RU2013148155A - HARDENING METHOD FOR A SOLID SOLUTION DEFORMABLE FOR LOW-TEMPERATURE PREPARATION OF PASSIVE ALLOY AND A PART Hardened in a SOLID SOLUTION USING THE METHOD - Google Patents

HARDENING METHOD FOR A SOLID SOLUTION DEFORMABLE FOR LOW-TEMPERATURE PREPARATION OF PASSIVE ALLOY AND A PART Hardened in a SOLID SOLUTION USING THE METHOD Download PDF

Info

Publication number
RU2013148155A
RU2013148155A RU2013148155/02A RU2013148155A RU2013148155A RU 2013148155 A RU2013148155 A RU 2013148155A RU 2013148155/02 A RU2013148155/02 A RU 2013148155/02A RU 2013148155 A RU2013148155 A RU 2013148155A RU 2013148155 A RU2013148155 A RU 2013148155A
Authority
RU
Russia
Prior art keywords
temperature
dissolution
nitrogen
workpiece
stainless steel
Prior art date
Application number
RU2013148155/02A
Other languages
Russian (ru)
Other versions
RU2600789C2 (en
Inventor
Томас Лундин КРИСТИАНСЕН
Томас Страбо ХУММЕЛЬШОЙ
Марсель А. Й. СОМЕРС
Original Assignee
Экспаните А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Экспаните А/С filed Critical Экспаните А/С
Publication of RU2013148155A publication Critical patent/RU2013148155A/en
Application granted granted Critical
Publication of RU2600789C2 publication Critical patent/RU2600789C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/22Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

1. Способ образования расширенного аустенита и/или расширенного мартенсита путем закалки на твердый раствор деформированной при низких температурах заготовки из пассивного сплава на основе железа, никеля и/или кобальта, а также содержащего по меньшей мере 10% хрома, или сплава на основе железа, содержащего по меньшей мере 10,5% хрома, причем способ включает первый этап растворения по меньшей мере азота в заготовке при температуре T1, которая выше температуры растворимости для карбида и/или нитрида, а также ниже точки плавления пассивного сплава, при этом при температуре T1 проводят расстворение азота с достижением глубины диффузии в диапазоне от 50 мкм до 5 мм, и последующий второй этап растворения азота и/или углерода в заготовке при температуре T2, составляющей по меньшей мере 300°C при этом температура T2 ниже температуры, при которой в пассивном сплаве образуются карбиды и/или нитриды, причем способ дополнительно включает промежуточный этап охлаждения заготовки после этапа растворения при температуре T1 до температуры, которая ниже температуры, при которой в пассивном сплаве образуются карбиды и/или нитриды.2. Способ по п.1, отличающийся тем, что растворение при температуре T2 происходит непосредственно после охлаждения после растворения при температуре T1.3. Способ по любому из пп.1 или 2, отличающийся тем, что этап охлаждения происходит в инертном газе, предпочтительно инертном газе, не содержащем азот.4. Способ по п.3, отличающийся тем, что инертным газом кроме постоянных примесей является аргон.5. Способ по п.1, отличающийся тем, что азот и углерод растворяют при температуре T1.6. Способ по п.1, отличающийся тем, что пассивн�1. The method of formation of expanded austenite and / or expanded martensite by quenching a solid solution of a workpiece made of a passive alloy based on iron, nickel and / or cobalt, and also containing at least 10% chromium or an alloy based on iron, deformed at low temperatures containing at least 10.5% chromium, the method comprising the first step of dissolving at least nitrogen in the workpiece at a temperature T1 that is higher than the solubility temperature for carbide and / or nitride, and also below the melting point of the passive alloy and, at the same time, at a temperature T1, a nitrogen dissolution is performed to achieve a diffusion depth in the range from 50 μm to 5 mm, and the subsequent second step is the dissolution of nitrogen and / or carbon in the workpiece at a temperature T2 of at least 300 ° C and temperature T2 lower than the temperature at which carbides and / or nitrides are formed in the passive alloy, the method further comprising an intermediate step of cooling the workpiece after the dissolution step at a temperature T1 to a temperature which is lower than the temperature at which in the passive alloy form a carbide and / or nitridy.2. The method according to claim 1, characterized in that the dissolution at a temperature of T2 occurs immediately after cooling after dissolution at a temperature of T1.3. A method according to any one of claims 1 or 2, characterized in that the cooling step occurs in an inert gas, preferably an inert gas, not containing nitrogen. The method according to claim 3, characterized in that the inert gas in addition to constant impurities is argon. The method according to claim 1, characterized in that the nitrogen and carbon are dissolved at a temperature of T1.6. The method according to claim 1, characterized in that the passive

Claims (24)

1. Способ образования расширенного аустенита и/или расширенного мартенсита путем закалки на твердый раствор деформированной при низких температурах заготовки из пассивного сплава на основе железа, никеля и/или кобальта, а также содержащего по меньшей мере 10% хрома, или сплава на основе железа, содержащего по меньшей мере 10,5% хрома, причем способ включает первый этап растворения по меньшей мере азота в заготовке при температуре T1, которая выше температуры растворимости для карбида и/или нитрида, а также ниже точки плавления пассивного сплава, при этом при температуре T1 проводят расстворение азота с достижением глубины диффузии в диапазоне от 50 мкм до 5 мм, и последующий второй этап растворения азота и/или углерода в заготовке при температуре T2, составляющей по меньшей мере 300°C при этом температура T2 ниже температуры, при которой в пассивном сплаве образуются карбиды и/или нитриды, причем способ дополнительно включает промежуточный этап охлаждения заготовки после этапа растворения при температуре T1 до температуры, которая ниже температуры, при которой в пассивном сплаве образуются карбиды и/или нитриды.1. The method of formation of expanded austenite and / or expanded martensite by quenching a solid solution of a workpiece made of a passive alloy based on iron, nickel and / or cobalt, and also containing at least 10% chromium or an alloy based on iron, deformed at low temperatures containing at least 10.5% chromium, the method comprising the first step of dissolving at least nitrogen in the workpiece at a temperature T1 that is higher than the solubility temperature for carbide and / or nitride, and also below the melting point of the passive alloy and, at the same time, at a temperature T1, a nitrogen dissolution is performed to achieve a diffusion depth in the range from 50 μm to 5 mm, and the subsequent second step is the dissolution of nitrogen and / or carbon in the workpiece at a temperature T2 of at least 300 ° C and temperature T2 lower than the temperature at which carbides and / or nitrides are formed in the passive alloy, the method further comprising an intermediate step of cooling the workpiece after the dissolution step at a temperature T1 to a temperature which is lower than the temperature at which in the passive alloy form a carbide and / or nitride. 2. Способ по п.1, отличающийся тем, что растворение при температуре T2 происходит непосредственно после охлаждения после растворения при температуре T1.2. The method according to claim 1, characterized in that the dissolution at a temperature T2 occurs immediately after cooling after dissolution at a temperature T1. 3. Способ по любому из пп.1 или 2, отличающийся тем, что этап охлаждения происходит в инертном газе, предпочтительно инертном газе, не содержащем азот.3. The method according to any one of claims 1 or 2, characterized in that the cooling step occurs in an inert gas, preferably an inert gas, not containing nitrogen. 4. Способ по п.3, отличающийся тем, что инертным газом кроме постоянных примесей является аргон.4. The method according to claim 3, characterized in that the inert gas in addition to constant impurities is argon. 5. Способ по п.1, отличающийся тем, что азот и углерод растворяют при температуре T1.5. The method according to claim 1, characterized in that the nitrogen and carbon are dissolved at a temperature T1. 6. Способ по п.1, отличающийся тем, что пассивный сплав выбирают из группы, включающей нержавеющую сталь, аустенитную нержавеющую сталь, мартенситную нержавеющую сталь, ферритную нержавеющую сталь, дисперсионно-твердеющую (PH) нержавеющую сталь или ферритно-аустенитную нержавеющую сталь.6. The method according to claim 1, characterized in that the passive alloy is selected from the group comprising stainless steel, austenitic stainless steel, martensitic stainless steel, ferritic stainless steel, precipitation hardened (PH) stainless steel or ferritic-austenitic stainless steel. 7. Способ по п.1, отличающийся тем, что растворение при температуре T1 проводят с применением газа, содержащего азот, предпочтительно N2.7. The method according to claim 1, characterized in that the dissolution at a temperature T1 is carried out using a gas containing nitrogen, preferably N 2 . 8. Способ по п.1, отличающийся тем, что растворение при температуре T2 проводят с помощью способа, выбранного из группы, включающей способ на основе применения газа, ионного легирования, соляной ванны или плазмы.8. The method according to claim 1, characterized in that the dissolution at a temperature of T2 is carried out using a method selected from the group including a method based on the use of gas, ion doping, a salt bath or plasma. 9. Способ по п.1, отличающийся тем, что растворения при температуре T1 и температуре T2 проводят с применением газа.9. The method according to claim 1, characterized in that the dissolution at temperature T1 and temperature T2 is carried out using gas. 10. Способ по п.1, отличающийся тем, что температура T1 составляет по меньшей мере 1050°C, например в диапазоне от 1050°C до 1300°C.10. The method according to claim 1, characterized in that the temperature T1 is at least 1050 ° C, for example in the range from 1050 ° C to 1300 ° C. 11. Способ по любому из пп.7-10, отличающийся тем, что охлаждение после растворения при температуре T1 происходит в том же газе, который применяют на этапе растворения при температуре T1.11. The method according to any one of claims 7 to 10, characterized in that the cooling after dissolution at a temperature T1 occurs in the same gas that is used in the dissolution step at a temperature T1. 12. Способ по п.1, отличающийся тем, что охлаждение от температуры 900°C до 700°C проводят за менее чем 60 секунд.12. The method according to claim 1, characterized in that the cooling from a temperature of 900 ° C to 700 ° C is carried out in less than 60 seconds. 13. Способ по п.1, отличающийся тем, что углерод растворяют при температуре T2, при этом температура T2 составляет ниже 550°C, предпочтительно в диапазоне 300-530°C.13. The method according to claim 1, characterized in that the carbon is dissolved at a temperature T2, while the temperature T2 is below 550 ° C, preferably in the range of 300-530 ° C. 14. Способ по п.1, отличающийся тем, что азот растворяют при температуре T2, при этом температура T2 составляет ниже 500°C, предпочтительно в диапазоне 300-470°C.14. The method according to claim 1, characterized in that the nitrogen is dissolved at a temperature T2, while the temperature T2 is below 500 ° C, preferably in the range of 300-470 ° C. 15. Способ по п.1, отличающийся тем, что азот и углерод растворяют при температуре T2, при этом температура T2 составляет ниже 500°C, предпочтительно в диапазоне 300-470°C.15. The method according to claim 1, characterized in that the nitrogen and carbon are dissolved at a temperature T2, while the temperature T2 is below 500 ° C, preferably in the range of 300-470 ° C. 16. Способ по п.1, отличающийся тем, что в заготовке получают толщину расширенного аустенита или расширенного мартенсита по меньшей мере 5 мкм.16. The method according to claim 1, characterized in that in the preform receive a thickness of expanded austenite or expanded martensite of at least 5 μm. 17. Способ по п.1, отличающийся тем, что твердость зоны расширенного аустенита или зоны расширенного мартенсита составляет по меньшей мере 1000 HV.17. The method according to claim 1, characterized in that the hardness of the zone of expanded austenite or zone of expanded martensite is at least 1000 HV. 18. Способ по п.2, отличающийся тем, что растворение при температуре T2 происходит в той же печи, что и растворение при температуре T1.18. The method according to claim 2, characterized in that the dissolution at temperature T2 occurs in the same furnace as the dissolution at temperature T1. 19. Способ по п.1, отличающийся тем, что низкотемпературная деформация у деформированной при низких температурах заготовки была обеспечена фактическим пластическим изменением формы, таким как ковка, экструзия, формование, вытягивание, прессование или прокатка, или механической обработкой, такой как обточка, размалывание, штамповка, шлифовка или полировка и т.д., или комбинацией таких способов.19. The method according to claim 1, characterized in that the low-temperature deformation of the workpiece deformed at low temperatures was provided by an actual plastic shape change, such as forging, extrusion, molding, drawing, pressing or rolling, or by mechanical processing, such as turning, grinding stamping, grinding or polishing, etc., or a combination of such methods. 20. Способ по п.1, отличающийся тем, что заготовка имеет толщину до приблизительно 10 мм.20. The method according to claim 1, characterized in that the preform has a thickness of up to about 10 mm 21. Деталь, закаленная на твердый раствор с помощью способа по любому из пп.1-20.21. Part hardened by a solid solution using the method according to any one of claims 1 to 20. 22. Деталь по п.21, отличающаяся тем, что заготовка имеет толщину до приблизительно 10 мм.22. The item according to item 21, wherein the preform has a thickness of up to approximately 10 mm 23. Деталь по п.21 или 22, отличающаяся тем, что деталь представляет собой стопорную шайбу из нержавеющей стали для контровки крепежной детали, такой как болты и/или гайки.23. A part according to claim 21 or 22, characterized in that the part is a stainless steel lock washer for locking the fastener, such as bolts and / or nuts. 24. Деталь по п.23, отличающаяся тем, что стопорная шайба имеет с одной стороны радиально расположенные зубцы, а с другой стороны упоры. 24. The item according to item 23, wherein the lock washer has radially spaced teeth on one side and stops on the other.
RU2013148155/02A 2011-04-28 2012-04-27 Method for solution hardening of cold deformed workpiece of passive alloy and member solution hardened by method RU2600789C2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201170208 2011-04-28
DKPA201170208 2011-04-28
PCT/DK2012/050139 WO2012146254A1 (en) 2011-04-28 2012-04-27 Method for solution hardening of a cold deformed workpiece of a passive alloy, and a member solution hardened by the method

Publications (2)

Publication Number Publication Date
RU2013148155A true RU2013148155A (en) 2015-06-10
RU2600789C2 RU2600789C2 (en) 2016-10-27

Family

ID=46124269

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013148155/02A RU2600789C2 (en) 2011-04-28 2012-04-27 Method for solution hardening of cold deformed workpiece of passive alloy and member solution hardened by method

Country Status (13)

Country Link
US (2) US9574248B2 (en)
EP (1) EP2702183B1 (en)
JP (1) JP5992508B2 (en)
KR (1) KR101792735B1 (en)
CN (1) CN103732783B (en)
AU (1) AU2012247863B2 (en)
BR (2) BR112013027580B1 (en)
CA (1) CA2833579C (en)
DK (1) DK2702183T3 (en)
ES (1) ES2662364T3 (en)
MY (1) MY165022A (en)
RU (1) RU2600789C2 (en)
WO (1) WO2012146254A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999610B1 (en) * 2012-12-13 2015-04-17 Peugeot Citroen Automobiles Sa METHOD FOR REINFORCING MECHANICAL PARTS SUBJECT TO CONTACT FATIGUE
US10605387B2 (en) * 2013-12-10 2020-03-31 Parker-Hannifin Corporation Multiple layer hardness ferrule and method
US20150160416A1 (en) 2013-12-10 2015-06-11 Parker-Hannifin Corporation Multiple layer hardness ferrule
CN106460145B (en) 2014-05-15 2019-08-16 埃克斯潘尼特技术公司 Lock washer
DK3299487T4 (en) * 2016-09-27 2023-01-30 Bodycote Plc METHOD OF SURFACE HARDENING OF A COLD DEFORMED ARTICLE INVOLVING LOW TEMPERATURE ANNEALING
US10514031B2 (en) 2016-11-22 2019-12-24 American Manufacturing Innovators, Inc. Packaging bore for eliminating washout failure
CN110573631B (en) * 2017-04-26 2022-09-27 埃克斯潘尼特技术公司 Assembly unit
CN108588392B (en) * 2018-05-14 2020-06-23 洛阳Lyc轴承有限公司 Method for extra-large self-aligning bearing ring after salt bath quenching
DE102018212111A1 (en) 2018-07-20 2020-01-23 Robert Bosch Gmbh Method for producing a component from a steel with a nitrogen-containing protective layer and component produced accordingly
CA3131528A1 (en) * 2019-02-26 2020-09-03 Somnio Global Holdings, Llc High nitrogen steel powder and methods of making the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU140439A1 (en) * 1960-04-11 1960-11-30 А.В. Смирнов The method of nitriding and carbonitriding steel
DE4333917C2 (en) * 1993-10-05 1994-06-23 Hans Prof Dr Ing Berns Edge embroidery to create a high-strength austenitic surface layer in stainless steels
US6093303A (en) 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
RU2164964C1 (en) * 1999-08-09 2001-04-10 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Method of nitriding of high-temperature alloys based on nickel, iron-nickel, nickel-cobalt and cobalt
RU2184175C2 (en) * 2000-08-14 2002-06-27 Институт прикладной механики Уральского отделения РАН Method for heat treatment to form austenite in iron-chromium alloys
DE60316294T2 (en) * 2002-07-16 2008-06-19 Danmarks Tekniske Universitet APPLICATION HARDENING OF STAINLESS STEEL
JP4009716B2 (en) * 2002-08-08 2007-11-21 独立行政法人物質・材料研究機構 Manufacturing method of stainless steel product by nitrogen absorption treatment and stainless steel product obtained thereby
US20060124203A1 (en) * 2003-07-04 2006-06-15 Nachi-Fujikoshi Corp Method of continuous vacuum carburization of metal wire, metal band or metal pipe and apparatus therefor
KR20080012324A (en) * 2005-05-31 2008-02-11 산드빅 인터렉츄얼 프로퍼티 에이비 A metal strip product, such as an electrical contact spring, and the manufacturing thereof
EP1893781B1 (en) * 2005-06-15 2016-03-16 Koninklijke Philips N.V. Method for manufacturing a stainless steel product
EP1910584B1 (en) 2005-06-22 2016-01-20 Bodycote plc Carburizing in hydrocarbon gas
WO2008124239A1 (en) * 2007-04-06 2008-10-16 Swagelok Company Hybrid carburization with intermediate rapid quench
EP2278038A1 (en) * 2009-07-20 2011-01-26 Danmarks Tekniske Universitet (DTU) A method of activating an article of passive ferrous or non-ferrous metal prior to carburizing, nitriding and/or nitrocarburizing
SE534901C2 (en) * 2010-04-20 2012-02-07 Nord Lock Ab A method and plant for the production of trays and a tray

Also Published As

Publication number Publication date
AU2012247863A1 (en) 2013-10-24
BR112014026566A2 (en) 2017-06-27
DK2702183T3 (en) 2018-03-12
CN103732783B (en) 2015-12-02
BR112013027580A2 (en) 2017-02-14
CA2833579A1 (en) 2012-11-01
AU2012247863B2 (en) 2016-06-16
ES2662364T3 (en) 2018-04-06
KR101792735B1 (en) 2017-11-02
US20140048180A1 (en) 2014-02-20
US9574248B2 (en) 2017-02-21
CA2833579C (en) 2019-09-17
US10023924B2 (en) 2018-07-17
KR20140038420A (en) 2014-03-28
WO2012146254A1 (en) 2012-11-01
BR112013027580B1 (en) 2020-05-26
US20150132079A1 (en) 2015-05-14
EP2702183B1 (en) 2017-12-20
CN103732783A (en) 2014-04-16
EP2702183A1 (en) 2014-03-05
RU2600789C2 (en) 2016-10-27
JP5992508B2 (en) 2016-09-14
MY165022A (en) 2018-02-28
JP2014518936A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
RU2013148155A (en) HARDENING METHOD FOR A SOLID SOLUTION DEFORMABLE FOR LOW-TEMPERATURE PREPARATION OF PASSIVE ALLOY AND A PART Hardened in a SOLID SOLUTION USING THE METHOD
JP2014518936A5 (en)
MX2019006862A (en) Hot-rolled flat steel product and method for the production thereof.
WO2012085253A3 (en) Method for producing hardened components with regions of different hardness and/or ductility
CN103555896B (en) A kind of ultrahigh-intensity high-toughness multistep Isothermal Bainite steel and preparation method thereof
US20190040506A1 (en) Martensitic stainless steel member and method for manufacturing same, and martensitic stainless steel component and method for manufacturing same
US10577672B2 (en) Case hardening method for high performance long life martensitic stainless steel bearings
KR101897321B1 (en) Method for solution hardening of a cold deformed workpiece of a passive alloy, and a member solution hardened by the method.
EP2511386A3 (en) Case-hardening method of processing stainless steel and steel article
EP3299487B2 (en) Method for surface hardening a cold deformed article comprising low temperature annealing
US20180223411A1 (en) Rapid Nitriding Through Nitriding Potential Control
WO2014186689A3 (en) High strength steel exhibiting good ductility and method of production via in-line heat treatment downstream of molten zinc bath
CN102505067A (en) Bainite quenching method at variable temperatures of high-carbon-chromium bearing steel
US20150090378A1 (en) Method of hot-shaping and hardening a sheet steel blank
JP6509944B2 (en) Heat treatment method for austenitic steel and austenitic steel obtained thereby
US20180355460A1 (en) Triple-phase stainless steel and method for producing same
Altan Hot-stamping boron-alloyed steels for automotive parts Part II: Microstructure, material strength changes during hot stamping
Zhou et al. Tailored properties of a novelly-designed press-hardened 22MnMoB steel
Wang et al. Heat Treating of Carbon Steels
US10144984B2 (en) Method of producing roughly shaped material for rolling bearing
KR102145259B1 (en) Method for heat treatment of carbon tool steel and carbon tool steel using this method
US10240224B2 (en) Steel alloy with tailored hardenability
JP2015129339A (en) Tool steel and method for manufacturing high hardness tool
KR20080001256A (en) Tool screw, wrench bolt and manufacture mothod for fixture
RU2109081C1 (en) Method for manufacturing steel part