (en) * 1971-01-21 1972-12-19 Du Pont Chemical foaming of water-bearing explosives
US4008108A (en) * 1975-04-22 1977-02-15 E. I. Du Pont De Nemours And Company Formation of foamed emulsion-type blasting agents
US4138281A (en) * 1977-11-04 1979-02-06 Olney Robert S Production of explosive emulsions
SE428919C (sv) * 1978-10-23 1984-11-19 Nitro Nobel Ab Forfarande for tillverkning av icke sprengkapselkensligt emulsionssprengemne
SE7900326L (sv) * 1979-01-15 1980-07-16 Nitro Nobel Ab Sprengkapselkensligt emulsionssprengemne
US4287010A (en) * 1979-08-06 1981-09-01 E. I. Du Pont De Nemours & Company Emulsion-type explosive composition and method for the preparation thereof
JPS6028796B2 (ja) * 1982-01-27 1985-07-06 日本油脂株式会社 油中水型エマルシヨン爆薬の製造法
CA1186152A (en) * 1982-04-02 1985-04-30 Rejean Binet Continuous method for the preparation of explosives emulsion precursor
US4491489A (en) * 1982-11-17 1985-01-01 Aeci Limited Method and means for making an explosive in the form of an emulsion
GB2136792B (en) * 1983-03-15 1987-03-04 Du Pont Canada Emulsion blasting agent
CA1188898A (en) * 1983-04-21 1985-06-18 Howard A. Bampfield Water-in-wax emulsion blasting agents
JPS6033284A (ja) * 1983-08-01 1985-02-20 日本油脂株式会社 油中水型エマルシヨン爆薬の製造方法
JPS6033283A (ja) * 1983-08-01 1985-02-20 日本油脂株式会社 油中水型エマルシヨン爆薬の製造法
US4525225A (en) * 1984-03-05 1985-06-25 Atlas Powder Company Solid water-in-oil emulsion explosives compositions and processes
US4615752A (en) * 1984-11-23 1986-10-07 Ireco Incorporated Methods of pumping and loading emulsion slurry blasting compositions

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 3706607, кл. 149-21, опубл. 1947. *
2. Патент США N 3713919, кл. 149-47, опубл. 1947. *
3. Патент США N 3790415, кл. 149-2, опубл. 1948. *
4. Патент США N 4310364, кл. 149-2, опубл. 1982. *
5. Патент США N 4554032, кл. 149-21, опубл. 1985. *

Also Published As

Publication number Publication date
SE451196B (sv) 1987-09-14
DE3674995D1 (de) 1990-11-22
HK12391A (en) 1991-02-22
ATE57519T1 (de) 1990-11-15
SE8506119D0 (sv) 1985-12-23
ZW24286A1 (en) 1987-03-25
ZA869056B (en) 1987-08-26
AU578851B2 (en) 1988-11-03
CA1257773A (en) 1989-07-25
NO865250L (no) 1987-06-24
EP0228354A1 (en) 1987-07-08
SE8506119L (sv) 1987-06-24
NO166853C (no) 1991-09-11
AU6577386A (en) 1987-06-25
US4737207A (en) 1988-04-12
NO865250D0 (no) 1986-12-22
NO166853B (no) 1991-06-03
EP0228354B1 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
RU2018504C1 (ru) Способ получения взрывчатой эмульсии типа вода в масле
CA1102138A (en) Emulsion blasting agent and method of preparation thereof
US4490195A (en) Emulsion explosive composition
JPS6214518B2 (ru)
CA1239285A (en) Gas bubble-sensitized explosive compositions
US4473418A (en) Emulsion explosive composition
US4875951A (en) Chemical foaming of emulsion explosive compositions
JPS6028796B2 (ja) 油中水型エマルシヨン爆薬の製造法
US4398976A (en) Water-in-oil emulsion explosive composition
US4936932A (en) Aromatic hydrocarbon-based emulsion explosive composition
NZ197739A (en) Water-in-oil emulsion blasting agents wherein the discontinuous phase consists of urea perchlorte
EP0044664A2 (en) Emulsion type blasting agent containing hydrazine mononitrate
CA1096173A (en) Water-in -oil emulsion blasting agent
GB2225572A (en) Nitroalkane-based emulsion explosive composition:
DE69224230T2 (de) Geschäumten Sensibilisator enthaltender Sprengstoff
RU2222519C2 (ru) Патронированные взрывчатые энергетические эмульсии
EP4086237A1 (en) Composition for forming a hydrogen peroxide based emulsion explosive
RU1819253C (ru) Способ получени эмульсионных взрывчатых веществ
JPH1112075A (ja) 油中水滴型エマルション爆薬組成物
JPS6222959B2 (ru)
CS229745B1 (cs) Emulzní výbušina a způsob její přípravy
JPS58125681A (ja) 油中水型エマルジヨン爆薬組成物