RU2017120972A - ULTRA-STRENGTH HAZARDED AIR-BASED, MULTI-PHASE STEEL WITH EXCELLENT TECHNOLOGICAL CHARACTERISTICS AND METHOD FOR PRODUCING THE STEELS OF THE SPECIFIED STEEL - Google Patents

ULTRA-STRENGTH HAZARDED AIR-BASED, MULTI-PHASE STEEL WITH EXCELLENT TECHNOLOGICAL CHARACTERISTICS AND METHOD FOR PRODUCING THE STEELS OF THE SPECIFIED STEEL Download PDF

Info

Publication number
RU2017120972A
RU2017120972A RU2017120972A RU2017120972A RU2017120972A RU 2017120972 A RU2017120972 A RU 2017120972A RU 2017120972 A RU2017120972 A RU 2017120972A RU 2017120972 A RU2017120972 A RU 2017120972A RU 2017120972 A RU2017120972 A RU 2017120972A
Authority
RU
Russia
Prior art keywords
steel
paragraphs
strip
content
air
Prior art date
Application number
RU2017120972A
Other languages
Russian (ru)
Other versions
RU2682913C2 (en
RU2017120972A3 (en
Inventor
Томас ШУЛЬЦ
Йоахим ШЁТЛЕР
Саша КЛЮГЕ
Марион БЕХТОЛЬД
Original Assignee
Зальцгиттер Флахшталь Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зальцгиттер Флахшталь Гмбх filed Critical Зальцгиттер Флахшталь Гмбх
Publication of RU2017120972A3 publication Critical patent/RU2017120972A3/ru
Publication of RU2017120972A publication Critical patent/RU2017120972A/en
Application granted granted Critical
Publication of RU2682913C2 publication Critical patent/RU2682913C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Claims (65)

1. Сверхвысокопрочная закаливающаяся на воздухе, многофазная сталь с минимальным пределом прочности на разрыв в незакаленном на воздухе состоянии, равном 750 МПа, с отличными технологическими характеристиками, включающая элементы (содержание в % по массе):1. Ultrahigh-strength air-hardened, multiphase steel with a minimum tensile strength in a state not hardened in air, equal to 750 MPa, with excellent technological characteristics, including elements (content in% by weight): C ≥ 0,075 до ≤ 0,115C ≥ 0.075 to ≤ 0.115 Si ≥ 0,600 до ≤ 0,750Si ≥ 0.600 to ≤ 0.750 Mn ≥ 1,000 до ≤ 1,950Mn ≥ 1,000 to ≤ 1,950 Cr ≥ 0,200 до ≤ 0,600Cr ≥ 0.200 to ≤ 0,600 Al ≥ 0,010 до ≤ 0,060Al ≥ 0.010 to ≤ 0.060 N ≥ 0,0020 до ≤ 0,0120N ≥ 0.0020 to ≤ 0.0120 S ≤ 0,0030 S ≤ 0,0030 Mo ≥ 0,0200 Mo ≥ 0,0200 Nb ≥ 0,005 до ≤ 0,040Nb ≥ 0.005 to ≤ 0.040 Ti ≥ 0,005 до ≤ 0,030Ti ≥ 0.005 to ≤ 0.030 B ≥ 0,0005 до ≤ 0,0030B ≥ 0.0005 to ≤ 0.0030 Ca ≥ 0,0005 до ≤ 0,0060Ca ≥ 0,0005 to ≤ 0,0060 Cu ≤ 0,050Cu ≤ 0,050 Ni ≤ 0,050,Ni ≤ 0,050, остальное приходится на железо, включая обычные сопровождающие сталь примеси, связанные с плавкой, в которой, что касается возможного наиболее широкого технологического интервала во время непрерывного отжига горячей полосы или холодной полосы, изготовленной из этой стали, суммарное содержание (Mn + Si + Cr + Mo) устанавливается в зависимости от толщины полученной полосы, следующим образом:the rest is iron, including the usual steel-related impurities associated with smelting, in which, as regards the possible widest process interval during continuous annealing of a hot strip or cold strip made of this steel, the total content (Mn + Si + Cr + Mo ) is set depending on the thickness of the obtained strip, as follows: вплоть до 1,00 мм: сумма (Mn + Si + Cr + Mo) ≥ 2,450 и ≤ 2,800%,up to 1.00 mm: sum (Mn + Si + Cr + Mo) ≥ 2,450 and ≤ 2,800%, свыше 1,00 до 2,00 мм: сумма (Mn + Si + Cr + Mo) ≥ 2,600 и ≤ 3,150%,over 1.00 to 2.00 mm: sum (Mn + Si + Cr + Mo) ≥ 2,600 and ≤ 3,150%, свыше 2,00 мм: сумма (Mn + Si + Cr + Mo) ≥ 3,000 и ≤ 3,450%.over 2.00 mm: sum (Mn + Si + Cr + Mo) ≥ 3,000 and ≤ 3.450%. 2. Сталь по п. 1, отличающаяся тем, что при толщине полосы до 1,00 мм содержание C составляет ≤ 0,100% и углеродный эквивалент CEV (IIW) ≤ 0,50%.2. Steel according to claim 1, characterized in that, with a strip thickness of up to 1.00 mm, the content of C is ≤ 0.100% and the carbon equivalent of CEV (IIW) ≤ 0.50%. 3. Сталь по п. 1, отличающаяся тем, что при толщине полосы больше, чем 1,00 до 2,00 мм, содержание C составляет ≤ 0,105% и углеродный эквивалент CEV (IIW) ≤ 0,55%.3. Steel according to claim 1, characterized in that when the strip thickness is more than 1.00 to 2.00 mm, the content of C is ≤ 0.105% and the carbon equivalent of CEV (IIW) ≤ 0.55%. 4. Сталь по п. 1, отличающаяся тем, что при толщине полосы больше, чем 2,00 мм, содержание C составляет ≤ 0,115% и углеродный эквивалент CEV (IIW) ≤ 0,60%.4. Steel according to claim 1, characterized in that when the strip thickness is more than 2.00 mm, the content of C is ≤ 0.115% and the carbon equivalent of CEV (IIW) ≤ 0.60%. 5. Сталь по п. 1 или 2, отличающаяся тем, что при толщине полосы вплоть до 1,00 мм содержание Mn составляет от ≥ 1,000 до ≤ 1,500%.5. Steel according to claim 1 or 2, characterized in that with a strip thickness of up to 1.00 mm, the Mn content is from ≥ 1,000 to ≤ 1,500%. 6. Сталь по п. 1 или 3, отличающаяся тем, что при толщине полосы больше 1,00 и до 2,00 мм содержание Mn составляет от ≥ 1,300 до ≤ 1,700%.6. Steel according to claim 1 or 3, characterized in that when the strip thickness is more than 1.00 and up to 2.00 mm, the Mn content is from ≥ 1,300 to ≤ 1,700%. 7. Сталь по п. 1 или 4, отличающаяся тем, что при толщине полосы больше 2,00 мм, содержание Mn составляет от ≥ 1,600 до ≤ 1,900%.7. Steel according to claim 1 or 4, characterized in that when the strip thickness is more than 2.00 mm, the Mn content is from ≥ 1,600 to ≤ 1,900%. 8. Сталь по любому из пп. 1, 2 и 5, отличающаяся тем, что при толщине полосы вплоть до 1,00 мм содержание Cr составляет от ≥ 0,250 до ≤ 0,350%.8. Steel according to any one of paragraphs. 1, 2 and 5, characterized in that with a strip thickness of up to 1.00 mm, the Cr content is from ≥ 0.250 to ≤ 0.350%. 9. Сталь по любому из пп. 1, 3 и 6, отличающаяся тем, что при толщине полосы больше 1,00 мм и до 2,00 мм содержание Cr составляет от > 0,350 до ≤ 0,450%.9. Steel according to any one of paragraphs. 1, 3 and 6, characterized in that when the strip thickness is more than 1.00 mm and up to 2.00 mm, the Cr content is from> 0.350 to ≤ 0.450%. 10. Сталь по любому из пп. 1, 4 и 7, отличающаяся тем, что при толщине полосы больше 2,00 мм содержание Cr составляет от > 0,450 до ≤ 0,550%.10. Steel according to any one of paragraphs. 1, 4 and 7, characterized in that when the strip thickness is more than 2.00 mm, the Cr content is from> 0.450 to ≤ 0.550%. 11. Сталь по любому из пп. 1 - 10, отличающаяся тем, что при сумме (Ti+ Nb+ B) ≥ 0,010 и до ≤ 0,050% содержание N составляет от ≥ 0,0020 до ≤ 0,0090%.11. Steel according to any one of paragraphs. 1 to 10, characterized in that with the sum of (Ti + Nb + B) ≥ 0.010 and up to ≤ 0.050%, the N content is from ≥ 0.0020 to ≤ 0.0090%. 12. Сталь по любому из пп. 1 - 10, отличающаяся тем, что при сумме (Ti+ Nb+ B) > 0,050% содержание N составляет от ≥ 0,0040 до ≤ 0,0120%.12. Steel according to any one of paragraphs. 1 to 10, characterized in that when the sum (Ti + Nb + B)> 0.050%, the N content is from ≥ 0.0040 to ≤ 0.0120%. 13. Сталь по любому из пп. 1 - 12, отличающаяся тем, что содержание S составляет ≤ 0,0020%.13. Steel according to any one of paragraphs. 1 to 12, characterized in that the content of S is ≤ 0.0020%. 14. Сталь по любому из пп. 1 - 13, отличающаяся тем, что содержание Mo составляет от ≥ 0,050 до ≤ 0,100%.14. Steel according to any one of paragraphs. 1 to 13, characterized in that the Mo content is from ≥ 0.050 to ≤ 0.100%. 15. Сталь по любому из пп. 1 - 14, отличающаяся тем, что сумма Cr+Mo составляет ≤ 0,800%.15. Steel according to any one of paragraphs. 1 to 14, characterized in that the sum of Cr + Mo is ≤ 0.800%. 16. Сталь по любому из пп. 1 - 14, отличающаяся тем, что сумма Cr+Mo составляет ≤ 0,700%.16. Steel according to any one of paragraphs. 1 to 14, characterized in that the sum of Cr + Mo is ≤ 0.700%. 17. Сталь по любому из пп. 1 - 16, отличающаяся тем, что содержание Nb составляет от ≥ 0,015 до ≤ 0,035%.17. Steel according to any one of paragraphs. 1 to 16, characterized in that the Nb content is from ≥ 0.015 to ≤ 0.035%. 18. Сталь по любому из пп. 1 - 17, отличающаяся тем, что содержание Ti составляет от ≥ 0,005 до ≤ 0,025%.18. Steel according to any one of paragraphs. 1 to 17, characterized in that the Ti content is from ≥ 0.005 to ≤ 0.025%. 19. Сталь по любому из пп. 1 - 18, отличающаяся тем, что сумма Nb + Ti составляет ≤ 0,065%.19. Steel according to any one of paragraphs. 1 to 18, characterized in that the sum of Nb + Ti is ≤ 0.065%. 20. Сталь по любому из пп. 1 - 18, отличающаяся тем, что сумма Nb + Ti составляет ≤ 0,055%.20. Steel according to any one of paragraphs. 1 to 18, characterized in that the sum of Nb + Ti is ≤ 0.055%. 21. Сталь по любому из пп. 1 - 20, отличающаяся тем, что содержание бора составляет от ≥ 0,0005 до ≤ 0,0020%.21. Steel according to any one of paragraphs. 1 to 20, characterized in that the boron content is from ≥ 0,0005 to ≤ 0,0020%. 22. Сталь по любому из пп. 1 - 21, отличающаяся тем, что сумма (Ti + Nb + B) составляет ≤ 0,070%.22. Steel according to any one of paragraphs. 1 to 21, characterized in that the sum (Ti + Nb + B) is ≤ 0.070%. 23. Сталь по любому из пп. 1 - 21, отличающаяся тем, что сумма (Ti + Nb + B) составляет ≤ 0,060%.23. Steel according to any one of paragraphs. 1 to 21, characterized in that the sum (Ti + Nb + B) is ≤ 0.060%. 24. Сталь по любому из пп. 1 - 23, отличающаяся тем, что сумма (Ti + Nb + B + Mo + V) составляет ≤ 0,175%.24. Steel according to any one of paragraphs. 1 to 23, characterized in that the sum (Ti + Nb + B + Mo + V) is ≤ 0.175%. 25. Сталь по любому из пп. 1 - 24, отличающаяся тем, что содержание Ca составляет ≤ 0,0030%.25. Steel according to any one of paragraphs. 1 to 24, characterized in that the Ca content is ≤ 0.0030%. 26. Сталь по любому из пп. 1 - 25, отличающаяся тем, что добавки кремния и марганца, в связи с характеристиками прочности, которые должны быть достигнуты, являются взаимозаменяемыми согласно соотношению:26. Steel according to any one of paragraphs. 1 to 25, characterized in that the additives of silicon and manganese, in connection with the strength characteristics that must be achieved, are interchangeable according to the ratio: YS (МПа) = 160,7 + 147,9 [% Si] + 161,1 [% Mn]YS (MPa) = 160.7 + 147.9 [% Si] + 161.1 [% Mn] TS (МПа) = 324,8 + 189,4 [% Si] + 174,1 [% Mn]TS (MPa) = 324.8 + 189.4 [% Si] + 174.1 [% Mn] 27. Способ получения холоднокатаной или горячекатаной стальной полосы из многофазной стали, которая может быть закалена на воздухе по любому из пп. 1 - 26, в котором необходимую микроструктуру получают во время непрерывного отжига, отличающийся тем, что холоднокатаную или горячекатаную стальную полосу нагревают до температуры от 700 до 950°C в течение непрерывного отжига, при этом отожженную стальную полосу последовательно охлаждают от температуры отжига до первой промежуточной температуры от 300 до 500°C со скоростью охлаждения 15 - 100°C/с с последующим охлаждением до второй промежуточной температуры от 160 до 250°C при скорости охлаждения 15 - 100°C/с, затем стальную полосу охлаждают до комнатной температуры при скорости охлаждения от 2 до 30°C/сек, или охлаждают от первой промежуточной температуры до комнатной температуры при поддержании скорости охлаждения 15 - 100°C/с.27. A method of obtaining a cold-rolled or hot-rolled steel strip of multiphase steel, which can be hardened in air according to any one of paragraphs. 1 to 26, in which the necessary microstructure is obtained during continuous annealing, characterized in that the cold-rolled or hot-rolled steel strip is heated to a temperature of from 700 to 950 ° C during continuous annealing, while the annealed steel strip is successively cooled from the annealing temperature to the first intermediate temperatures from 300 to 500 ° C with a cooling rate of 15 - 100 ° C / s followed by cooling to a second intermediate temperature from 160 to 250 ° C at a cooling rate of 15 - 100 ° C / s, then the steel strip is cooled to room t temperatures at a cooling rate of 2 to 30 ° C / s, or cooled from a first intermediate temperature to room temperature while maintaining a cooling rate of 15-100 ° C / s. 28. Способ получения холоднокатаной или горячекатаной стальной полосы из многофазной стали, которая может быть закалена на воздухе по любому из пп. 1 - 26, в котором необходимую структуру получают во время непрерывного отжига, отличающийся тем, что охлаждение прекращают до поступления в ванну горячего окунания, а после рафинирования горячим способом окунания охлаждение продолжают со скоростью охлаждения 15 - 100°C/с до достижения промежуточной температуры от 200 до 250°C, и затем стальную полосу охлаждают на воздухе до достижения комнатной температуры со скоростью охлаждения от 2 до 30°C/с.28. A method of obtaining a cold-rolled or hot-rolled steel strip of multiphase steel, which can be hardened in air according to any one of paragraphs. 1 - 26, in which the necessary structure is obtained during continuous annealing, characterized in that the cooling is stopped until the hot dipping enters the bath, and after refining with the hot dipping method, cooling is continued at a cooling rate of 15-100 ° C / s until an intermediate temperature of 200 to 250 ° C, and then the steel strip is cooled in air until it reaches room temperature with a cooling rate of 2 to 30 ° C / s. 29. Способ получения холоднокатаной или горячекатаной стальной полосы из многофазной стали, которая может быть закалена на воздухе по любому из пп. 1 - 26, в котором необходимую структуру получают во время непрерывного отжига, отличающийся тем, что в случае рафинирования горячим способом окунания, после нагрева и последующего охлаждения до промежуточной температуры от 200 до 250°C, температуру поддерживают в течение 1 - 20 секунд до поступления в ванну горячего окунания, а затем стальную полосу повторно нагревают до температуры от 400 до 470°C, а после рафинирования горячим способом окунания охлаждение проводят со скоростью охлаждения 15 - 100°C/с вплоть до промежуточной температуры от 200 до 250°C с последующим охлаждением на воздухе до комнатной температуры со скоростью охлаждения от 2 до 30°C/с.29. A method of obtaining a cold-rolled or hot-rolled steel strip of multiphase steel, which can be hardened in air according to any one of paragraphs. 1 to 26, in which the necessary structure is obtained during continuous annealing, characterized in that in the case of refining by hot dipping, after heating and subsequent cooling to an intermediate temperature of 200 to 250 ° C, the temperature is maintained for 1 to 20 seconds before arrival into a hot dipping bath, and then the steel strip is reheated to a temperature of 400 to 470 ° C, and after refining with a hot dipping method, cooling is carried out at a cooling rate of 15 - 100 ° C / s up to an intermediate temperature of 200 to 250 ° C with subsequent cooling in air to room temperature with a cooling rate of 2 to 30 ° C / s. 30. Способ по любому из пп. 23 - 25, отличающийся тем, что при непрерывном отжиге с конфигурацией устройства, состоящей из печи непосредственного огневого нагревания и печи с радиантными трубами, потенциал окисления увеличивают путем регулирования содержания CO в печи непосредственного огневого нагревания меньше, чем 4% по объему, причем в печи с радиантными трубами парциальное давление кислорода в атмосфере, восстанавливающей железо, регулируют согласно следующему уравнению,30. The method according to any one of paragraphs. 23 - 25, characterized in that during continuous annealing with the configuration of a device consisting of a direct fire heating furnace and a furnace with radiant tubes, the oxidation potential is increased by controlling the CO content in the direct fire heating furnace is less than 4% by volume, moreover, in the furnace with radiant tubes, the partial pressure of oxygen in the iron-reducing atmosphere is controlled according to the following equation, -18 > Log pO2 ≥ 5* Si-0,3 – 2,2* Mn-0,45 – 0,1* Cr-0,4– 12,5* (-lnB)0,25 -18> Log pO 2 ≥ 5 * Si -0.3 - 2.2 * Mn -0.45 - 0.1 * Cr -0.4 - 12.5 * (-lnB) 0.25 где Si, Mn, Cr, B - соответствующие доли легирующих компонентов в стали, в процентах по массе, и pO2 - парциальное давление кислорода в миллибарах, а температуру конденсации газообразной атмосферы устанавливают равной -30°C или ниже, чтобы предотвратить окисление полосы непосредственно до ее погружения в ванну горячего окунания.where Si, Mn, Cr, B are the corresponding fractions of alloying components in steel, in percent by weight, and pO 2 is the partial pressure of oxygen in millibars, and the condensation temperature of the gaseous atmosphere is set to -30 ° C or lower to prevent oxidation of the strip directly before diving into a hot dipping bath. 31. Способ по любому из пп. 27 - 29, отличающийся тем, что парциальное давление кислорода в атмосфере печи удовлетворяет следующему уравнению, в случае отжига только в одной печи с радиантными трубами,31. The method according to any one of paragraphs. 27 - 29, characterized in that the partial pressure of oxygen in the atmosphere of the furnace satisfies the following equation, in the case of annealing in only one furnace with radiant tubes, -12 > Log pO2 ≥ 5* Si-0,25 – 3* Mn-05 – 0,1* Cr-0,5 – 7* (-lnB)0,5 -12> Log pO 2 ≥ 5 * Si -0.25 - 3 * Mn -05 - 0.1 * Cr -0.5 - 7 * (-lnB) 0.5 где Si, Mn, Cr, B - соответствующие доли легирующих компонентов в стали, в процентах по массе, и pO2 - парциальное давление кислорода в миллибарах, а температуру конденсации газообразной атмосферы устанавливают равной -30°C или ниже, чтобы предотвратить окисление полосы непосредственно до ее погружения в ванну горячего окунания.where Si, Mn, Cr, B are the corresponding fractions of alloying components in steel, in percent by weight, and pO 2 is the partial pressure of oxygen in millibars, and the condensation temperature of the gaseous atmosphere is set to -30 ° C or lower to prevent oxidation of the strip directly before diving into a hot dipping bath. 32. Способ по любому из пп. 27 - 31, отличающийся тем, что в случае полос различной толщины во время непрерывного отжига, сопоставимые микроструктурные состояния и механические характеристики полос регулируют путем согласования пропускной способности устройства в процессе термической обработки.32. The method according to any one of paragraphs. 27 - 31, characterized in that in the case of strips of different thicknesses during continuous annealing, comparable microstructural states and mechanical characteristics of the strips are controlled by coordinating the throughput of the device during the heat treatment. 33. Способ по любому из пп. 27 - 32, отличающийся тем, что стальную полосу пропускают в дрессировочной клети после термической обработки или рафинирования горячим способом окунания.33. The method according to any one of paragraphs. 27 - 32, characterized in that the steel strip is passed in a training stand after heat treatment or refining by hot dipping. 34. Способ по любому из пп. 27 - 33, отличающийся тем, что стальную полосу подвергают изгибу с растяжением после термической обработки или рафинирования горячим способом окунания.34. The method according to any one of paragraphs. 27 - 33, characterized in that the steel strip is subjected to bending with tension after heat treatment or refining by hot dipping. 35. Стальная полоса, полученная способом по любому из пп. 27 - 34, имеющая минимальное значение раздачи отверстия, согласно ISO 16630, равное 20% в состоянии, не упрочненном на воздухе.35. Steel strip obtained by the method according to any one of paragraphs. 27 to 34, having a minimum hole distribution value according to ISO 16630 of 20% in a state not hardened in air. 36. Стальная полоса по п. 35, имеющая минимальное значение раздачи отверстия, согласно ISO 16630, равное 30% в состоянии, не упрочненном на воздухе.36. A steel strip according to claim 35, having a minimum value for the distribution of the hole, according to ISO 16630, equal to 30% in a state not hardened in air. 37. Стальная полоса по п. 35, имеющая минимальное значение угла изгиба согласно VDA 238-100, равное 60° в продольном направлении или поперечном направлении в состоянии, не упрочненном на воздухе.37. A steel strip according to claim 35, having a minimum bending angle according to VDA 238-100 equal to 60 ° in the longitudinal direction or transverse direction in a state not hardened in air. 38. Стальная полоса по любому из пп. 35 - 37, имеющая минимальное значение угла изгиба согласно VDA 238-100, равное 75° в продольном направлении или поперечном направлении в состоянии, не упрочненном на воздухе.38. Steel strip according to any one of paragraphs. 35 to 37, having a minimum bending angle according to VDA 238-100, equal to 75 ° in the longitudinal direction or transverse direction in a state not hardened in air. 39. Стальная полоса по любому из пп. 35 - 38, имеющая минимальное значение произведения Rm x α (предел прочности на разрыв x угол изгиба согласно VDA 238-100) 60000 МПа° в состоянии, не упрочненном на воздухе.39. Steel strip according to any one of paragraphs. 35 - 38, having a minimum product value of Rm x α (tensile strength x bending angle according to VDA 238-100) 60,000 MPa ° in a state not hardened in air. 40. Стальная полоса по п. 38, имеющая минимальное значение произведения Rm x α (предел прочности на разрыв x угол изгиба согласно VDA 238-100) 70000 МПа° в состоянии, не упрочненном на воздухе.40. The steel strip according to claim 38, having a minimum product value Rm x α (tensile strength x bending angle according to VDA 238-100) 70,000 MPa ° in a state not hardened in air. 41. Стальная полоса по любому из пп. 35 - 40, имеющая состояние без замедленного разрушения, по меньшей мере, в течение 6 месяцев, что соответствует нормативу SEP 1970 для испытания на растяжение перфораций и испытания изгиба балки.41. Steel strip according to any one of paragraphs. 35 to 40, having a state without delayed fracture for at least 6 months, which complies with the SEP 1970 standard for tensile testing of perforations and beam bending tests.
RU2017120972A 2014-11-18 2015-11-02 Ultrahigh-strength air-hardening multi-phase steel comprising excellent processing properties and method for production of steel strip from said steel RU2682913C2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014017275.9 2014-11-18
DE102014017275.9A DE102014017275A1 (en) 2014-11-18 2014-11-18 High strength air hardening multiphase steel with excellent processing properties and method of making a strip of this steel
PCT/DE2015/100459 WO2016078642A1 (en) 2014-11-18 2015-11-02 High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel

Publications (3)

Publication Number Publication Date
RU2017120972A3 RU2017120972A3 (en) 2018-12-19
RU2017120972A true RU2017120972A (en) 2018-12-19
RU2682913C2 RU2682913C2 (en) 2019-03-22

Family

ID=55022241

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017120972A RU2682913C2 (en) 2014-11-18 2015-11-02 Ultrahigh-strength air-hardening multi-phase steel comprising excellent processing properties and method for production of steel strip from said steel

Country Status (6)

Country Link
US (1) US20180044759A1 (en)
EP (1) EP3221478B1 (en)
KR (1) KR102503990B1 (en)
DE (1) DE102014017275A1 (en)
RU (1) RU2682913C2 (en)
WO (1) WO2016078642A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10870900B2 (en) * 2017-06-07 2020-12-22 A. Finkl & Sons Co. High toughness martensitic stainless steel and reciprocating pump manufactured therewith
DE102017123236A1 (en) * 2017-10-06 2019-04-11 Salzgitter Flachstahl Gmbh Highest strength multi-phase steel and process for producing a steel strip from this multi-phase steel
DE102017130237A1 (en) 2017-12-15 2019-06-19 Salzgitter Flachstahl Gmbh High strength hot rolled flat steel product with high edge crack resistance and high bake hardening potential, a process for producing such a flat steel product
DE102018122901A1 (en) 2018-09-18 2020-03-19 Voestalpine Stahl Gmbh Process for the production of ultra high-strength steel sheets and steel sheet therefor
CN111172466B (en) * 2020-03-04 2020-12-18 马鞍山钢铁股份有限公司 Plasticity-enhanced cold-rolled dual-phase steel with tensile strength of 590MPa and production method thereof
DE102020203564A1 (en) 2020-03-19 2021-09-23 Sms Group Gmbh Process for producing a rolled multiphase steel strip with special properties
DE102020110319A1 (en) 2020-04-15 2021-10-21 Salzgitter Flachstahl Gmbh Process for the production of a steel strip with a multiphase structure and steel strip added
CN112813341B (en) * 2020-07-16 2022-07-12 东莞市三标汽车配件有限公司 Hot galvanizing bolt for base station installation and production process thereof
CN113249645B (en) * 2021-04-13 2022-02-25 北京科技大学 High-ductility and ultrahigh-strength ductile steel and preparation method thereof
DE102021119047A1 (en) 2021-07-22 2023-01-26 Thyssenkrupp Steel Europe Ag Method for producing a cold-rolled flat steel product with a bainitic matrix and cold-rolled flat steel product with a bainitic matrix

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610675C1 (en) 1996-03-19 1997-02-13 Thyssen Stahl Ag Dual phase steel for cold rolled sheet or strip - contg. manganese@, aluminium@ and silicon
DE10037867A1 (en) 1999-08-06 2001-06-07 Muhr & Bender Kg Flexible rolling process, for metal strip, involves work roll bending line control during or immediately after each roll gap adjustment to obtain flat strip
NL1015184C2 (en) 2000-05-12 2001-11-13 Corus Staal Bv Multi-phase steel and method for its manufacture.
EP2309012B1 (en) * 2003-09-30 2012-09-12 Nippon Steel Corporation High yield ratio and high-strength cold rolled thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized cold rolled thin steel sheet, high-yield ratio high-strength hot-dip galvannealed cold rolled thin steel sheet, and methods of production of same
DE102004053620A1 (en) 2004-11-03 2006-05-04 Salzgitter Flachstahl Gmbh High-strength, air-hardening steel with excellent forming properties
JP5223360B2 (en) 2007-03-22 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
DE102007058222A1 (en) 2007-12-03 2009-06-04 Salzgitter Flachstahl Gmbh Steel for high-strength components made of tapes, sheets or tubes with excellent formability and special suitability for high-temperature coating processes
JP5438302B2 (en) * 2008-10-30 2014-03-12 株式会社神戸製鋼所 High yield ratio high strength hot dip galvanized steel sheet or alloyed hot dip galvanized steel sheet with excellent workability and manufacturing method thereof
DE102010024664A1 (en) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Method for producing a component made of an air-hardenable steel and a component produced therewith
CA2782777C (en) * 2010-01-13 2014-11-18 Nippon Steel Corporation High tensile steel sheet superior in formability and method of manufacturing the same
WO2011111872A1 (en) * 2010-03-11 2011-09-15 新日本製鐵株式会社 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
JP5637530B2 (en) * 2010-10-26 2014-12-10 Jfeスチール株式会社 Ultra-high strength cold-rolled steel sheet with a tensile strength of 780 MPa or more that has high ductility and excellent chemical conversion properties
EP2524970A1 (en) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Extremely stable steel flat product and method for its production
DE102012002079B4 (en) * 2012-01-30 2015-05-13 Salzgitter Flachstahl Gmbh Process for producing a cold or hot rolled steel strip from a high strength multiphase steel
DE102012006017A1 (en) * 2012-03-20 2013-09-26 Salzgitter Flachstahl Gmbh High strength multiphase steel and method of making a strip of this steel
JP6232045B2 (en) * 2012-03-30 2017-11-15 フォエスタルピネ スタール ゲゼルシャフト ミット ベシュレンクテル ハフツングVoestalpine Stahl Gmbh High-strength cold-rolled steel sheet and method for producing such a steel sheet
JP2013227624A (en) * 2012-04-25 2013-11-07 Jfe Steel Corp Method of manufacturing high strength cold rolled steel sheet excellent in workability
DE102012013113A1 (en) * 2012-06-22 2013-12-24 Salzgitter Flachstahl Gmbh High strength multiphase steel and method of making a strip of this steel having a minimum tensile strength of 580 MPa
DE102013013067A1 (en) * 2013-07-30 2015-02-05 Salzgitter Flachstahl Gmbh Silicon-containing microalloyed high-strength multiphase steel having a minimum tensile strength of 750 MPa and improved properties and processes for producing a strip of this steel

Also Published As

Publication number Publication date
KR20170086062A (en) 2017-07-25
EP3221478A1 (en) 2017-09-27
WO2016078642A1 (en) 2016-05-26
WO2016078642A9 (en) 2016-07-14
DE102014017275A1 (en) 2016-05-19
RU2682913C2 (en) 2019-03-22
RU2017120972A3 (en) 2018-12-19
KR102503990B1 (en) 2023-02-24
US20180044759A1 (en) 2018-02-15
EP3221478B1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
RU2017120972A (en) ULTRA-STRENGTH HAZARDED AIR-BASED, MULTI-PHASE STEEL WITH EXCELLENT TECHNOLOGICAL CHARACTERISTICS AND METHOD FOR PRODUCING THE STEELS OF THE SPECIFIED STEEL
JP6906081B2 (en) A method for producing a high-strength steel plate with improved strength, ductility and formability.
RU2017120860A (en) SUPERHIGH-STRENGTH Hardening airborne, MULTI-PHASE STEEL WITH EXCELLENT TECHNOLOGICAL CHARACTERISTICS, AND METHOD FOR PRODUCING INDICATED STEEL
RU2017120940A (en) HIGH-STRENGTH AIR-Hardened MULTI-PHASE STEEL WITH EXCELLENT TECHNOLOGICAL CHARACTERISTICS AND METHOD FOR PRODUCING THE STEEL OF THE STEEL
RU2689573C2 (en) Method of making high-strength steel sheet, having improved strength, moldability, and obtained sheet
US10273555B2 (en) Hot-pressed steel sheet member
JP6817076B2 (en) Method for manufacturing high-strength steel sheet and obtained steel sheet
US10253387B2 (en) Hot-pressed steel sheet member, method of manufacturing the same, and steel sheet for hot pressing
RU2687284C2 (en) Method of producing high-strength steel sheet with coating, having improved strength and ductility, and obtained sheet
RU2016107030A (en) SILICON-CONTAINING SILICON MICRO-ALLOYED HIGH-STRENGTH MULTI-PHASE STEEL WITH A MINIMUM STRENGTH AT STRENGTH OF 750 MPa AND IMPROVED PROPERTIES AND METHOD FOR PRODUCING TAPES FROM SUCH STEEL
KR101657796B1 (en) High strength steel sheet having excellent delayed fracture resistance and mehtod for manufacturing the same
CN103993148B (en) A kind of ultralow carbon cold-rolled steel plate and preparation method thereof
RU2686324C2 (en) Method of producing high-strength steel sheet with coating having improved strength, formability, and obtained sheet
WO2016001887A3 (en) Method for manufacturing a high strength steel sheet having improved formability and sheet obtained
RU2016151786A (en) METHOD FOR PRODUCING HIGH-STRENGTH STEEL SHEET WITH IMPROVED FORMABILITY AND PLASTICITY, AND THE RECEIVED SHEET
JP2012153957A (en) High-strength cold-rolled steel sheet with excellent ductility, and method for producing the same
RU2018122302A (en) METHOD FOR PRODUCING SHEET STEEL CHARACTERIZED BY IMPROVED STRENGTH, MOLIGENCY AND FORMABILITY
KR20170041704A (en) A method for producing a high strength steel piece
RU2020117987A (en) COATED COLD-ROLLED SHEETS AND METHOD OF ITS PRODUCTION
WO2013051714A1 (en) Steel plate and method for producing same
CN103993227A (en) Cold rolled steel plate and preparation method thereof
JP6648125B2 (en) High strength and high ductility ferritic stainless steel sheet and method for producing the same
TH2101002141A (en) steel plates and methods of producing such
TH146529A (en) Methods for the production of cold rolled steel sheets