RU2016110C1 - Method of reprocessing of silicon waste - Google Patents

Method of reprocessing of silicon waste Download PDF

Info

Publication number
RU2016110C1
RU2016110C1 SU5019522A RU2016110C1 RU 2016110 C1 RU2016110 C1 RU 2016110C1 SU 5019522 A SU5019522 A SU 5019522A RU 2016110 C1 RU2016110 C1 RU 2016110C1
Authority
RU
Russia
Prior art keywords
silicon
melt
temperature
aluminum
fractions
Prior art date
Application number
Other languages
Russian (ru)
Inventor
В.Э. Лисай
А.Н. Маленьких
Ю.А. Зверев
Ф.К. Тепляков
В.А. Горбунов
С.Н. Данилов
Original Assignee
Акционерное общество открытого типа "Братский алюминиевый завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "Братский алюминиевый завод" filed Critical Акционерное общество открытого типа "Братский алюминиевый завод"
Priority to SU5019522 priority Critical patent/RU2016110C1/en
Application granted granted Critical
Publication of RU2016110C1 publication Critical patent/RU2016110C1/en

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

FIELD: chemical technology. SUBSTANCE: silicon of fraction (0.1-20 mm) is added on the surface of aluminium melt at 670-680 C following by heating of melt up to 720-750 C at the rate 2.5-4 degree/min. Method is used at silicon waste reprocessing. EFFECT: improved method of enzyme preparing. 1 tbl

Description

Изобретение относится к цветной металлургии, в частности к технологии переработки отходов кремния при производстве алюминиевокремниевых сплавов. The invention relates to ferrous metallurgy, in particular to a technology for processing silicon waste in the production of aluminum-silicon alloys.

Известно, что для получения алюминиевокремниевых сплавов используют кристаллический кремний фракции 20-50 мм, а пылевидную и мелкую фракции после дробления и отсева направляют в отвал, что ведет к снижению степени использования кремния при производстве вышеуказанных сплавов (М. Б. Альтман и др. Плавка и литье легких сплавов. М., "Металлургия", 1969, с. 270). It is known that to obtain aluminum-silicon alloys, crystalline silicon fractions of 20-50 mm are used, and the pulverized and fine fractions after crushing and screening are sent to the dump, which leads to a decrease in the degree of use of silicon in the production of the above alloys (M. B. Altman and others. Melting and casting of light alloys. M., Metallurgy, 1969, p. 270).

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ переработки кремния пылевидной фракции (0,3-1,0 мм), образуемой от дробления и транспортировок кристаллического кремния, включающий введение указанной фракции кремния в расплавленный и нагретый до температуры 850-900оС (выше температуры плавления на 190-240оС) алюминий в качестве присадки алюминиевокремниевых сплавов путем вдувания ее под уровень расплава с инертным газом или погружения в спрессованном виде с утяжелителем и флюсом (авт. св. N 1124599, кл. С 22 C, 1983).The closest to the proposed invention in terms of technical nature and the achieved result is a method of processing silicon dust fraction (0.3-1.0 mm), formed from crushing and transportation of crystalline silicon, including the introduction of the specified silicon fraction into molten and heated to a temperature of 850-900 C (above the melting temperature 190-240 ° C) in aluminum alloys as an additive alyuminievokremnievyh by injecting it under the level of the melt with inert gas or immersing in compressed form with the weighting agent and fluxes (Auth. Binding. N 1,124,599, cl. C 22 C, 1983).

Недостатком известного способа является низкая усвояемость пылевидного кремния, которая составляет лишь 60%. Фракция кремния менее 0,3 мм не усваивается, а более 1 мм - усваивается частично (менее 60%). Низкая усвояемость существенно увеличивает время приготовления сплава, так как для достижения требуемой концентрации кремния в получаемом сплаве необходимо ввести большее количество пылевидного кремния (больше в 1,6 раза). Увеличение продолжительности плавки ведет к повышенным потерям металла (алюминия и кремния-дополнительно) от окисления расплава. The disadvantage of this method is the low digestibility of pulverized silicon, which is only 60%. A silicon fraction of less than 0.3 mm is not absorbed, and more than 1 mm is partially absorbed (less than 60%). Low digestibility significantly increases the preparation time of the alloy, since in order to achieve the required concentration of silicon in the resulting alloy, it is necessary to introduce a larger amount of pulverized silicon (1.6 times more). An increase in the duration of smelting leads to increased losses of metal (aluminum and silicon, additionally) from the oxidation of the melt.

Целью предлагаемого изобретения является повышение усвояемости кремния и сокращение потерь металла от окисления расплава за счет уменьшения продолжительности плавки. The aim of the invention is to increase the digestibility of silicon and reduce metal loss from oxidation of the melt by reducing the duration of the smelting.

Поставленная цель достигается тем, что по способу переработки отходов кремния, включающему введение кремния пылевидной и мелкой фракции (0-20 мм) в расплав алюминия при перемешивании, кремний указанных фракций вводят на поверхность расплава, нагретого до температуры на 10-20оС выше температуры плавления, а после введения кремния темпеpатуpу расплава повышают до 720-750оС со скоростью 2,5-4оС/мин. При получении заэвтектических алюминиевокремниевых сплавов отходы кремния вводят в расплав силумина.The goal is achieved in that the silicon recycling method comprising administering to silicon dust and the fine fraction (0-20 mm) in the molten aluminum, with stirring, silicon these fractions are administered to the surface of the melt, heated to a temperature of 10-20 ° C above the temperature melting, and after introducing the silicon melt Temperature was raised to 720-750 ° C at a rate of 2.5-4 C / min. Upon receipt of hypereutectic aluminum-silicon alloys, silicon wastes are introduced into the silumin melt.

Введение отходов кремния пылевидной и мелкой фракций (0-20 мм) на поверхность расплава, нагретого до температуры на 10-20оС выше температуры плавления, с последующим повышением температуры расплава до 720-750оС с определенной скоростью обеспечивает повышение усвояемости кремния и сокращение потерь металла от окисления расплава за счет уменьшения продолжительности плавки.Introduction silicon waste dust and small fractions (0-20 mm) on the surface of the melt, heated to a temperature of 10-20 ° C above the melting temperature, followed by raising the melt temperature to 720-750 C at a certain speed provides increased digestibility and reduced silicon metal losses from oxidation of the melt by reducing the duration of the smelting.

Усвояемость кремния пылевидной и мелкой фракций (0-20 мм) повышается за счет интенсивного замешивания кремния указанных фракций в расплав, нагретый до температуры на 10-20оС выше температуры плавления, что создает благоприятные условия для эффективного его усвоения в период повышения температуры расплава до 720-750оС с определенной скоростью. С повышением усвояемости кремния снижаются его потери, а значит, уменьшается количество вводимого в расплав кремния пылевидной и мелкой фракций, необходимое для достижения требуемой концентрации кремния в сплаве, что ведет к уменьшению времени приготовления сплава и за счет этого - сокращению потерь металла (алюминия и кремния-дополнительно) от окисления расплава.Assimilation of silicon dust and small fractions (0-20 mm) increases due to the intensive mixing these fractions in the silicon melt is heated to a temperature of 10-20 ° C above the melting temperature, which creates favorable conditions for its effective assimilation during rising to the melt temperature 720-750 about With a certain speed. With an increase in the assimilation of silicon, its losses are reduced, which means that the amount of pulverized and fine fractions introduced into the silicon melt decreases, which is necessary to achieve the required silicon concentration in the alloy, which leads to a decrease in the preparation time of the alloy and, as a result, to a reduction in the loss of metal (aluminum and silicon -optional) from oxidation of the melt.

Выбранные пределы параметров способа лимитируются следующими факторами. The selected limits of the method parameters are limited by the following factors.

1. Введение кремния пылевидной и мелкой фракций (0-20 мм) в расплав, нагретый до температуры, превышающей температуру плавления более, чем на 20оС, ведет к резкому ухудшению замешивания кремния в расплав, что снижает его усвояемость и повышает потери металла от окисления расплава в результате увеличения продолжительности плавки, а введение кремния указанных фракций в расплав, нагретый до температуры, превышающей температуру плавления менее, чем на 10оС, не представляется возможным из-за сближения температуры расплава и температуры его плавления.1. Introduction silicon dust and small fractions (0-20 mm) melt heated to a temperature above the melting temperature of more than 20 ° C, leads to a rapid deterioration in the silicon melt kneading, which reduces its absorption and increases loss of metal oxidation of the melt by increasing the melting duration, and administering these fractions in the silicon melt is heated to a temperature above the melting point less than 10 ° C is not possible due to the convergence of the melt temperature and its melting temperature eniya.

2. Увеличение температуры расплава после введения кремния выше 750оС ведет к увеличению потерь металла, а уменьшение ниже 720оС - не обеспечивает высокой усвояемости (она ниже усвояемости кремния фракции 20-50 мм по известному способу приготовления сплава, равной 96,5%).2. Increasing the temperature of the melt after administration silicon above 750 ° C leads to an increase of metal loss and reduction below 720 ° C - does not provide a high digestibility (which below digestibility silicon fraction 20-50 mm alloy by the known method of preparation, equal to 96.5% )

3. Увеличение скорости подъема температуры расплава более 4оС/мин ведет к значительному снижению усвояемости (также ниже 96,5%), а уменьшение менее 2,5оС/мин - к увеличению потерь металла от окисления расплава.3. Increase in melt rate of temperature rise of more than 4 ° C / min, leads to a significant reduction in the digestibility (well below 96.5%), while lower than 2.5 ° C / min - in increased loss of metal melt from oxidation.

В результате поиска по патентной и научно-технической литературе не были обнаружены технические решения с признаками, отличающими предлагаемый способ от прототипа, а именно: позволяющими осуществить интенсивное замешивание кремния пылевидной и мелкой фракций (0-20 мм), создав тем самым благоприятные условия для эффективного его усвоения, что, в свою очередь, создает широкие возможности использования отходов кремния в качестве присадки при получении алюминиевокремниевых сплавов, причем пониженной себестоимости. As a result of a search in the patent and scientific and technical literature, no technical solutions were found with features distinguishing the proposed method from the prototype, namely: allowing intensive mixing of silicon dust and fine fractions (0-20 mm), thereby creating favorable conditions for efficient its assimilation, which, in turn, creates wide opportunities for the use of silicon waste as an additive in the production of aluminum-silicon alloys, and at a lower cost.

Реализация способа осуществляется при получении алюминиевокремниевых сплавов типа АЛ2 и АК18. В качестве присадки используют отходы кремния пылевидной и мелкой фракций (0-20 мм), получаемые при дроблении и транспортировках кристаллического кремния и направляемые после отсева в отвал. В качестве основы - расплава для введения отходов кремния, используют первичный алюминий марок А5, А6 и А0, а для получения сплава АК18 - чушковой силумин. The implementation of the method is carried out upon receipt of aluminum-silicon alloys of the type AL2 and AK18. Silicon wastes of pulverized and fine fractions (0-20 mm) obtained by crushing and transporting crystalline silicon and sent after screening to the dump are used as additives. Primary aluminum of grades A5, A6 and A0 is used as the basis - a melt for introducing silicon wastes, and pig iron silumin is used to produce AK18 alloy.

П р и м е р 1. В разогретую тигельную печь ИАТ-6М (емкостью 6 тн) загружают чушковой алюминий в количестве 4500 кг, расплавляют его и расплав доводят до температуры на 10оС выше температуры плавления, т. е. до 670оС, при которой на поверхность расплава загружают отходы кремния пылевидной и мелкой фракций (0-20 мм) в количестве 556 кг из расчета получения сплава АЛ2 с содержанием кремния 11% (без учета потерь). Перегрев над ликвидусом в 10оС поддерживают в течение всего периода введения кремния указанных фракций, а после завершения его введения температуру расплава повышают до 720оС со скоростью 2,5оС/мин. Отбирают пробы на определение химического состава. После остывания шлака от него отбирают пробы на определение количества металла и окислов в нем. Шлак взвешивают. Определяют усвояемость кремния и потери металла. Получают сплав АЛ2 с содержанием кремния 10,87%. Усвояемость кремния составляет 98,8%.EXAMPLE EXAMPLE 1 The preheated crucible furnace IAT-6M (capacity 6 tons) the aluminum ingots were charged in an amount of 4500 kg, it is melted and the melt is brought to a temperature of 10 ° C above the melting temperature, t. E. Up to about 670 C, in which 556 kg of silicon dust and fine fractions (0-20 mm) are loaded onto the melt surface based on the production of AL2 alloy with a silicon content of 11% (excluding losses). Overheating liquidus above 10 ° C is maintained throughout the period of administration of said fractions of silicon, and after the completion of its introduction, the melt temperature was raised to 720 C at a rate of 2.5 ° C / min. Samples are taken to determine the chemical composition. After cooling the slag, samples are taken from it to determine the amount of metal and oxides in it. Slag is weighed. The absorption of silicon and the loss of metal are determined. An AL2 alloy is obtained with a silicon content of 10.87%. The absorption of silicon is 98.8%.

В примерах 2 и 3 отходы кремния перерабатывают аналогично примеру 1 при следующих параметрах. П р и м е р 2. Температура перегрева над ликвидусом 15оС Температура расплава после ее повышения 730оС Скорость подъема темпера- туры 3оС/мин
П р и м е р 3. Температура перегрева над ликвидусом 20оС Температура расплава после ее повышения 750оС Скорость подъема темпе- ратуры 4оС/мин.
In examples 2 and 3, silicon wastes are processed analogously to example 1 with the following parameters. EXAMPLE 2. EXAMPLE superheat temperature above 15 ° C liquidus temperature of the melt after its increase to 730 C temperature rise speed stages 3 ° C / min
EXAMPLE 3. EXAMPLE superheat temperature above 20 ° C liquidus temperature of the melt after its increase to 750 ° C tem- perature rise rate 4 ° C / min.

В примере 4 отходы кремния перерабатывают аналогично примерам 1-3 с введением кремния пылевидной и мелкой фракции (0-20 мм) в расплав силумина. In example 4, silicon wastes are processed similarly to examples 1-3 with the introduction of silicon pulverized and fine fractions (0-20 mm) in the silumin melt.

П р и м е р 4. В печь загружают 4800 кг чушкового силумина с содержанием кремния 10,8%, расплавляют содержимое и расплав доводят до температуры на 10оС выше температуры плавления, т. е. до 605оС, при которой на поверхность расплава загружают кремний пылевидной и мелкой фракций (0-20 мм) в количестве 422 кг из расчета получения сплава АК18 с содержанием кремния 18% (без учета потерь) . После введения отходов кремния температура расплава повышают до 720оС со скоростью 2,5оС/мин. Получают сплав с содержанием кремния 17,68. Усвояемость составляет 98,2%.EXAMPLE EXAMPLE 4. The furnace is charged with 4800 kg pig with silumin the silicon content of 10.8%, the contents are melted and the melt is brought to a temperature of 10 ° C above the melting temperature, t. E. To 605 ° C at which on the melt surface is loaded with silicon dust and fine fractions (0-20 mm) in an amount of 422 kg based on the production of AK18 alloy with a silicon content of 18% (excluding losses). After introducing the silicon waste melt temperature was raised to 720 C at a rate of 2.5 ° C / min. An alloy with a silicon content of 17.68 is obtained. Digestibility is 98.2%.

В примерах 5 и 6 отходы кремния перерабатывают аналогично примеру 4 в пределах заявленных интервалов. In examples 5 and 6, silicon wastes are processed analogously to example 4 within the declared intervals.

В примерах 7-11 отходы кремния перерабатывают аналогично примерам (1-6) за пределами заявленных интервалов. In examples 7-11, silicon wastes are processed similarly to examples (1-6) outside the declared intervals.

Перерабатывают отходы кремния и по известному способу. Silicon waste is processed by a known method.

Результаты испытаний приведены в таблице. The test results are shown in the table.

Из данных таблицы видно, что использование заявляемого способа переработки отходов кремния пылевидной и мелкой фракций (примеры 1-6) обеспечивает повышение усвояемости кремния на 37,4-38,5% и сокращение потерь металла от окисления расплава на 3,2-3,8 кг/т (в том числе алюминия - на 2,8-3,6 кг/т) за счет сокращения продолжительности плавки на 19% при получении сплава АЛ2 и на 38% - сплава АК18. Удельный расход кремния пылевидной и мелкой фракций уменьшается в среднем на 70,8 кг/т получаемого сплава. From the table it is seen that the use of the proposed method for processing waste silicon dust and fine fractions (examples 1-6) provides an increase in the assimilation of silicon by 37.4-38.5% and a reduction in metal loss from oxidation of the melt by 3.2-3.8 kg / t (including aluminum - by 2.8-3.6 kg / t) by reducing the melting time by 19% upon receipt of the AL2 alloy and by 38% - the AK18 alloy. The specific consumption of silicon dust and fine fractions is reduced by an average of 70.8 kg / t of the resulting alloy.

Claims (1)

СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ КРЕМНИЯ, включающий введение кремния в расплав алюминия с перемешиванием, отличающийся тем, что, с целью повышения степени усвоения кремния, сокращения продолжительности процесса плавки и потерь алюминия и кремния, введение кремния фракции 0,1 - 20,0 мм осуществляют на поверхность расплава при 670 - 680oС с последующим нагревом расплава до 720 - 750oС со скоростью 2,5 - 4,0 град./мин.WASTE PROCESSING OF SILICON WASTE, including the introduction of silicon into the aluminum melt with stirring, characterized in that, in order to increase the degree of absorption of silicon, reduce the duration of the melting process and the loss of aluminum and silicon, the introduction of silicon fractions of 0.1 - 20.0 mm is carried out on the surface the melt at 670 - 680 o With the subsequent heating of the melt to 720 - 750 o With a speed of 2.5 - 4.0 deg./min
SU5019522 1991-12-29 1991-12-29 Method of reprocessing of silicon waste RU2016110C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5019522 RU2016110C1 (en) 1991-12-29 1991-12-29 Method of reprocessing of silicon waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5019522 RU2016110C1 (en) 1991-12-29 1991-12-29 Method of reprocessing of silicon waste

Publications (1)

Publication Number Publication Date
RU2016110C1 true RU2016110C1 (en) 1994-07-15

Family

ID=21593036

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5019522 RU2016110C1 (en) 1991-12-29 1991-12-29 Method of reprocessing of silicon waste

Country Status (1)

Country Link
RU (1) RU2016110C1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент ГДР N 260521, кл. C 22C 1/02, публ. 1988 г. *

Similar Documents

Publication Publication Date Title
RU2335564C2 (en) High titanium ferro alloy produced by two stages reduction out of ilmenite
RU2016110C1 (en) Method of reprocessing of silicon waste
RU2329322C2 (en) Method of producing high titanium ferroalloy out of ilmenite
RU2010881C1 (en) Process of producing aluminum-silicon alloys
JPH07188831A (en) Method and equipment for manufacturing stainless steel
RU2455379C1 (en) Method to melt low-carbon manganiferous alloys
US2991174A (en) Process of producing chromium steel
RU2001101836A (en) METHOD FOR PRODUCING VANADIUM-CONTAINING FERROALLOY
SU569643A1 (en) Method of melting ferromolybdenum
SU1708907A1 (en) Aluminothermic method of producing ferrovanadium
RU2148088C1 (en) Method for vanadium cast iron conversion
SU1650333A1 (en) Slagging mixture
SU1206318A2 (en) Charge for high-speed steel melting
JPS594484B2 (en) Goukintetsunodatsurin Datsutanhouhou
SU1749245A1 (en) Method of nickel-chrome alloys melt
SU791781A1 (en) Method of copper-containing slag impoverishment
RU2010878C1 (en) Method of reprocessing of magnesium and its alloys waste
SU1678846A1 (en) Method of production cast iron in electric-arc furnaces
SU1421790A1 (en) Flux for treating waste of aluminium-silicon alloys
RU2140458C1 (en) Vanadium cast iron conversion method
SU665003A1 (en) Method of manufacturing vanadium-containing steel
SU799905A1 (en) Composition for treating molten steel
SU1199819A1 (en) Method of preparing chips for smelting
RU2003723C1 (en) Method of silicomanganese dephosphoration
SU467939A1 (en) Slag for casting steel and alloys