RU2013143803A - Многомасштабное цифровое моделирование породы для моделирования пласта - Google Patents

Многомасштабное цифровое моделирование породы для моделирования пласта Download PDF

Info

Publication number
RU2013143803A
RU2013143803A RU2013143803/08A RU2013143803A RU2013143803A RU 2013143803 A RU2013143803 A RU 2013143803A RU 2013143803/08 A RU2013143803/08 A RU 2013143803/08A RU 2013143803 A RU2013143803 A RU 2013143803A RU 2013143803 A RU2013143803 A RU 2013143803A
Authority
RU
Russia
Prior art keywords
scale
data
modeling
rock
digital
Prior art date
Application number
RU2013143803/08A
Other languages
English (en)
Other versions
RU2573739C2 (ru
Inventor
Нейл Ф. ХЕРЛИ
Вейшу ЧЖАО
Туаньфен ЧЖАН
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of RU2013143803A publication Critical patent/RU2013143803A/ru
Application granted granted Critical
Publication of RU2573739C2 publication Critical patent/RU2573739C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V20/00Geomodelling in general

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

1. Способ укрупнения масштаба системой обработки данных цифрового моделирования породы в масштабе скважины, представляющих породу пласта, причем упомянутый способ содержит комбинирование данных цифрового моделирования породы в масштабе скважины с исходными данными в межскважинном масштабе для генерирования данных цифрового моделирования породы в межскважинном масштабе, которые, по меньшей мере частично, охватывают гетерогенность в межскважинном масштабе.2. Способ по п. 1, отличающийся тем, что дополнительно содержит идентификацию множества типов породы пласта в по меньшей мере данных цифрового моделирования породы в масштабе скважины.3. Способ по п. 1, отличающийся тем, что исходные данные в межскважинном масштабе собирают, используя один или более способов, выбранных из группы, состоящей из: данных каротажа во время бурения из невертикальной скважины, межскважинных геофизических измерений и сейсмических измерений.4. Способ по п. 3, отличающийся тем, что исходные данные в межскважинном масштабе собираю, используя данные каротажа во время бурения из невертикальной скважины.5. Способ по п. 3, отличающийся тем, что исходные данные в межскважинном масштабе включают в себя вычисленную вариограммную статистику.6. Способ по п. 1, отличающийся тем, что данные цифрового моделирования породы в масштабе скважины, используемые для генерирования данных цифрового моделирования породы вмежскважинном масштабе, включают в себя вычисленные значения при масштабе скважины одного или более свойств, выбранных из группы, состоящей из: пористости, проницаемости, капиллярного давления, показателей удельного сопротивления, отно�

Claims (34)

1. Способ укрупнения масштаба системой обработки данных цифрового моделирования породы в масштабе скважины, представляющих породу пласта, причем упомянутый способ содержит комбинирование данных цифрового моделирования породы в масштабе скважины с исходными данными в межскважинном масштабе для генерирования данных цифрового моделирования породы в межскважинном масштабе, которые, по меньшей мере частично, охватывают гетерогенность в межскважинном масштабе.
2. Способ по п. 1, отличающийся тем, что дополнительно содержит идентификацию множества типов породы пласта в по меньшей мере данных цифрового моделирования породы в масштабе скважины.
3. Способ по п. 1, отличающийся тем, что исходные данные в межскважинном масштабе собирают, используя один или более способов, выбранных из группы, состоящей из: данных каротажа во время бурения из невертикальной скважины, межскважинных геофизических измерений и сейсмических измерений.
4. Способ по п. 3, отличающийся тем, что исходные данные в межскважинном масштабе собираю, используя данные каротажа во время бурения из невертикальной скважины.
5. Способ по п. 3, отличающийся тем, что исходные данные в межскважинном масштабе включают в себя вычисленную вариограммную статистику.
6. Способ по п. 1, отличающийся тем, что данные цифрового моделирования породы в масштабе скважины, используемые для генерирования данных цифрового моделирования породы в
межскважинном масштабе, включают в себя вычисленные значения при масштабе скважины одного или более свойств, выбранных из группы, состоящей из: пористости, проницаемости, капиллярного давления, показателей удельного сопротивления, относительной проницаемости, насыщенности водой, остаточной насыщенности водой, остаточной насыщенности нефтью, коэффициентов отдачи и показателей Арчи для цементирования (m) и насыщения (n).
7. Способ по п. 1, отличающийся тем, что данные цифрового моделирования породы являются трехмерными данными.
8. Способ по п. 1, отличающийся тем, что данные цифрового моделирования породы включают в себя результаты многоточечной статистики.
9. Способ по п. 1, отличающийся тем, что данные цифрового моделирования породы включают в себя множество объемов представительных элементов.
10. Способ по п. 1, отличающийся тем, что данные цифрового моделирования породы в масштабе скважины были, по меньшей мере частично, укрупнены из данных цифрового моделирования породы в масштабе пор.
11. Способ по п. 10, отличающийся тем, что укрупнение масштаба из данных цифрового моделирования породы в масштабе пор основывается, по меньшей мере частично, на вычисленных значениях в масштабе пор одного или более свойств, выбранных из группы, состоящей из: пористости, проницаемости, капиллярного давления, показателей удельного сопротивления, относительной проницаемости, насыщенности водой, остаточной насыщенности водой, остаточной насыщенности нефтью, коэффициентов отдачи и
показателей Арчи для цементирования (m) и насыщения (n).
12. Способ по п. 10, отличающийся тем, что данные цифрового моделирования породы в масштабе пор включают в себя геометрию пор, которая выражается количественно, используя один или более способов, выбранных из группы, состоящей из: лазерной сканирующей флуоресцентной микроскопии в проходящем свете, сканограмм микроКТ, сканограмм наноКТ, электронной микроскопии со сканированием фокусированным ионным пучком, капиллярного давления при нагнетании ртути и/или ядерного магнитного резонанса.
13. Способ по п. 10, отличающийся тем, что данные цифрового моделирования породы в масштабе пор генерируют, по меньшей мере частично, используя стратегически выбранные образцы, вырезанные из керна, выбранные, используя сетчатую минипроницаемость и данные сканограммы традиционной КТ одной или более пластинок керна.
14. Способ по п. 13, отличающийся тем, что данные минипроницаемости являются сетчатыми, с интервалом около от 0,5 см до 1 см.
15. Способ по п. 13, отличающийся тем, что данные сканограммы традиционной КТ имеют интервал среза около от 1 мм до 2 мм.
16. Способ по п. 1, отличающийся тем, что дополнительно содержит построение модели потока гетерогенных пород на основании, по меньшей мере частично, генерируемых данных цифрового моделирования породы в межскважинном масштабе.
17. Способ по п. 1, отличающийся тем, что дополнительно
содержит укрупнение масштаба генерируемых данных цифрового моделирования породы в межскважинном масштабе для генерирования данных цифрового моделирования породы в масштабе всего месторождения.
18. Способ по п. 17, отличающийся тем, что укрупнение масштаба для генерирования данных цифрового моделирования породы в масштабе всего месторождения основывается, по меньшей мере частично, на вычисленных значениях в межскважинном масштабе из данных цифрового моделирования породы в межскважинном масштабе, причем вычисленные значения являются одним или более свойствами, выбранными из группы, состоящей из: пористости, проницаемости, капиллярного давления, показателей удельного сопротивления, относительной проницаемости, насыщенности водой, остаточной насыщенности водой, остаточной насыщенности нефтью, коэффициентов отдачи и показателей Арчи для цементирования (m) и насыщения (n).
19. Способ по п. 17, отличающийся тем, что данные цифрового моделирования породы в масштабе всего месторождения генерируют, используя один или более способов, выбранных из группы, состоящей из: сейсмостратиграфического моделирования, аналогов линий выхода, карт изопахит, кривых пропорций фаций, сейсмических параметров, прямого стратиграфического моделирования, диагенетического моделирования, моделирования в масштабе бассейна и/или многоточечного статистического моделирования.
20. Способ по п. 1, отличающийся тем, что порода пласта включает в себя один или более типов литологии, выбранных из
группы, состоящей из: карбонатов, песчаников, сланцев, углей, эвапоритов и вулканических или метаморфических пород.
21. Способ по п. 1, отличающийся тем, что генерируемые данные цифрового моделирования породы в межскважинном масштабе включают в себя один или более разломов или сдвигов.
22. Система для генерирования данных цифрового моделирования породы в межскважинном масштабе, используя способ по п. 1.
23. Способ укрупнения масштаба системой обработки данных цифрового моделирования породы в масштабе пор, представляющих породу пласта, причем упомянутый способ содержит:
генерирование данных цифрового моделирования породы в масштабе пор, по меньшей мере частично, используя минипроницаемость и данные КТ-сканирования для одной или более пластинок керна породы резервуара, комбинированные с данными геометрии поры; и
укрупнение масштаба данных цифрового моделирования породы в масштабе пор до данных цифрового моделирования породы в масштабе скважины на основании, по меньшей мере частично, комбинирования данных цифрового моделирования породы в масштабе пор с исходными данными в масштабе скважины.
24. Способ по п. 23, отличающийся тем, что данные геометрии поры получают, используя один или более способов, выбранных из группы, состоящей из: лазерной сканирующей флуоресцентной микроскопии в проходящем свете, сканограмм микроКТ, сканограмм наноКТ, электронной микроскопии со сканированием фокусированным ионным пучком, капиллярного давления при нагнетании ртути и
ядерного магнитного резонанса.
25. Способ по п. 23, отличающийся тем, что укрупнение масштаба из данных цифрового моделирования породы в масштабе пор основано, по меньшей мере частично, на вычисленных значениях в масштабе пор, представляющих одно или более свойств, выбранных из группы, состоящей из: пористости, проницаемости, капиллярного давления, показателей удельного сопротивления, относительной проницаемости, насыщенности водой, остаточной насыщенности водой, остаточной насыщенности нефтью, коэффициентов отдачи и показателей Арчи для цементирования (m) и насыщения (n).
26. Система для генерирования укрупненных данных цифрового моделирования породы в масштабе скважины, используя способ по п. 23.
27. Способ укрупнения масштаба системой обработки данных цифрового моделирования породы в масштабе скважины, причем упомянутый способ содержит:
генерирование данных цифрового моделирования породы в межскважинном масштабе, по меньшей мере частично, используя данные скважины из по меньшей мере одной невертикальной скважины; и
укрупнение масштаба данных цифрового моделирования породы в масштабе скважины до данных цифрового моделирования породы в межскважинном масштабе на основании, по меньшей мере частично, комбинирования данных цифрового моделирования породы в масштабе скважины с исходными данными в межскважинном масштабе.
28. Способ по п. 27, отличающийся тем, что данные скважины включают в себя один или более типов данных, выбранных из
группы, состоящей из: каротажных данных, вариограммной статистики, межскважинных сейсмических данных, электромагнитных данных и данных сейсмических параметров.
29. Способ по п. 27, отличающийся тем, что укрупнение масштаба из данных цифрового моделирования породы в масштабе скважины основывается, по меньшей мере частично, на вычисленных значениях в масштабе скважины, представляющих одно или более свойств, выбранных из группы, состоящей из: пористости, проницаемости, капиллярного давления, показателей удельного сопротивления, относительной проницаемости, насыщенности водой, остаточной насыщенности водой, остаточной насыщенности нефтью, коэффициентов отдачи и показателей Арчи для цементирования (m) и насыщения (n).
30. Система для генерирования укрупненных данных цифрового моделирования породы в межскважинном масштабе, используя способ по п. 27.
31. Способ укрупнения масштаба системой обработки данных цифрового моделирования породы в межскважинном масштабе, причем упомянутый способ содержит:
генерирование данных цифрового моделирования породы в масштабе всего месторождения; и
укрупнение масштаба данных цифрового моделирования породы в межскважинном масштабе до данных цифрового моделирования породы в масштабе всего месторождения на основании, по меньшей мере частично, комбинирования данных цифрового моделирования породы в межскважинном масштабе с исходными данными в масштабе всего месторождения.
32. Способ по п. 31, отличающийся тем, что данные цифрового моделирования породы в масштабе всего месторождения генерируют, по меньшей мере частично, используя один или более способов, выбранных из группы, состоящей из: сейсмостратиграфического моделирования, аналогов линий выхода, карт изопахит, кривых пропорций фаций, сейсмических параметров, прямого стратиграфического моделирования, диагенетического моделирования, моделирования в масштабе бассейна и многоточечного статистического моделирования.
33. Способ по п. 31, отличающийся тем, что укрупнение масштаба из данных цифрового моделирования породы в межскважинном масштабе основывается, по меньшей мере частично, на вычисленных значениях в межскважинном масштабе, представляющих одно или более свойств, выбранных из группы, состоящей из: пористости, проницаемости, капиллярного давления, показателей удельного сопротивления, относительной проницаемости, насыщенности водой, остаточной насыщенности водой, остаточной насыщенности нефтью, коэффициентов отдачи и показателей Арчи для цементирования (m) и насыщения (n).
34. Система для генерирования укрупненных данных цифрового моделирования породы в масштабе всего месторождения, используя способ по п. 31.
RU2013143803/08A 2011-02-28 2012-02-28 Многомасштабное цифровое моделирование породы для моделирования пласта RU2573739C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/036,770 2011-02-28
US13/036,770 US9134457B2 (en) 2009-04-08 2011-02-28 Multiscale digital rock modeling for reservoir simulation
PCT/US2012/027037 WO2012118864A2 (en) 2011-02-28 2012-02-28 Multiscale digital rock modeling for reservoir simulation

Publications (2)

Publication Number Publication Date
RU2013143803A true RU2013143803A (ru) 2015-04-10
RU2573739C2 RU2573739C2 (ru) 2016-01-27

Family

ID=46719600

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013143803/08A RU2573739C2 (ru) 2011-02-28 2012-02-28 Многомасштабное цифровое моделирование породы для моделирования пласта

Country Status (4)

Country Link
US (1) US9134457B2 (ru)
BR (1) BR112013015288B1 (ru)
RU (1) RU2573739C2 (ru)
WO (1) WO2012118864A2 (ru)

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2792357T3 (es) 2009-04-20 2020-11-11 Exxonmobil Upstream Res Co Procedimiento para predecir el flujo de fluido
CA2774182C (en) * 2009-11-12 2019-08-06 Exxonmobil Upstream Research Company Method and system for rapid model evaluation using multilevel surrogates
US8954296B2 (en) * 2010-08-31 2015-02-10 Energywright, Inc. Model building for pressure diagnostics simulation
BR112013020555A2 (pt) 2011-02-28 2020-07-28 Prad Research And Development Limited método para caracterizar uma amostra de meio poroso incluindo uma pluralidade de corpos de poro e uma pluraridade de gargantas de poro, sistema para caracterizar uma amostra de meio poroso incluindo uma pluralidade de corpos de poro e uma pluralidade de gargantas de poro, e método para caracterizar uma amostra de formação de rocha subterrânea porosa incluindo uma pluralidade de corpos de poro e uma pluralidade de gargantas de poro
US8908925B2 (en) 2011-02-28 2014-12-09 Schlumberger Technology Corporation Methods to build 3D digital models of porous media using a combination of high- and low-resolution data and multi-point statistics
EP2756337A2 (en) * 2011-09-15 2014-07-23 Saudi Arabian Oil Company Core-plug to giga-cells lithological modeling
CN103930802A (zh) * 2011-11-15 2014-07-16 雪佛龙美国公司 利用空间独立的数据子集为空间相关储层数据确定性质分布的软数据去偏不确定性的系统及方法
US9684084B2 (en) * 2012-05-01 2017-06-20 Saudi Arabian Oil Company Three-dimensional multi-modal core and geological modeling for optimal field development
US9377546B2 (en) 2012-05-06 2016-06-28 Schlumberger Technology Corporation Automatic extraction and characterization of fault and fracture populations
US20140052420A1 (en) * 2012-08-20 2014-02-20 Ingrain Inc. Digital Rock Analysis Systems and Methods that Estimate a Maturity Level
CN104737037A (zh) * 2012-10-19 2015-06-24 科诺科菲利浦公司 使用多点模拟的储层建模
US9229127B2 (en) 2013-02-21 2016-01-05 Saudi Arabian Oil Company Methods program code, computer readable media, and apparatus for predicting matrix permeability by optimization and variance correction of K-nearest neighbors
CA2869825C (en) * 2013-05-13 2018-07-24 Aramco Services Company Three-dimensional multi-modal core and geological modeling for optimal field development
BR112015026505B1 (pt) 2013-06-10 2021-12-14 Exxonmobil Upstream Research Company Método para determinar parâmetros de poço para otimização de desempenho de poço
WO2014205248A2 (en) * 2013-06-19 2014-12-24 Conocophillips Company Mechanical characterization of core samples
WO2014209879A2 (en) * 2013-06-24 2014-12-31 Services Petroliers Schlumberger Characterizing porosity distribution from a borehole image
US9207356B2 (en) * 2013-07-29 2015-12-08 Chevron U.S.A. Inc. System and method for estimating a reservoir parameter using joint stochastic inversion of multisource geophysical data
WO2015021088A1 (en) * 2013-08-06 2015-02-12 Schlumberger Canada Limited Methods for determining a saturation-height function in oil and gas reservoirs
GB2532153B (en) * 2013-08-07 2018-06-13 Landmark Graphics Corp Static earth model calibration methods and systems using permeability testing
AU2014307046B2 (en) * 2013-08-13 2018-05-24 Schlumberger Technology B.V. Digital core sensitivity analysis
US20150062300A1 (en) * 2013-08-30 2015-03-05 Halliburton Energy Services, Inc. Wormhole Structure Digital Characterization and Stimulation
CN103439741B (zh) * 2013-09-16 2015-10-14 中国石油大港油田勘探开发研究院 一种零值法单砂体逐层剥离预测方法
WO2015084481A1 (en) 2013-12-04 2015-06-11 Schlumberger Canada Limited Tuning digital core analysis to laboratory results
WO2015094307A1 (en) 2013-12-19 2015-06-25 Halliburton Energy Services, Inc. Pore size classification in subterranean formations based on nuclear magnetic resonance (nmr) relaxation distributions
US9939548B2 (en) 2014-02-24 2018-04-10 Saudi Arabian Oil Company Systems, methods, and computer medium to produce efficient, consistent, and high-confidence image-based electrofacies analysis in stratigraphic interpretations across multiple wells
RU2016123001A (ru) * 2014-02-28 2018-04-02 Лэндмарк Графикс Корпорейшн Генерирование описания фаций с использованием процедур автономной классификации
US9483871B2 (en) 2014-03-25 2016-11-01 Saudi Arabian Oil Company 360-degree core photo image integration and interpretation in a 3D petrophysical modeling environment
AU2015241030A1 (en) * 2014-03-31 2016-10-20 Ingrain, Inc. Digital rock physics-based trend determination and usage for upscaling
WO2015187483A1 (en) 2014-06-05 2015-12-10 Geocosm, LLC Predicting sediment and sedimentary rock properties
US10914864B2 (en) 2014-07-16 2021-02-09 Schlumberger Technology Corporation Multiscale method for reservoir models
CN104134002A (zh) * 2014-07-30 2014-11-05 中国石油天然气集团公司 一种基于数字地质露头的碎屑岩储层建模方法及装置
GB2544234B (en) * 2014-10-14 2020-09-02 Landmark Graphics Corp Using representative elemental volume to determine subset volume in an area of interest earth model
WO2016065127A1 (en) * 2014-10-23 2016-04-28 Chevron U.S.A. Inc. A system and method of pore type classification for petrophysical rock typing
US9581710B2 (en) * 2014-10-24 2017-02-28 Westerngeco L.L.C. Three-dimensional rock properties using cross well seismic
BR112017008907A2 (pt) 2014-11-17 2017-12-26 Halliburton Energy Services Inc método
US10664635B2 (en) 2014-12-08 2020-05-26 Landmark Graphics Corporation Determining non-linear petrofacies using cross-plot partitioning
EP3256885B1 (en) * 2015-02-13 2020-12-30 Services Petroliers Schlumberger Diagenetic and depositional rock analysis
US10198804B2 (en) * 2015-04-15 2019-02-05 Halliburton Energy Services, Inc. Method for determining fabric and upscaled properties of geological sample
US10055884B2 (en) 2015-04-30 2018-08-21 Saudi Arabian Oil Company Three-dimensional fluid micromodels
US11982144B2 (en) * 2015-07-28 2024-05-14 Schlumberger Technology Corporation Method and system for generating a virtual core
WO2017041281A1 (en) * 2015-09-11 2017-03-16 Irock Technologies Co., Ltd Porous media anaylysis system and method
WO2017095395A1 (en) * 2015-12-01 2017-06-08 Landmark Graphics Corporation Automated upscaling of relative permeability using fractional flow in systems comprising disparate rock types
US10049172B2 (en) 2015-12-10 2018-08-14 Saudi Arabian Oil Company Predicting and modeling changes in capillary pressure and relative permeabilities in a porous medium due to mineral precipitation and dissolution
WO2017111966A1 (en) * 2015-12-22 2017-06-29 Landmark Graphics Corporation Image based rock property tensor visualization of a geocellular grid in a dynamic 3d environment
US10087723B2 (en) 2015-12-22 2018-10-02 Chevron U.S.A. Inc. Methodology for building realistic numerical forward stratigraphic models in data sparse environment
CN105487136B (zh) * 2015-12-31 2017-11-07 中国石油大学(华东) 基于经验模态分解和能量熵判别的碳酸盐岩储集体测井识别方法
CN105929461B (zh) * 2016-04-13 2018-10-26 河南工程学院 一种动静态岩石力学参数校正系统
US10621292B2 (en) 2016-04-18 2020-04-14 International Business Machines Corporation Method, apparatus and computer program product providing simulator for enhanced oil recovery based on micron and submicron scale fluid-solid interactions
US11099289B2 (en) 2016-10-04 2021-08-24 Landmark Graphics Corporation Multivariate analysis of seismic data, microseismic data, and petrophysical properties in fracture modeling
GB2573425B (en) * 2017-02-14 2022-03-09 Landmark Graphics Corp Automated upscaling of relative permeability and capillary pressure in multi-porosity systems
CN106950610B (zh) * 2017-02-15 2019-01-22 山东大学 一种电阻率法实验室水囊模拟装置及方法
US10648292B2 (en) 2017-03-01 2020-05-12 International Business Machines Corporation Cognitive enhanced oil recovery advisor system based on digital rock simulator
US10691846B2 (en) 2017-03-01 2020-06-23 International Business Machines Corporation Capillary network simulations based on a low-dimensional representation of porous media
CN106855636B (zh) * 2017-03-23 2018-10-26 西南石油大学 基于碳酸盐岩储层露头的原型地质模型地震正演方法
EP3682376A1 (en) 2017-09-15 2020-07-22 Saudi Arabian Oil Company Inferring petrophysical properties of hydrocarbon reservoirs using a neural network
US11454738B2 (en) 2017-10-11 2022-09-27 Beyond Limits, Inc. Recommendation engine for a cognitive reservoir system
WO2019086938A1 (en) * 2017-11-06 2019-05-09 Abu Dhabi National Oil Company Method and system for determining permeability of a porous medium
WO2019118658A1 (en) * 2017-12-14 2019-06-20 Schlumberger Technology Corporation System and method for simulating reservoir models
RU2670174C1 (ru) * 2017-12-18 2018-10-18 Федеральное государственное учреждение "Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук" (ФГУ ФНЦ НИИСИ РАН) Способ многомасштабного моделирования нелинейных процессов подземной гидродинамики
US11391864B2 (en) 2018-02-20 2022-07-19 Chevron U.S.A. Inc. Systems and methods for generating permeability scaling functions to estimate permeability
CN108303729B (zh) * 2018-02-27 2020-01-03 中建隧道建设有限公司 建筑物下盾构隧道影响区域岩溶探测方法
US10983237B2 (en) 2018-04-13 2021-04-20 Saudi Arabian Oil Company Enhancing seismic images
CN108682020B (zh) * 2018-04-28 2019-04-12 中国石油大学(华东) 岩心微米ct孔隙结构重构方法
CN108875140B (zh) * 2018-05-24 2022-06-03 西安石油大学 一种基于数字岩心模型的稠油油藏沥青质沉积吸附损害模拟方法
US10891462B2 (en) 2018-06-29 2021-01-12 Saudi Arabian Oil Company Identifying geometrical properties of rock structure through digital imaging
CN109211666B (zh) * 2018-08-31 2019-12-03 山东科技大学 基于ct扫描的预测应力加载条件下煤体渗透率的方法
CN109063383A (zh) * 2018-09-19 2018-12-21 西南石油大学 基于微尺度重建模型的热-流-固多场耦合模拟方法
US11047228B2 (en) 2018-10-19 2021-06-29 Saudi Arabian Oil Company Predicting carbonate porosity based on petrographic data
RU2718409C1 (ru) * 2018-10-23 2020-04-02 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Система восстановления трехмерной структуры образца породы
CN109614634B (zh) * 2018-10-25 2022-08-23 中国辐射防护研究院 一种水环境中放射性核素迁移扩散数值模拟方法及系统
AU2019406627B2 (en) 2018-12-18 2022-05-19 Shell Internationale Research Maatschappij B.V. Method for digitally characterizing the permeability of rock
US11187821B2 (en) 2019-01-23 2021-11-30 Saudi Arabian Oil Company Integration of seismic driven rock property into a geo-cellular model
CN111638552A (zh) * 2019-03-01 2020-09-08 中国石油化工股份有限公司 一种古地貌恢复方法
EP3956699B1 (en) * 2019-04-16 2023-03-29 TotalEnergies OneTech A method for upscaling of relative permeability of the phase of a fluid
US11525934B2 (en) * 2019-05-16 2022-12-13 Shell Usa, Inc. Method for identifying subsurface fluids and/or lithologies
US11604909B2 (en) 2019-05-28 2023-03-14 Chevron U.S.A. Inc. System and method for accelerated computation of subsurface representations
CN110173243B (zh) * 2019-07-09 2024-03-22 西南石油大学 一种火成岩油藏注水/注气开发效果评价装置及方法
CN110424944B (zh) * 2019-07-22 2022-08-23 中国海洋石油集团有限公司 巨厚碳酸盐岩油藏油水拟相渗曲线的建立方法
CN112287718B (zh) * 2019-07-23 2024-05-03 中国石油天然气股份有限公司 数字地质露头孔洞提取方法及装置
US11249220B2 (en) 2019-08-14 2022-02-15 Chevron U.S.A. Inc. Correlation matrix for simultaneously correlating multiple wells
RU2725506C9 (ru) * 2019-08-21 2020-07-27 Общество с ограниченной ответственностью "Диджитал Петролеум" (ООО "ДП") Способ и система оптимизации лабораторных исследований образцов горных пород
US11415501B2 (en) 2019-10-16 2022-08-16 King Fahd University Of Petroleum And Minerals Method of determining absolute permeability
US11561215B2 (en) 2019-10-31 2023-01-24 Halliburton Energy Services, Inc. Scale-coupled multiscale model simulation
US11079581B2 (en) 2019-11-25 2021-08-03 Saudi Arabian Oil Company Resolution preserving methodology to generate continuous log scale reservoir permeability profile from petrographic thin section images
US11010969B1 (en) 2019-12-06 2021-05-18 Chevron U.S.A. Inc. Generation of subsurface representations using layer-space
US10984590B1 (en) 2019-12-06 2021-04-20 Chevron U.S.A. Inc. Generation of subsurface representations using layer-space
US11187826B2 (en) 2019-12-06 2021-11-30 Chevron U.S.A. Inc. Characterization of subsurface regions using moving-window based analysis of unsegmented continuous data
CN110927194B (zh) * 2019-12-11 2020-08-18 中国科学院地质与地球物理研究所 确定泥页岩有机孔含量和孔径分布的方法
CN114761991A (zh) 2019-12-12 2022-07-15 国际壳牌研究有限公司 用于估计岩石的烃饱和度的方法
CN111060428B (zh) * 2019-12-12 2021-10-22 清华大学 一种多层级岩心结构的数字重构方法
CN110987985A (zh) * 2019-12-27 2020-04-10 西南石油大学 射孔损害室内评价数字岩心方法
US11263362B2 (en) 2020-01-16 2022-03-01 Chevron U.S.A. Inc. Correlation of multiple wells using subsurface representation
US11320566B2 (en) 2020-01-16 2022-05-03 Chevron U.S.A. Inc. Multiple well matching within subsurface representation
US11561674B2 (en) 2020-03-05 2023-01-24 Saudi Arabian Oil Company User interface for proxy modeling of reactive transport modeling
US11961002B2 (en) * 2020-03-05 2024-04-16 Saudi Arabian Oil Company Random selection of observation cells for proxy modeling of reactive transport modeling
US11397279B2 (en) 2020-03-27 2022-07-26 Chevron U.S.A. Inc. Comparison of wells using a dissimilarity matrix
CN111624147B (zh) * 2020-04-16 2023-04-07 中国石油天然气股份有限公司 岩心的相对渗透率测定方法及装置
CN113552617B (zh) * 2020-04-26 2024-01-23 中国石油化工股份有限公司 小尺度缝洞体的量化方法、装置、电子设备及存储介质
EP4172661A1 (en) 2020-06-30 2023-05-03 Shell Internationale Research Maatschappij B.V. Method for estimating hydrocarbon saturation of a rock
US11592593B2 (en) 2020-07-01 2023-02-28 Saudi Arabian Oil Company Modeling hydrocarbon reservoirs using rock fabric classification at reservoir conditions
CN111855712B (zh) * 2020-07-03 2023-04-11 大连理工大学 一种基于ct图像的胶结型水合物沉积物三维建模方法
CN111862306B (zh) * 2020-07-03 2023-09-19 大连理工大学 一种基于ct图像的孔隙填充型水合物沉积物三维建模方法
US11286232B2 (en) 2020-07-29 2022-03-29 Saudi Arabian Oil Company Preparation of cationic surfactants
US11467080B2 (en) 2020-08-10 2022-10-11 Saudi Arabian Oil Company Estimating permeability of reservoir rocks using mercury injection capillary pressure
US11820842B2 (en) 2020-09-09 2023-11-21 Saudi Arabian Oil Company Sulfonated polymer
US11947067B2 (en) 2020-09-16 2024-04-02 Saudi Arabian Oil Company Systems and methods for developing horizontal hydrocarbon wells
CN112132965B (zh) * 2020-09-25 2024-03-26 中国矿业大学 一种岩土体孔裂隙结构多尺度表征方法
US11719094B2 (en) 2020-10-23 2023-08-08 Saudi Arabian Oil Company Reservoir characterization using rock geochemistry for lithostratigraphic interpretation of a subterranean formation
US11668847B2 (en) 2021-01-04 2023-06-06 Saudi Arabian Oil Company Generating synthetic geological formation images based on rock fragment images
CN112686917B (zh) * 2021-01-30 2023-06-30 中国科学院地质与地球物理研究所 提高岩心非均质性表征精度的数字岩心建模方法及装置
US11927709B2 (en) 2021-02-02 2024-03-12 Saudi Arabian Oil Company Multi-scale geological modeling and well information integration
US11867869B2 (en) 2021-02-11 2024-01-09 Saudi Arabian Oil Company Multiple porosity micromodel
CN113029908B (zh) * 2021-03-16 2021-11-26 中国石油大学(华东) 一种致密储层饱和度指数的实验室测量方法
GB2615240A (en) * 2021-03-26 2023-08-02 Halliburton Energy Services Inc Visualizing fluid flow through porous media in virtual reality
CN112859197B (zh) * 2021-03-31 2024-03-22 中国石油天然气集团有限公司 一种基于均质化地层电磁场理论的数字井筒电阻率模拟方法
CN113109891A (zh) * 2021-04-14 2021-07-13 中国石油大学(华东) 重建沉积盆地地质流体演化历史的方法
CN113281239B (zh) * 2021-06-18 2022-06-24 中国石油大学(北京) 多尺度煤岩孔隙网络生成方法和装置
CN113409463B (zh) * 2021-06-29 2022-06-07 中国地质大学(武汉) 一种包括尖灭处理的三维地质模型构建方法及装置
CN113588722B (zh) * 2021-08-16 2023-04-28 中国地质大学(北京) 基于数字岩石物理的高温岩石电学特性分析方法及系统
CN113484909B (zh) * 2021-09-07 2021-11-19 西南石油大学 一种基于几何网格化和参数分配的缝洞型储层建立方法
US11566503B1 (en) 2021-09-21 2023-01-31 Saudi Arabian Oil Company Oil recovery of a reservoir based on residual oil saturation
CN114325845B (zh) * 2021-10-26 2024-03-15 重庆科技学院 一种基于数字岩心技术的非常规储层多尺度融合方法
US11952891B2 (en) * 2022-08-22 2024-04-09 Saudi Arabian Oil Company Systems and method for constraining 3D fracture model properties using X-ray micro-computed tomography of core plugs for naturally fractured reservoirs
CN115984497B (zh) * 2022-12-30 2024-02-23 中国铁路设计集团有限公司 一种地质横断面自动填绘方法
CN116342815B (zh) * 2023-05-12 2023-08-01 中国石油大学(华东) 一种页岩孔隙空间的多尺度孔隙网络模型构建方法
CN117115370B (zh) * 2023-08-15 2024-03-19 西南石油大学 一种高精度数字岩心模型构建方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233568A (en) 1991-06-28 1993-08-03 Atlantic Richfield Company Geopressure analysis system
US5835883A (en) 1997-01-31 1998-11-10 Phillips Petroleum Company Method for determining distribution of reservoir permeability, porosity and pseudo relative permeability
US6826520B1 (en) 1999-06-24 2004-11-30 Exxonmobil Upstream Research Company Method of upscaling permeability for unstructured grids
RU2166630C1 (ru) * 1999-09-03 2001-05-10 Закрытое акционерное общество "Инжиниринговый центр ЮКОС" Способ контроля за разработкой нефтяного месторождения
US6886632B2 (en) 2002-07-17 2005-05-03 Schlumberger Technology Corporation Estimating formation properties in inter-well regions by monitoring saturation and salinity front arrivals
US7496488B2 (en) * 2003-03-06 2009-02-24 Schlumberger Technology Company Multi-scale finite-volume method for use in subsurface flow simulation
US7224162B2 (en) 2003-10-04 2007-05-29 Halliburton Energy Services Group, Inc. System and methods for upscaling petrophysical data
CN1898640A (zh) 2004-01-30 2007-01-17 埃克森美孚上游研究公司 储层评价方法
RU2289829C1 (ru) * 2005-08-18 2006-12-20 ОАО "НК "Роснефть" Способ геофизической разведки для выявления нефтегазовых объектов
US7787678B2 (en) 2005-10-07 2010-08-31 Siemens Corporation Devices, systems, and methods for processing images
WO2007149766A2 (en) 2006-06-18 2007-12-27 Chevron U.S.A. Inc. Reservoir simulation using a multi-scale finite volume including black oil modeling
AU2009234101B2 (en) 2008-04-09 2014-01-09 Exxonmobil Upstream Research Company Method for generating anisotropic resistivity volumes from seismic and log data using a rock physics model
RU2440591C2 (ru) 2008-04-10 2012-01-20 Шлюмбергер Текнолоджи Б.В. Способ получения характеристик геологической формации, пересекаемой скважиной
US8725477B2 (en) 2008-04-10 2014-05-13 Schlumberger Technology Corporation Method to generate numerical pseudocores using borehole images, digital rock samples, and multi-point statistics
US8527248B2 (en) * 2008-04-18 2013-09-03 Westerngeco L.L.C. System and method for performing an adaptive drilling operation
US8095349B2 (en) 2008-05-30 2012-01-10 Kelkar And Associates, Inc. Dynamic updating of simulation models
US8200465B2 (en) 2008-06-18 2012-06-12 Terratek Inc. Heterogeneous earth models for a reservoir field
US20110004447A1 (en) 2009-07-01 2011-01-06 Schlumberger Technology Corporation Method to build 3D digital models of porous media using transmitted laser scanning confocal mircoscopy and multi-point statistics
US8311788B2 (en) 2009-07-01 2012-11-13 Schlumberger Technology Corporation Method to quantify discrete pore shapes, volumes, and surface areas using confocal profilometry
FR2945879B1 (fr) * 2009-05-20 2011-06-24 Inst Francais Du Petrole Methode d'exploitation de milieu poreux au moyen d'une modelisation d'ecoulements de fluide
US8498853B2 (en) * 2009-07-20 2013-07-30 Exxonmobil Upstream Research Company Petrophysical method for predicting plastic mechanical properties in rock formations
RU2544884C1 (ru) 2011-02-28 2015-03-20 Шлюмбергер Текнолоджи Б.В. Способ определения репрезентативных элементов площадей и объемов в пористой среде
BR112013020555A2 (pt) 2011-02-28 2020-07-28 Prad Research And Development Limited método para caracterizar uma amostra de meio poroso incluindo uma pluralidade de corpos de poro e uma pluraridade de gargantas de poro, sistema para caracterizar uma amostra de meio poroso incluindo uma pluralidade de corpos de poro e uma pluralidade de gargantas de poro, e método para caracterizar uma amostra de formação de rocha subterrânea porosa incluindo uma pluralidade de corpos de poro e uma pluralidade de gargantas de poro
US8908925B2 (en) 2011-02-28 2014-12-09 Schlumberger Technology Corporation Methods to build 3D digital models of porous media using a combination of high- and low-resolution data and multi-point statistics

Also Published As

Publication number Publication date
BR112013015288B1 (pt) 2021-09-14
WO2012118864A2 (en) 2012-09-07
RU2573739C2 (ru) 2016-01-27
BR112013015288A2 (pt) 2020-08-11
US20120221306A1 (en) 2012-08-30
US9134457B2 (en) 2015-09-15
WO2012118864A3 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
RU2013143803A (ru) Многомасштабное цифровое моделирование породы для моделирования пласта
Penna et al. Carbonate and igneous rock characterization through reprocessing, FWI imaging, and elastic inversion of a legacy seismic data set in Brazilian presalt province
CN101802649B (zh) 利用井眼图像、数字岩石样品以及多点统计算法生成数值假岩心的方法
Alfred et al. A new petrophysical model for organic shales
Chandra et al. Impact of depositional and diagenetic features on petrophysical and rock mechanical properties in Arab-D reservoir equivalent upper Jubaila Formation, Saudi Arabia
González et al. Proposed workflow to incorporate stratification within salt section using velocity and seismic attributes
CN110646850B (zh) 隔夹层地震预测方法及装置
Dietrich et al. Integrated analysis and interpretation of cross‐hole P‐and S‐wave tomograms: A case study
Sacchi et al. The use and beauty of ultra-high-resolution seismic reflection imaging in Late Quaternary marine volcaniclastic settings, Napoli Bay, Italy
WO2012146893A2 (en) Oil & gas exploration and production
Gasparrini et al. A multidisciplinary modeling approach to assess facies-dolomitization-porosity interdependence in a lower cretaceous platform (Northern Spain)
Gunnarsson 3D modeling in Petrel of geological CO2 storage site
Salahuddin et al. Hybrid Stochastic Algorithms: A Novel Application in Modeling Facies Cycles and Properties of Carbonate Platform, Onshore Abu Dhabi
Geel et al. Formation Evaluation of the Brussels Sand Member in the Netherlands
Milad et al. Machine learning to predict large pores and permeability in carbonate reservoirs using standard logs
Zerilli et al. Resolving Complex Overthrust Features Using Magnetotellurics-The Bolivian Foothills Case Study
Yu et al. Resistivity correction and water saturation evaluation for calcareous tight sandstone reservoir: A case study of G oil field in Sichuan Basin
Stalker et al. South West Hub CCS Project: evolution of storage site characterization through targeted research and its impact on uncertainty reduction
Grammer et al. Integrated reservoir characterization of Mississippian-age mid-continent carbonates
Dunn et al. Fifty shades darker: integrating sedimentology, sequence stratigraphy, chemostratigraphy and geophysics to identify sweet spots the liquids-rich Duvernay shale play
Nyunt et al. Towards a Realistic Representation of Lithological Heterogeneity at the South West Hub Through High-Resolution 3d Static Modelling
Wulff et al. Rock Physics and Seismic Characterization of Oman’s Unconventional Reservoirs
Huang et al. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique
Durogbitan et al. 3D basin architecture using gravity and magnetic data closes a structural gap in Petroleum systems modeling.
Sivila Petrophysical evaluation of capillary pressure for a naturally fractured tight gas sandstone reservoir: a case study, A