RU2016152065A - METHOD FOR PRODUCING A HETERO JUNCTION NANOCRYSTALLINE SILICON / AMORPHIC HYDROGENIZED SILICON FOR SUNNY ELEMENTS AND SUNNY ELEMENT WITH SUCH A HETERO Junction - Google Patents

METHOD FOR PRODUCING A HETERO JUNCTION NANOCRYSTALLINE SILICON / AMORPHIC HYDROGENIZED SILICON FOR SUNNY ELEMENTS AND SUNNY ELEMENT WITH SUCH A HETERO Junction Download PDF

Info

Publication number
RU2016152065A
RU2016152065A RU2016152065A RU2016152065A RU2016152065A RU 2016152065 A RU2016152065 A RU 2016152065A RU 2016152065 A RU2016152065 A RU 2016152065A RU 2016152065 A RU2016152065 A RU 2016152065A RU 2016152065 A RU2016152065 A RU 2016152065A
Authority
RU
Russia
Prior art keywords
silicon
quartz substrate
sunny
amorphous hydrogenated
deposited
Prior art date
Application number
RU2016152065A
Other languages
Russian (ru)
Other versions
RU2016152065A3 (en
RU2667689C2 (en
Inventor
Павел Константинович Кашкаров
Андрей Георгиевич Казанский
Павел Анатольевич Форш
Денис Михайлович Жигунов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2016152065A priority Critical patent/RU2667689C2/en
Publication of RU2016152065A3 publication Critical patent/RU2016152065A3/ru
Publication of RU2016152065A publication Critical patent/RU2016152065A/en
Application granted granted Critical
Publication of RU2667689C2 publication Critical patent/RU2667689C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Claims (9)

1. Способ получения гетероперехода нанокристаллический кремний/аморфный гидрогенизированный кремний в образце, представляющем собой пленку аморфного гидрогенизированного кремния, нанесенную на кварцевую подложку, включающий облучение образца фемтосекундными лазерными импульсами в вакууме при давлении не более 2⋅10-2 мбар, с центральной длиной волны излучения 257-680 нм, частотой повторения импульсов 20-500 кГц, длительностью импульсов 30-500 фс и плотностью энергии лазерных импульсов 4-500 мДж/см2.1. A method of producing a heterojunction nanocrystalline silicon / amorphous hydrogenated silicon in a sample representing an amorphous hydrogenated silicon film deposited on a quartz substrate, comprising irradiating the sample with femtosecond laser pulses in vacuum at a pressure of not more than 2⋅10 -2 mbar, with a central radiation wavelength 257-680 nm, a pulse repetition rate of 20-500 kHz, a pulse duration of 30-500 fs and a laser pulse energy density of 4-500 mJ / cm 2 . 2. Способ по п. 1, отличающийся тем, что нанесение пленки на кварцевую подложку выполнено посредством плазмохимического осаждения слоя аморфного гидрогенизированного кремния на кварцевую подложку.2. The method according to p. 1, characterized in that the deposition of the film on a quartz substrate is performed by plasma-chemical deposition of a layer of amorphous hydrogenated silicon on a quartz substrate. 3. Способ по п. 1, отличающийся тем, что в качестве пленок используют пленки, полученные методом ионного распыления кремния.3. The method according to p. 1, characterized in that as the films use films obtained by ion sputtering of silicon. 4. Способ по п. 1, отличающийся тем, что в качестве пленок используют пленки, полученные методом термического разложения моносилана.4. The method according to p. 1, characterized in that the films used are films obtained by the thermal decomposition of monosilane. 5. Способ по п. 1, отличающийся тем, что облучение образца лазерными импульсами осуществляют посредством сканирования сфокусированным пучком при скорости сканирования от 1 до 10 мм/с.5. The method according to p. 1, characterized in that the irradiation of the sample with laser pulses is carried out by scanning with a focused beam at a scanning speed of from 1 to 10 mm / s. 6. Способ по п. 5, отличающийся тем, что расстояние между центрами сканированных полос составляет 40 мкм, а шаг сканирования выбирают таким образом, чтобы перекрытие лазерных пучков от соседних полос составляло не менее 80%.6. The method according to p. 5, characterized in that the distance between the centers of the scanned strips is 40 microns, and the scanning step is chosen so that the overlap of the laser beams from adjacent strips is at least 80%. 7. Способ по п. 5, отличающийся тем, что диаметр пучка варьируют от 20 до 100 мкм.7. The method according to p. 5, characterized in that the diameter of the beam varies from 20 to 100 microns. 8. Солнечный элемент, содержащий слой с гетеропереходом нанокристаллический кремний/аморфный гидрогенизированный кремний, полученный в соответствии с пп. 1-7, выполненный на пленке аморфного гидрогенизированного кремния и нанесенный на кварцевую подложку, нанесенный на этот слой металлический электрод и проводящий прозрачный подслой, нанесенный на кварцевую подложку.8. A solar cell containing a layer with a heterojunction nanocrystalline silicon / amorphous hydrogenated silicon, obtained in accordance with paragraphs. 1-7, made on a film of amorphous hydrogenated silicon and deposited on a quartz substrate, a metal electrode deposited on this layer and a conductive transparent sublayer deposited on a quartz substrate. 9. Солнечный элемент по п. 8, отличающийся тем, что металлический электрод выполнен из алюминия или золота, или магния.9. The solar cell according to claim 8, characterized in that the metal electrode is made of aluminum or gold, or magnesium.
RU2016152065A 2016-12-28 2016-12-28 Method for producing nanocrystalline silicon/amorphous hydrogenated silicon heterojunction for solar elements and solar element with such heterojunction RU2667689C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016152065A RU2667689C2 (en) 2016-12-28 2016-12-28 Method for producing nanocrystalline silicon/amorphous hydrogenated silicon heterojunction for solar elements and solar element with such heterojunction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016152065A RU2667689C2 (en) 2016-12-28 2016-12-28 Method for producing nanocrystalline silicon/amorphous hydrogenated silicon heterojunction for solar elements and solar element with such heterojunction

Publications (3)

Publication Number Publication Date
RU2016152065A3 RU2016152065A3 (en) 2018-07-02
RU2016152065A true RU2016152065A (en) 2018-07-02
RU2667689C2 RU2667689C2 (en) 2018-09-24

Family

ID=62813875

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016152065A RU2667689C2 (en) 2016-12-28 2016-12-28 Method for producing nanocrystalline silicon/amorphous hydrogenated silicon heterojunction for solar elements and solar element with such heterojunction

Country Status (1)

Country Link
RU (1) RU2667689C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678431A (en) * 2022-03-21 2022-06-28 上海集成电路制造创新中心有限公司 Preparation method of photoelectric detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU196426U1 (en) * 2019-12-27 2020-02-28 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) Oxide transparent heterojunction

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272297A1 (en) * 2006-05-24 2007-11-29 Sergei Krivoshlykov Disordered silicon nanocomposites for photovoltaics, solar cells and light emitting devices
KR20090029494A (en) * 2007-09-18 2009-03-23 엘지전자 주식회사 Solar cell using amorphous and nano-crystaline silicon composite thin film and fabrication method thereof
CN102569478A (en) * 2012-02-23 2012-07-11 常州天合光能有限公司 Thin-film amorphous silicon N-type crystalline silicon heterojunction tandem solar cell
CN103280496A (en) * 2013-05-31 2013-09-04 浙江正泰太阳能科技有限公司 Method for preparing crystalline silicon heterojunction/microcrystalline silicon thin film laminated photovoltaic cell
RU2599769C2 (en) * 2013-06-13 2016-10-10 Общество с ограниченной ответственностью специальное конструкторско-технологическое бюро "ИНВЕРСИЯ" Method for preparing photoactive multilayer heterostructure of microcrystalline silicone
RU2568421C1 (en) * 2014-07-25 2015-11-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет", (НИУ "БелГУ") SOLAR CELL BUILT AROUND p-TYPE HETEROSTRUCTURE OF AMORPHOUS AND NANOCRYSTALLINE SILICON NITRIDE - SILICON

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678431A (en) * 2022-03-21 2022-06-28 上海集成电路制造创新中心有限公司 Preparation method of photoelectric detector

Also Published As

Publication number Publication date
RU2016152065A3 (en) 2018-07-02
RU2667689C2 (en) 2018-09-24

Similar Documents

Publication Publication Date Title
CN102017088B (en) Engineering flat surfaces on materials doped via pulsed laser irradiation
CN102528276B (en) Laser-assisted surface treatment method for increasing light transmittance of TCO film
Karasik et al. Suppression of laser nonuniformity imprinting using a thin high-Z coating
Bellucci et al. Optimization of black diamond films for solar energy conversion
CN102581484B (en) Method for preparing silicon-based surface light trapping structure by utilizing ultrashort pulse laser
JP2015506586A (en) Method and structure for using discontinuous laser scribe lines
US20160211395A1 (en) Method for laser-structuring thin layers on a substrate in order to produce monolithically connected thin-layer solar cells, and method for producing a thin-layer solar module
RU2016152065A (en) METHOD FOR PRODUCING A HETERO JUNCTION NANOCRYSTALLINE SILICON / AMORPHIC HYDROGENIZED SILICON FOR SUNNY ELEMENTS AND SUNNY ELEMENT WITH SUCH A HETERO Junction
CN105523554A (en) Method for preparing graphene rapidly through lasers at normal temperature and pressure
JP2011056514A (en) Method of manufacturing photoelectric conversion element
CN103993261A (en) Preparation method of transparent conductive thin film with grating structure
CN111496384A (en) Device and method for processing nano-pore array on surface of brittle material
Mutlak Photovoltaic enhancement of Si micro-and nanostructure solar cells via ultrafast laser texturing
Kim et al. Ultra-short laser patterning of thin-film CIGS solar cells through glass substrate
WO2023221692A1 (en) High sensitivity terahertz sensor and preparation method therefor
Canteli et al. Picosecond-laser structuring of amorphous-silicon thin-film solar modules
KR20150054179A (en) Laser-induced ultrasound generator and method of fabricating the same
CN105855710B (en) A kind of method of manufacturing cycle structure on ito thin film based on Au inductions
JP2020007622A (en) Manufacturing method of vapor deposition mask, manufacturing apparatus of vapor deposition mask, vapor deposition pattern formation method, and manufacturing method of organic semiconductor element
CN212217453U (en) Processing device for surface nano-hole array of brittle material
JP4078137B2 (en) How to set the laser beam pulse width
JP2000208799A (en) Method of processing thin-film body
Samokhin et al. Nanosecond calibration of a piezo transducer by comparing thermoacoustic and vaporization pressure signals at pulsed laser irradiation of a metal target
Schultz et al. P1, P2 and P3 structuring of CIGSE solar cells with a single laser wavelength
Medvid' et al. “Black silicon” formation by Nd: YAG laser radiation