RU2016133265A - OPTIMIZED INTRODUCTION OF A TWO-PHASE FLOW OF A COOLER MIXTURE IN A METHOD FOR LIQUIDING A NATURAL GAS - Google Patents

OPTIMIZED INTRODUCTION OF A TWO-PHASE FLOW OF A COOLER MIXTURE IN A METHOD FOR LIQUIDING A NATURAL GAS Download PDF

Info

Publication number
RU2016133265A
RU2016133265A RU2016133265A RU2016133265A RU2016133265A RU 2016133265 A RU2016133265 A RU 2016133265A RU 2016133265 A RU2016133265 A RU 2016133265A RU 2016133265 A RU2016133265 A RU 2016133265A RU 2016133265 A RU2016133265 A RU 2016133265A
Authority
RU
Russia
Prior art keywords
heat exchanger
cooler
stream
flow
mixture
Prior art date
Application number
RU2016133265A
Other languages
Russian (ru)
Other versions
RU2655941C2 (en
RU2016133265A3 (en
Inventor
Николя ШАМБРОН
Жан-Марк ПЕРОН
Эдуард РОСА
Original Assignee
Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод filed Critical Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод
Publication of RU2016133265A publication Critical patent/RU2016133265A/en
Publication of RU2016133265A3 publication Critical patent/RU2016133265A3/ru
Application granted granted Critical
Publication of RU2655941C2 publication Critical patent/RU2655941C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0258Construction and layout of liquefaction equipments, e.g. valves, machines vertical layout of the equipments within in the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system

Claims (16)

1. Способ сжижения потока углеводородов, таких как природный газ, из подаваемого потока (1), с использованием теплообменника (2, 2ʹ), например, спаянного алюминиевого пластинчатого теплообменника, установленного вертикально, содержащего верхнюю часть (2), где температура является наивысшей, и холодную нижнюю часть (2ʹ), где температура является наинизшей, и которая физически отлична от верхней части (2), причем упомянутый способ содержит, по меньшей мере, следующие этапы:1. A method of liquefying a stream of hydrocarbons, such as natural gas, from a feed stream (1), using a heat exchanger (2, 2ʹ), for example, a brazed aluminum plate heat exchanger mounted vertically, containing the upper part (2), where the temperature is the highest, and a cold lower part (2ʹ), where the temperature is the lowest, and which is physically different from the upper part (2), said method comprising at least the following steps: этап a): пропускания подаваемого газа (1) напротив потока смеси охладителя через теплообменник (2,2ʹ), для обеспечения, по меньшей мере, частично сжиженного потока углеводорода, имеющего температуру ниже -140°C;step a): passing the feed gas (1) opposite the flow of the coolant mixture through the heat exchanger (2.2ʹ), to provide at least a partially liquefied hydrocarbon stream having a temperature below -140 ° C; этап b): введения смеси (8) охладителя в теплообменник (2) из, по меньшей мере, одного входа (9) верхней части (2), характеризующейся ее уровнем температуры, причем уровень температуры является наивысшим (T1), так что направление потока смеси (8) охладителя в теплообменнике (2) опускается;step b): introducing the mixture (8) of the cooler into the heat exchanger (2) from at least one inlet (9) of the upper part (2), characterized by its temperature level, the temperature level being the highest (T1), so that the flow direction of the mixture of cooler (8) in the heat exchanger (2) falls; этап c): выхода потока охладителя, возникающего в результате этапа b), из теплообменника (2), из выхода (11), отличающийся его уровнем температуры T2, причем T2 ниже, чем T1, вследствие чего поток (12) является жидким;step c): the outlet of the cooler stream resulting from step b) from the heat exchanger (2), from the outlet (11), characterized by its temperature level T2, where T2 is lower than T1, whereby the stream (12) is liquid; этап d): введения потока (12) охладителя, возникающего в результате этапа c), в теплообменник (2ʹ) из, по меньшей мере, одного входа (13) нижней части, так что направление потока смеси охладителя в теплообменнике (2ʹ) поднимается, для получения сжиженного потока (16) на выходе (15) теплообменника; step d): introducing the coolant stream (12) resulting from step c) into the heat exchanger (2ʹ) from at least one bottom inlet (13), so that the flow direction of the coolant mixture in the heat exchanger (2ʹ) rises, to obtain a liquefied stream (16) at the outlet (15) of the heat exchanger; этап e): выхода потока охладителя, возникающего в результате этапа d), из теплообменника (2ʹ), из выхода (15), характеризующегося его уровнем температуры T3, причем T3 является более низкой, чем T2, и тогда, таким образом, достигается расширение потока охладителя, для получения двухфазного потока (18) охладителя;step e): the exit of the coolant stream resulting from step d) from the heat exchanger (2ʹ), from the outlet (15), characterized by its temperature level T3, where T3 is lower than T2, and then, thus, expansion is achieved cooler flow, to obtain a two-phase flow (18) of cooler; этап f): введения двухфазного потока (18) охладителя, возникающего в результате этапа e) в теплообменник (2ʹ) из, по меньшей мере, одного входа (19) нижней части (2ʹ), так что направление потока смеси охладителя в теплообменнике (2ʹ) опускается;step f): introducing a two-phase stream (18) of cooler resulting from step e) into the heat exchanger (2ʹ) from at least one inlet (19) of the lower part (2ʹ), so that the flow direction of the mixture of cooler in the heat exchanger (2ʹ ) is omitted; отличающийся тем, что объемное соотношение двухфазного потока (18) охладителя, введенного на этапе f), составляет 5-50%.characterized in that the volume ratio of the two-phase flow (18) of the cooler introduced in step f) is 5-50%. 2. Способ по п.1, характеризующийся тем, что объемное соотношение двухфазного потока (18) охладителя, введенного на этапе f), составляет 15-30%.2. The method according to claim 1, characterized in that the volume ratio of the two-phase flow (18) of the cooler introduced in step f) is 15-30%. 3. Способ по пп.1-2, содержащий этап g): пропускания потока, возникающего в результате этапа f), через верхнюю часть (2) теплообменника (2) в направлении подъема из выхода (23) при температуре T2. 3. The method according to claims 1 to 2, comprising step g): passing the flow resulting from step f) through the upper part (2) of the heat exchanger (2) in the direction of rise from the outlet (23) at a temperature T2. 4. Способ по пп.1-2, отличающийся тем, что поток смеси охладителя циркулирует в контуре (7) охлаждения закрытого типа.4. The method according to claims 1 to 2, characterized in that the flow of the coolant mixture circulates in the closed-type cooling circuit (7). 5. Способ по пп.1-2, характеризующийся тем, что T3 составляет от -170°C до -140°C.5. The method according to claims 1 to 2, characterized in that T3 is from -170 ° C to -140 ° C. 6. Способ по пп.1-2, характеризующийся тем, что T2 составляет от -120°C до -40°C.6. The method according to claims 1 to 2, characterized in that T2 is from -120 ° C to -40 ° C. 7. Способ по пп.1-2, характеризующийся тем, что поток (8) смеси охладителя содержит компоненты среди которых азот, метан, этилен, этан, бутан и пентан.7. The method according to claims 1 to 2, characterized in that the stream (8) of the coolant mixture contains components including nitrogen, methane, ethylene, ethane, butane and pentane. 8. Блок для сжижения потока углеводородов, таких как природный газ, содержащий, по меньшей мере, один теплообменник, установленный в вертикальном положении, причем теплообменник содержит верхнюю часть (2) и нижнюю часть (2ʹ), которая отлична от верхней части (2), причем верхняя часть (2) имеет высокотемпературную область, нижняя часть (2ʹ) имеет низкотемпературную область, отличающийся тем, что теплообменник содержит в своей нижней части (2ʹ), по меньшей мере, один проход (20) для потока двухфазной текучей смеси (18) охладителя в направлении опускания.8. Unit for liquefying a stream of hydrocarbons, such as natural gas, containing at least one heat exchanger installed in a vertical position, the heat exchanger comprising an upper part (2) and a lower part (2ʹ), which is different from the upper part (2) moreover, the upper part (2) has a high-temperature region, the lower part (2ʹ) has a low-temperature region, characterized in that the heat exchanger contains at least one passage (20) in its lower part (2 для) for the flow of the two-phase fluid mixture (18 ) cooler in the lowering direction. 9. Блок по п.1, в котором теплообменник представляет собой спаянный алюминиевый пластинчатый теплообменник.9. The block according to claim 1, in which the heat exchanger is a brazed aluminum plate heat exchanger.
RU2016133265A 2016-02-05 2016-08-12 Optimized introduction of a two-phase stream of coolant mixtures into the methods of liquefying natural gas RU2655941C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1650931 2016-02-05
FR1650931A FR3047552A1 (en) 2016-02-05 2016-02-05 OPTIMIZED INTRODUCTION OF A DIPHASIC MIXED REFRIGERANT CURRENT IN A NATURAL GAS LIQUEFACTION PROCESS

Publications (3)

Publication Number Publication Date
RU2016133265A true RU2016133265A (en) 2018-02-14
RU2016133265A3 RU2016133265A3 (en) 2018-03-26
RU2655941C2 RU2655941C2 (en) 2018-05-30

Family

ID=55953225

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016133265A RU2655941C2 (en) 2016-02-05 2016-08-12 Optimized introduction of a two-phase stream of coolant mixtures into the methods of liquefying natural gas

Country Status (3)

Country Link
FR (1) FR3047552A1 (en)
RU (1) RU2655941C2 (en)
WO (1) WO2017134353A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099559B1 (en) * 2019-08-01 2021-07-16 Air Liquide Natural gas liquefaction process with improved exchanger configuration

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2085216B2 (en) * 1970-02-12 1973-08-10 Technip Cie
FR2681859B1 (en) * 1991-09-30 1994-02-11 Technip Cie Fse Etudes Const NATURAL GAS LIQUEFACTION PROCESS.
US5596883A (en) * 1995-10-03 1997-01-28 Air Products And Chemicals, Inc. Light component stripping in plate-fin heat exchangers
FR2743140B1 (en) * 1995-12-28 1998-01-23 Inst Francais Du Petrole METHOD AND DEVICE FOR TWO-STEP LIQUEFACTION OF A GAS MIXTURE SUCH AS A NATURAL GAS
US6647744B2 (en) * 2002-01-30 2003-11-18 Exxonmobil Upstream Research Company Processes and systems for liquefying natural gas
KR101637334B1 (en) * 2010-04-30 2016-07-08 대우조선해양 주식회사 Method and apparatus for liquefying natural gas
MX2015000101A (en) * 2012-06-27 2015-06-22 Alzheimer S Inst Of America Inc Compounds and therapeutic uses thereof.

Also Published As

Publication number Publication date
RU2655941C2 (en) 2018-05-30
RU2016133265A3 (en) 2018-03-26
WO2017134353A1 (en) 2017-08-10
FR3047552A1 (en) 2017-08-11

Similar Documents

Publication Publication Date Title
Tao et al. Heat transfer and frictional pressure drop during condensation in plate heat exchangers: Assessment of correlations and a new method
RU2010124432A (en) METHOD AND DEVICE FOR LIQUIDING A FLOW OF HYDROCARBONS AND A FLOATING BASE OR SEA PLATFORM CONTAINING THE INDICATED DEVICE AND ON WHICH CARRY OUT SUCH METHOD
RU2613766C2 (en) Method for liquefying a natural gas, including a phase change
Ding et al. Experimental investigation on downward flow boiling heat transfer characteristics of propane in shell side of LNG spiral wound heat exchanger
RU2644664C1 (en) Installation for liquefied natural gas using optimized system with mixture of refrigerating agents
RU2382301C1 (en) Unit for low-temperature separation of hydrocarbon gas
Lee et al. The cooling heat transfer characteristics of the supercritical CO 2 in micro-fin tube
NO312381B1 (en) Offshore apparatus for condensation of natural gas
US10017701B2 (en) Flare elimination process and methods of use
Hu et al. Experimental investigation on heat transfer characteristics of two-phase flow boiling in offset strip fin channels of plate-fin heat exchangers
Yu et al. Forced convective condensation flow and heat transfer characteristics of hydrocarbon mixtures refrigerant in helically coiled tubes
RU2009106092A (en) METHOD FOR LIQUIDING THE FLOW OF HYDROCARBONS AND A DEVICE FOR ITS IMPLEMENTATION
Ding et al. Experimental investigation on pressure drop characteristics of two-phase hydrocarbon mixtures flow in the shell side of LNG spiral wound heat exchangers
RU2018133713A (en) IMPROVED COOLING SYSTEM WITH MIXED REFRIGERANT UNDER VARIABLE PRESSURE
Zheng et al. Experimental research on liquid-vapor two-phase flow separation of zeotropic mixtures at an impacting T-junction
Zheng et al. Sloshing effect on gas-liquid distribution performance at entrance of a plate-fin heat exchanger
Yu et al. Condensation flow patterns and heat transfer correction for zeotropic hydrocarbon mixtures in a helically coiled tube
RU2459652C2 (en) Method and device for making homogeneous vapor and liquid phases in two or more flows and method of cooling hydrocarbon flow
RU2016133265A (en) OPTIMIZED INTRODUCTION OF A TWO-PHASE FLOW OF A COOLER MIXTURE IN A METHOD FOR LIQUIDING A NATURAL GAS
RU2018132187A (en) METHOD AND SYSTEM FOR LIQUIDING MULTIPLE RAW MATERIAL FLOWS
BR102014029899A2 (en) recovery of gnl from singas using a mixed refresher
JP2009144538A (en) Liquefied gas vaporization system
JP2020507504A5 (en)
RU2493898C1 (en) Method of field processing of gas condensate deposit products using unstable gas condensate as coolant and plant to this end
Yoo et al. A design procedure for heat-integrated distillation column sequencing of natural gas liquid fractionation processes