RU2012130C1 - Интегрирующий аналого-цифровой преобразователь - Google Patents

Интегрирующий аналого-цифровой преобразователь Download PDF

Info

Publication number
RU2012130C1
RU2012130C1 SU4933392A RU2012130C1 RU 2012130 C1 RU2012130 C1 RU 2012130C1 SU 4933392 A SU4933392 A SU 4933392A RU 2012130 C1 RU2012130 C1 RU 2012130C1
Authority
RU
Russia
Prior art keywords
input
output
inputs
outputs
counter
Prior art date
Application number
Other languages
English (en)
Inventor
Л.М. Лукьянов
Original Assignee
Научно-производственное предприятие "Всероссийский научно-исследовательский институт электромеханики с заводом"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-производственное предприятие "Всероссийский научно-исследовательский институт электромеханики с заводом" filed Critical Научно-производственное предприятие "Всероссийский научно-исследовательский институт электромеханики с заводом"
Priority to SU4933392 priority Critical patent/RU2012130C1/ru
Application granted granted Critical
Publication of RU2012130C1 publication Critical patent/RU2012130C1/ru

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

Изобретение относится к импульсной технике, в частности к преобразователям напряжения в цифровой код с интегрированием преобразуемого напряжения, и может быть использовано в устройствах сбора аналоговой информации систем контроля и управления, выполняемых на средствах вычислительной техники. Целью изобретения является повышение быстродействия преобразователя за счет уменьшения времени компенсационного интегрирования и получения результата преобразования. Для этого в аналого-цифровой преобразователь, содержащий интегратор, нуль-орган, компаратор, источник опорного напряжения, инвертор, три ключа, переключатель, резистивный элемент, четыре счетчика, делитель частоты, блок управления и элементы И и ИЛИ, введены коммутатор кодов, второй делитель частоты, четыре элемента И и элемент ИЛИ. 1 з. п. ф-лы, 3 ил.

Description

Изобретение относится к импульсной технике, в частности к преобразователям напряжения в цифровой код с интегрированием входного и опорного напряжений, и может быть использовано в устройствах сбора аналоговой информации различных систем, выполняемых на средствах вычислительной техники.
Известны аналого-цифровые преобразователи (АЦП), которые содержат интегратор, источник опорного напряжения, ноль-орган, два триггера, генератор импульсов и счетчик [1] .
В этих АЦП преобразование выполняется в два такта: сначала за To=
Figure 00000001
(fo - частота генератора импульсов) интегрируется входной сигнал Uх, а затем полученное напряжение разынтегрируется за Tx=
Figure 00000002
с помощью опорного напряжения Uо, откуда k Ux To = k Uo Tx, где k - коэффициент интегратора,
x=
Figure 00000003
·No.
Для подавления помех, наложенных на Uх, длительность первого такта должна быть равна (кратна) периоду помехи T1 = Tn, что в этих АЦП недопустимо, так как это приводит к появлению погрешности в результате преобразования из-за изменения Т1 во времени.
Эти недостатки устранены в АЦП [2] , который содержит первый счетчик, информационные выходы которого являются выходной шиной, первый ключ, информационный вход которого является входной шиной, управляющий вход соединен с первым выходом блока управления и объединен с первым входом первого элемента И, а выход объединен с выходом второго ключа и через резистивный элемент подключен к входу интегратора и к информационному входу третьего ключа, причем управляющий вход второго ключа соединен с вторым выходом блока управления, а его информационный вход соединен с выходом переключателя, управляющий вход которого соединен с третьим выходом блока управления, первый информационный вход через аналоговый инвертор соединен с его вторым информационным входом, который соединен с выходом источника опорного напряжения и объединен с первым входом компаратора, выход которого соединен со счетным входом второго счетчика и с первым входом первого элемента ИЛИ, а второй вход соединен с выходами третьего ключа и интегратора и объединен с первым входом нуль-органа, второй вход которого соединен с входом источника опорного напряжения, который является шиной нулевого потенциала, выход нуль-органа соединен с первым входом блока управления, управляющий вход третьего ключа соединен с выходом первого элемента ИЛИ, второй вход которого соединен с четвертым выходом блока управления и объединен с первым входом второго элемента И, выход которого подключен к входам установки в ноль второго и третьего счетчиков, а второй вход объединен с вторым входом блока управления, входом установки в ноль первого счетчика, который является входной шиной синхронизации, и с первым входом второго элемента ИЛИ, выход которого соединен с входом установки в ноль первого делителя частоты, информационные входы которого подключены к выходам соответствующих разрядов третьего счетчика, выход - к первому входу третьего элемента И, импульсный вход подключен к пятому выходу блока управления и объединен с вторым входом первого элемента И, выход которого соединен с первым входом третьего элемента ИЛИ, выход которого подключен к счетному входу первого счетчика, выход переполнения которого соединен со счетным входом третьего счетчика, единичные выходы соответствующих старших разрядов второго счетчика подсоединены к входам четвертого элемента ИЛИ, выход которого соединен с третьим входом блока управления, и четвертый счетчик, при этом информационный и управляющие входы третьего ключа, соединены соответственно с выходом цифроаналогового преобразователя (ЦАП) и с вторым выходом блока управления, шестой и первый выходы которого подсоединены соответственно к вторым входам второго счетчика и третьего элемента И, первый вход которого соединен с вторым входом третьего элемента ИЛИ, а выход - со счетным входом четвертого счетчика, вход установки нуля которого подсоединен к выходу переполнения первого счетчика и к второму входу второго элемента ИЛИ, а выходы разрядов - к информационным входам ЦАП, вход которого соединен с выходом переключателя, а последний вход четвертого элемента ИЛИ соединен с третьим выходом блока управления.
В этом АЦП по сравнению с аналогами время интегрирования Тизадается по внешним синхронизирующим импульсам, интервал времени между которыми выбирается в зависимости от периода частоты помехи Тn или ее гармоник. При этом, если за Ти выходное напряжение интегратора превышает величину его рабочего диапазона, то срабатывает компаратор и выполняется разряд конденсатора интегратора и продолжается дальнейшее интегрирование Uх. За время Ти определяются два кода р и
Figure 00000004
, обеспечивающие соотношение Ти = (pNo + n) to; где to - квант работы АЦП в первом такте; No=
Figure 00000005
и То - наименьшее время интегрирования Uх; q - число срабатываний компаратора. Во втором такте для выполнения разынтегрирования и компенсационного интегрирования используется напряжение
Uк=
Figure 00000006
No+
Figure 00000007
Figure 00000008
, где Δ- квант АЦП, равный Uo/No. Сначала разынтегрируется остаточное напряжение U1 интегратора за время Тр, а затем q раз выполняется интегрирование Uk до напряжения Uo = k Uk Tk, что занимает общее время Т2 = Tp + q Tk. Время Т2 преобразуется в код Хр результата преобразования с временным квантом pto:
Xp=
Figure 00000009
.
Величина U1 + q Uо равна напряжению, получаемому на выходе интегратора в первом такте, т. е.
Uи= kUxTи= kUxp
Figure 00000010
No+
Figure 00000011
to, поэтому получают Xp=
Figure 00000012
, т. е. Хр является точным результатом преобразования, который не зависит от величины Ти.
Но данный АЦП имеет недостаток, который состоит в том, что во втором такте для получения Хр затрачивается большое время на выполнение компенсационного интегрирования (qТк) и время этого такта почти такое же, как время интегрирования Uх в первом такте. Такие затраты времени существенно снижают быстродействие АЦП.
На уменьшение этих затрат времени и устранение недостатка прототипа направлено данное предложение, целью которого является повышение быстродействия АЦП.
Цель достигается тем, что в интегрирующий АЦП, содержащий первый счетчик, информационные выходы которого являются выходной шиной, первый ключ, информационный вход которого является входной шиной, управляющий вход соединен с первым выходом блока управления и объединен с первым входом первого элемента И, а выход объединен с выходом второго ключа и через резистивный элемент подключен к входу интегратора и к информационному входу третьего ключа, причем управляющий вход второго ключа соединен с вторым выходом блока управления, а его информационный вход соединен с выходом переключателя, управляющий вход которого соединен с третьим выходом блока управления, первый информационный вход через аналоговый инвертор соединен с его вторым информационным входом, который соединен с выходом источника опорного напряжения и объединен с первым входом компаратора, выход которого соединен со счетным входом второго счетчика и с первым входом первого элемента ИЛИ, а второй вход соединен с выходами третьего ключа и интегратора и объединен с первым входом нуль-органа, второй вход которого соединен с входом источника опорного напряжения, который является шиной нулевого потенциала, выход нуль-органа соединен с первым входом блока управления, управляющий вход третьего ключа соединен с выходом первого элемента ИЛИ, второй вход которого соединен с четвертым выходом блока управления и объединен с первым входом второго элемента И, выход которого подключен к входам установки в ноль второго и третьего счетчиков, а второй вход объединен с вторым входом блока управления, входом установки в ноль первого счетчика, который является входной шиной синхронизации, и с первым входом второго элемента ИЛИ, выход которого соединен с входом установки в ноль первого делителя частоты, информационные входы которого подключены к выходам соответствующих разрядов третьего счетчика, выход - к первому входу третьего элемента И, импульсный вход подключен к пятому выходу блока управления и объединен с вторым входом первого элемента И, выход которого соединен с первым входом третьего элемента ИЛИ, выход которого подключен к счетному входу первого счетчика, выход переполнения которого соединен со счетным входом третьего счетчика, единичные выходы соответствующих старших разрядов второго счетчика подсоединены к входам четвертого элемента ИЛИ, выход которого соединен с третьим входом блока управления, и четвертый счетчик, введены второй делитель частоты, коммутатор кодов, с четвертого по седьмой элементы И и пятый элемент ИЛИ, первый вход которого объединен с четвертым входом блока управления и с первыми входами третьего и четвертого элементов И, второй вход соединен с выходом второго элемента ИЛИ, а выход - с входом установки в ноль второго делителя частоты, выход которого соединен с первыми входами пятого и шестого элементов И, а информационные входы - с соответствующими выходами коммутатора кодов, вход управления которого объединен с вторым входом шестого элемента И и подключен к шестому выходу блока управления, информационные входы первого кода - к соответствующим выходам разрядов четвертого счетчика, а информационные входы второго кода - к соответствующим единичным выходам старших разрядов и младшему разряду второго счетчика, выход младшего разряда объединен с первым входом седьмого элемента И, остальные входы которого подсоединены к нулевым выходам старших разрядов второго счетчика, а выход - к пятому входу блока управления и к второму входу четвертого элемента И, третий вход которого соединен с третьим выходом блока управления и с вторым входом пятого элемента И, а выход - с вторым входом третьего элемента ИЛИ, третий и четвертый входы которого подключены к выходам третьего и пятого элементов И, третий вход последнего из которых объединен с третьим входом блока управления, пятый, седьмой и восьмой выходы которого подсоединены соответственно к импульсному входу второго делителя частоты, к второму входу третьего элемента И и к второму входу второго элемента ИЛИ, шестой и седьмой входы - к выходам соответственно компаратора и второго элемента И, а второй вход объединен с входом установки в ноль четвертого счетчика, счетный вход которого соединен с выходом шестого элемента И.
Блок управления выполнен на четырех триггерах, элементе задержки, шести элементах И, четырех элементах ИЛИ, формирователе импульсов и управляемом генераторе импульсов, выход которого является пятым выходом блока, а вход соединен с выходом первого элемента ИЛИ, первый вход которого является вторым входом блока и объединен с первым входом первого элемента И, а второй вход является восьмым выходом блока, через формирователь импульсов подключен к нулевому выходу первого триггера и объединен с первым входом второго элемента И, выход которого является четвертым выходом блока, а второй, третий и четвертые входы соединены с нулевыми выходами второго, третьего и четвертого триггеров соответственно, единичный выход последнего из которых является первым выходом блока и соединен с вторым входом первого элемента И, выход которого подключен к первым входам третьего, четвертого и пятого элементов И и к нулевому входу четвертого триггера, единичный вход которого является седьмым входом блока, а вход установки в исходное состояние объединен с одноименными входами остальных триггеров и подключен к выходу элемента задержки, при этом выход второго элемента ИЛИ является вторым выходом блока, а его первый и второй входы - соответственно третьим и седьмым выходами блока, которые соответственно соединены с единичными выходами соответственно первого и второго триггеров, последний из которых соединен с первым входом шестого элемента И, выход и второй вход которого подключены соответственно к первому входу третьего элемента ИЛИ и к выходу четвертого элемента ИЛИ, первый и второй входы которого являются соответственно третьим и пятым входами блока, которые объединены с вторыми входами соответственно пятого и четвертого элементов И, выходы которых подключены соответственно к единичному входу третьего триггера и к второму входу третьего элемента ИЛИ, третий вход которого является шестым выходом блока и соединен с единичным выходом третьего триггера, нулевой вход которого является четвертым входом блока, первым входом которого является нулевой вход второго триггера, который объединен с вторым входом третьего элемента И, выход которого соединен с единичным входом второго триггера, единичный вход первого триггера соединен с выходом третьего элемента ИЛИ, а его нулевой вход является шестым входом блока.
Среди известных технических решений не обнаружены АЦП, которые содержат признаки, сходные с отличительными признаками заявляемого технического решения.
В предлагаемом АЦП задача по устранению недостатка прототипа решается путем уменьшения времени компенсационного интегрирования. Это достигается за счет формирования различных временных квантов работы АЦП, которые используются при выполнении разынтегрирования и компенсационного интегрирования. Эти кванты соответственно равны tи и tq = tи/q, а величина tи формируется с помощью временных квантов t по результату измерения времени Ти интегрирования преобразуемого сигнала, который получается при использовании также квантов t. Преобразование времени разынтегрирования Тр и компенсационного интегрирования Тк с квантами tии tq в коды Х1 и Х2 и их суммирование позволяют получить результат преобразования Хр, который не зависит от величины Ти и t, а получен, как показано ниже, за значительно меньшее время по сравнению с прототипом, что повышает быстродействие предлагаемого АЦП.
На фиг. 1, 2 и 3 приведены блок-схемы АЦП, его блока управления и временная диаграмма их работы, где 1 и 2 - входные шины преобразуемого напряжения Uх и импульсов синхронизации, задающих время Ти измерения, 3 - выходная шина результата преобразования, 4 - интегратор, например, выполненный на операционном усилителе с конденсатором в цепи отрицательной обратной связи, 5 - резистивный элемент, 6 - источник опорного напряжения - Uo, 7 и 8 - нуль-орган и компаратор, 9 - аналоговый инвертор, 10 - переключатель, выход которого подсоединен к второму информационному входу при отсутствии управляющего сигнала, а при его наличии к первому информационному входу, 11-13 - с первого по третий ключи, информационные входы которых подсоединяются к выходам при наличии управляющих сигналов, 14-17 - с первого по четвертый счетчики, 18 и 19 - первый и второй делители частоты, 20 - коммутатор кодов, на выходы которого проходят сигналы с входов первого кода при отсутствии сигнала управления, а при его наличии сигналы с выходов второго кода, 21-27 - с первого по седьмой элементы И, 28-32 - с первого по пятый элементы ИЛИ, 33 - блок управления, 34-37 - с первого по четвертый триггеры, 38 и 39 - управляемый генератор и формирователь импульсов, 40-45 - с первого по шестой элементы И, 46-49 - с первого по четвертый элементы ИЛИ, 50 - элемент задержки, 51 - импульсы синхронизации шины 2, 52-54 - импульсы на выходах элементов И 22, 40 и 41, 55-58 - сигналы на единичных выходах триггеров 37, 35, 34 и 36, 59 - сигнал на выходе элемента ИЛИ 47, 60 и 61 - напряжение на выходе интегратора 4 и источника 6, 62 и 63 - сигналы на выходах компаратора 8 и нуль-органа 7, 64, 65 и 66 - сигналы на выходах элементов ИЛИ 31, И 27 и ИЛИ 46.
Входная шина 1 соединена с входом ключа 11, шина 2 - с входом установки в ноль счетчиков 14 и 17, с первым и вторым входами соответственно элементов ИЛИ 29 и И 22 и с вторым входом блока 33, шина 3 - с выходами счетчика 14, счетный вход которого соединен с выходом элемента ИЛИ 30, а выход переполнения - со счетным входом счетчика 16. Вход установки в ноль счетчика 16 подсоединен к одноименному входу счетчика 15, к выходу элемента И 22 и к седьмому входу блока 33, выходы - к входам делителя 18, импульсный вход которого соединен с одноименным входом делителя 19, с вторым входом элемента И 21 и с пятым выходом блока 33, вход установки в ноль - с выходом элемента ИЛИ 29, а выход - с четвертым входом блока 33, с первыми входами элементов И 23 и 24 и ИЛИ 32. Второй вход элемента ИЛИ 32 соединен с выходом элемента ИЛИ 29, а выход - с входом установки в ноль делителя 19, выход которого соединен с первыми входами элементов И 25 и 26, входы - с выходами коммутатора 20. Входы первого кода коммутатора соединены с выходами счетчика 17, входы второго кода - с единичными выходами счетчика 15, а вход управления - с шестым выходом блока 33 и с вторым входом элемента И 26, выходы которого соединен со счетным входом счетчика 17. Единичный выход младшего разряда счетчика 15 и нулевые выходы его старших разрядов соединены с входами элемента И 27, а единичные выходы его старших разрядов - с входами элемента ИЛИ 31, выход которого соединен с третьими входами блока 33 и элемента И 25. Выход элемента И 27 соединен с пятым входом блока 33 и с вторым входом элемента И 24, третий вход которого соединен с управляющим входом переключателя 10, с третьим выходом блока 33 и с вторым входом элемента И 25, а выход - с вторым входом элемента ИЛИ 30. Первый, третий и четвертый входы последнего соединены с выходами элементов И 21, 23 и 25, первый вход первого из них соединен с первым выходом блока 33 и с входом управления ключа 11, второй вход второго - с седьмым выходом блока 33, второй выход которого соединен с входом управления ключа 12. Выход ключа 12 соединен с выходом ключа 11 и через резистор 5 с входами интегратора 4 и ключа 13, а вход - с выходом переключателя 10, первый вход которого соединен через инвертор 9 с вторым входом, который объединен с первым входом компаратора 9 и с выходом источника 6. Вход источника 6 соединен с шиной нулевого потенциала и с вторым входом нуль-органа 7, первый вход которого соединен с выходами интегратора 4 и ключа 13 и с вторым входом компаратора 8, а выход - с первым входом блока 33. Шестой вход блока 33 соединен с выходом компаратора 8, со счетным входом счетчика 15 и с первым входом элемента ИЛИ 28, выход которого соединен с входом управления ключа 13, а второй вход - с первым входом элемента И 22 и с четвертым выходом блока 33, восьмой выход которого подсоединен к второму входу элемента ИЛИ 29.
В блоке 33 пятым выходом является выход генератора 38, вход которого соединен с выходом элемента ИЛИ 46. Первый вход элемента ИЛИ 46 является вторым входом блока и соединен с первым входом элемента И 40, а второй вход является восьмым выходом блока и через формирователь 39 подсоединен к нулевому выходу триггера 34 и к первому входу элемента И 41, выход которого является четвертым выходом блока, а второй, третий и четвертый входы соединены с нулевыми выходами триггеров 35, 36 и 37. Единичный выход последнего является первым выходом блока и соединен с вторым входом элемента И 40, выход которого подсоединен к первым входам элементов И 42, 43 и 44 и к нулевому входу триггера 37. Единичный вход триггера 37 является седьмым входом блока, а вход установки в исходное состояние объединен с одноименными входами остальных триггеров и подсоединен к выходу элемента 50. Выход элемента ИЛИ 47 является вторым выходом блока, а его первый и второй входы - соответственно третьим и седьмым выходами блока, которые соединены с единичными выходами соответственно триггеров 34 и 35. Последний из них объединен с первым входом элемента И 45, выход и второй вход которого подсоединены соответственно к первому входу элемента ИЛИ 48 и к выходу элемента ИЛИ 49. Первый и второй входы элемента ИЛИ 49 являются соответственно третьим и пятым входами блока, которые подсоединены к вторым входам соответственно элементов И 44 и 43. Выходы последних подсоединены соответственно к единичному входу триггера 36 и второму входу элемента ИЛИ 48, третий вход которого является шестым выходом блока и соединен с единичным выходом триггера 36. Нулевой вход триггера 36 является четвертым входом блока, первым входом которого является нулевой вход триггера 35, который объединен с вторым входом элемента И 42. Выход элемента И 42 подсоединен к единичному входу триггера 35, единичный вход триггера 34 соединен с выходом элемента ИЛИ 48, а его нулевой вход является шестым входом блока.
Предложенный АЦП работает следующим образом.
После включения питания на время переходных процессов на шинах питания элемент 50 задержки поддерживает на выходе сигнал с нулевым уровнем. Это обеспечивает установку в исходное нулевое состояние триггеров 34-37. Сигналы с их нулевых выходов с помощью элемента И 41 образуют сигнал 54 на четвертом выходе блока 33, который проходит через элемент ИЛИ 28 и с помощью ключа 13 поддерживает в исходном состоянии интегратор 4, а также разрешает работу элемента И 22. Отсутствие сигналов на остальных выходах блока 33 (кроме импульсов генератора 38 на пятом выходе) запрещает работу элементов И 21, 23-26 и соответственно счетчиков 14, 16 и 17. В этом состоянии АЦП готов к началу преобразования, которое выполняется по внешним импульсам синхронизации 51. Эти импульсы устанавливают в ноль счетчики 14 и 17, а также синхронизируют начало очередного импульса в генераторе 38, пройдя через элемент ИЛИ 46 (импульс 66). Первый из импульсов 51 проходит через элемент И 22, образуя импульс 52, который устанавливает в ноль счетчики 15 и 16 и в единицу триггер 37.
С установкой в единицу триггера 37 появляется сигнал 55 и начинается интегрирование Uх интегратором 4, так как сигнал 54 снимается, ключ 13 размыкается, а ключ 11 подключает Uх через резистор 5 к интегратору 4. Сигнал 55 разрешает работу элемента И 21, через который проходят импульсы генератора 38, имеющие период повторения t, на вход счетчика 14 (через элемент ИЛИ 30). Емкость счетчика 14 равна No, и на его выходе появляется импульс переполнения через время to = Not, которое подсчитывается счетчиком 16.
Процесс интегрирования Uх и подсчета импульсов tо продолжается до появления второго импульса 51, по которому заканчивается время измерения Uх, равное интервалу Ти между этими двумя импульсами 51.
За время Ти в счетчике 16 получен код Nи=
Figure 00000013
=
Figure 00000014
, а в интеграторе - выходное напряжение 60, равное -Uи = k Uх Ти, которое может при больших величинах Uх и Ти превышать его рабочий диапазон, что недопустимо.
Для исключения этого напряжения -U сравнивается с помощью компаратора 8 с напряжением 61, равным -Uо и рабочему диапазону интегратора 4. При -U = -Uо компаратор 8 срабатывает, его выходной импульс 62 проходит через элемент ИЛИ 28 и с помощью ключа 13 разряжает конденсатор интегратора 4.
Процесс интегрирования Uх продолжается с исходного состояния интегратора 4, а импульсы 62 подсчитываются счетчиком 15. В зависимости от величин Uх и Ти, наименьшая величина которого равна Noto, может происходить различное число q срабатываний компаратора 8. На фиг. 3 в качестве примера показаны три случая:
q1 = 3, q2 = 1 и q3 = 0.
За время Ти интегрирования Uх напряжение Uи на выходе интегратора 4 может изменяться q раз по Uо и к окончанию Ти на его выходе может остаться напряжение U1, т. е. общее изменение этого напряжения равно Uи = q Uo + U1 = k Uх Ти.
С окончанием Ти напряжение U1 может быть равно нулю при Uх = 0 или при совпадении импульсов 62 с моментом окончания Ти. Из этих состояний интегратора 4 с помощью нуль-органа 7 образуется сигнал 63, который используется для управления дальнейшей работой АЦП и при разынтегрировании U1 напряжением -Uо.
По окончании Ти дальнейший процесс получения результата преобразования путем разынтегрирования U1 и компенсационного интегрирования Uо выполняется в последовательности, определяемой тремя сигналами: 63 с выхода нуль-органа 7, 65 и 64 с выходов соответственно элементов И 27 и ИЛИ 31, которые по коду q счетчика 15 формируют эти сигналы для q = 1 и для q ≥ 2. Кроме приведенных на фиг. 3 трех примеров соотношений этих сигналов могут быть еще три случая, когда сигнал 63 имеет нулевой уровень и при отсутствии одного из сигналов 65 или 64, а также при отсутствии их обоих.
С учетом этих шести комбинаций сигналов в блоке 33 формируются сигналы управления на выполнение режимов разынтегрирования и компенсационного интегрирования, а также сигналы управления счетчиком 17, коммутатором 20 кодов и делителем 19 частоты, которые формируют различные временные кванты tи и tq для этих режимов работы АЦП при преобразовании их длительностей в коды, сумма которых представляет собой результат преобразования.
Окончание Ти происходит по второму импульсу 51, который проходит через элемент И 40 и образует импульс 53. Этот импульс устанавливает в ноль триггер 37, его сигнал 55 снимается, прекращаются интегрирование Uхи подсчет импульсов генератора 38 счетчиком 14. Импульс 53 проходит через те элементы И 42, 43 и 44, работа которых разрешена сигналами 63, 65 и 64, на единичные входы триггеров 35, 34 и 36.
Для случая наличия сигналов 63 и 64 (первый приведенный пример на фиг. 3 с q = 3) импульс 53 проходит через элементы И 42 и 44 и устанавливает в единицу триггеры 35 и 36. Сигнал 56 первого из них разрешает работу элементов И 23 и 45 и, пройдя через элемент ИЛИ 47 (сигнал 59), с помощью ключа 12 подключает к резистору 5 и далее к интегратору 4 напряжение -Uо с выхода источника 6, которое прошло на выход переключателя 10, так как на его управляющем входе сигнал с третьего выхода блока 33 отсутствует. В интеграторе начинается разынтегрирование остаточного напряжения U1 напряжением -Uо. Этот процесс продолжается до момента получения равенства -U1 = -k UoTp, когда выходной сигнал 63 нуль-органа снимается и устанавливает в ноль триггер 35, снимая сигнал 56.
В течение Тр счетчик 14 подсчитывает импульсы с выхода делителя 18, которые проходят на его счетный вход через элементы И 23 и ИЛИ 30. На импульсный вход делителя 18 поступают от генератора 38 импульсы с периодом t, число которых делится на величину кода Nи=
Figure 00000015
, поступающего с выходов счетчика 16, и на выходе делителя 18 появляются импульсы с периодом повторения tи = Nиt = Ти/Nо.
Делитель 18 частоты может быть, например, выполнен на основе счетчика, выходы разрядов которого соединены с первыми входами схемы сравнения кодов. Ее вторые входы являются информационными входами делителя, а выход соединен с первым входом элемента И, второй вход которого соединен через элемент задержки с входом делителя и со счетным входом счетчика, а выход является выходом делителя и соединен с первым входом элемента ИЛИ, выход которого подсоединен к входу установки в ноль счетчика, а второй вход является входом установки в ноль делителя. При получении в счетчике делителя 18 кода Nи, т. е. через время tи после установки в ноль, схема сравнения кодов разрешает прохождение импульса от элемента задержки на выход. Этот же импульс через элемент ИЛИ устанавливает ноль в счетчике, и процесс деления числа импульсов на Nипродолжается с получением выходных импульсов с периодом повторения tи. При подаче импульса на вход установки в ноль делителя осуществляется его синхронизация, обеспечивающая появление первого импульса на выходе делителя через время tи независимо от состояния, в котором находился счетчик перед поступлением импульса синхронизации.
В качестве синхронизирующих импульсов перед началом разынтегрирования для делителя 18 используются импульсы 51, которые проходят через элемент ИЛИ 29. В результате подсчета импульсов с выхода делителя 18 за время Тр в счетчике 14 получен код
X1=
Figure 00000016
=
Figure 00000017

С установкой в единицу триггера 36 его сигнал 58 разрешает работу элемента И 26 и подключает с помощью коммутатора 20 код с выхода счетчика 15 на входы делителя 19 частоты, который выполнен аналогично делителю 18 и так же, как он, устанавливается в ноль импульсами 51, проходящими через элемент ИЛИ 32. На выходе делителя 19 формируются импульсы с периодом повторения t1 = qt, которые проходят через элемент И 26 на счетный вход счетчика 17, установленного в ноль импульсами 51.
Длительность сигнала 58 равна tи, так как триггер 36 устанавливается в ноль первым импульсом с выхода делителя 18. За это время в счетчике 17 получен код
Nq=
Figure 00000018
=
Figure 00000019
=
Figure 00000020
.
Сигналы 58 и 56 (последний через элемент И 45, работа которого разрешена сигналом 64, прошедшим через элемент ИЛИ 49), поступают на входы элемента ИЛИ 48, на выход которого проходит сигнал с наибольшей длительностью, и его снятие устанавливает в единицу триггер 34. Его сигнал 57 проходит через элемент ИЛИ 47 и оставляет включенным ключ 12, он поступает также на управляющий вход переключателя 10, подключая к его выходу напряжения Uо с выхода инвертора 9, и на входы элементов И 24 и 25.
В интеграторе 4 начинается компенсационное интегрирование напряжения Uо, которое продлится в течение времени Тк до срабатывания компаратора 8 при равенстве напряжений -Uи = -Uo = -k Uо Тк. Выходной импульс 62 компаратора 8 устанавливает в ноль триггер 34, сигнал 57 снимается и компенсационное интегрирование заканчивается. На его выполнение требуется время
Tk=
Figure 00000021
= 1/k.
С появлением сигнала 57 по снятии сигнала с нулевого выхода триггера 34 запускается формирователь 39 и его импульс синхронизирует работу генератора 38 (импульсы 66) и делителей 18 и 19 частоты (через элементы ИЛИ 29 и 32).
На информационные входы делителя 19 с помощью коммутатора 20 подается код Nq с выходов счетчика 17, так как сигнал 58 на его управляющем входе отсутствует. На выходе делителя 19 формируются импульсы, период повторения которых равен
tq= Nqt=
Figure 00000022
·t=
Figure 00000023
=
Figure 00000024
=
Figure 00000025
.
Для исключения накапливаемой в процессе формирования tq погрешности от ошибки квантования в Nq, которая могла иметь место при преобразовании tи в Nq с помощью временных квантов t1, работа делителя 19 синхронизируется импульсами с выхода делителя 18, которые проходят через элемент ИЛИ 32 на его вход установки в ноль.
Импульсы с выхода делителя 19 проходят через элемент И 25, работа которого разрешена сигналами 64 и 57, и подсчитываются счетчиком 14. За время Тк код Х1 счетчика 14 увеличивается на
X2=
Figure 00000026
=
Figure 00000027
, и в нем формируется код результата преобразования Хр = Х1 + Х2.
Со снятием сигнала 57 возникает сигнал 54, который устанавливает в исходное состояние интегратор 4 и информирует, что на выходной шине 3 находится результат преобразования Хр. Код Хр соответствует среднему значению сигнала Uх, полученному за время Ти его интегрирования с квантом преобразования Δ =
Figure 00000028
. Действительно, подставляя в выражение для Хр значения Х1 и Х2, выраженные через tи и tq, а затем значения последних, выраженные через Ти, получают
Xp=
Figure 00000029
+
Figure 00000030
=
Figure 00000031
Figure 00000032
+
Figure 00000033
= N
Figure 00000034
(U1+qUo).
Величина в скобках соответствует напряжению Uи, на которое изменяется выходное напряжение интегратора 4 за время Ти, т. е. Uи = k UхТи = (U1 + q Uо).
Поэтому величина Хр равна
Xp=
Figure 00000035
=
Figure 00000036
· No=
Figure 00000037
.
Она не зависит от длительности Ти измерения Uх, и на ее получение затрачено время Тр + Тк, которое значительно меньше по сравнению с прототипом благодаря уменьшению в q раз времени компенсационного интегрирования. Это существенно уменьшает затраты времени на выполнение преобразования и повышает быстродействие АЦП.
Для других комбинаций сигналов 63, 64 и 65 блок 33 также обеспечивает необходимые выходные сигналы управления работой АЦП. Так, в рассмотренном примере наличие к окончанию Ти сигнала 64 и отсутствие сигнала 63 приводит к выполнению только одного такта Тк компенсационного интегрирования Uо без выполнения разынтегрирования в связи с тем, что U1= 0. В этом случае после Ти сначала выполнен такт tи с получением кода Nq в счетчике 17 для формирования временного кванта tq, как это было описано выше, а затем по снятии сигнала 58, который проходит через элемент ИЛИ 48, благодаря отсутствию сигнала с выхода элемента И 45, так как отсутствует сигнал 56, устанавливается в единицу триггер 34, по сигналу 57 которого выполняется такт Тк с временным квантом работы tq. Для этого случая в выражении для Хр величина U1 = 0, a q соответствует коду, полученному в счетчике 15.
Во втором примере, приведенном на фиг. 3, q = 1, поэтому к окончанию Ти сигнал 64 отсутствует и имеется сигнал 65. При наличии сигнала 63 в АЦП выполняется разынтегрирование за время Тр и компенсационное интегрирование за время Тк. При этом временной квант преобразования в код этих временных интервалов одинаков и равен tи, так как разрешается работа элементов И 23 и 24 соответственно сигналами 56, 57 и 65. Если в этом примере сигнал 63 к окончанию Ти отсутствует, то импульс 53 проходит через элементы И 43 и ИЛИ 48 и устанавливает в единицу триггер 34, т. е. сразу начинается компенсационное интегрирование Uо, по окончании которого получен результат преобразования Хр = Х2. Для этого случая в выражении для Хр величины U1 = 0 и q = 1. Третий пример фиг. 3 соответствует q = 0, поэтому к окончанию сигналы 64 и 65 отсутствуют и при наличии сигнала 63 выполняется только такт разынтегрирования с временным квантом tи преобразования Тр в код Хр. Для этого примера в выражении для Хр величина q = 0, а при отсутствии сигнала 63 величины U1= 0 и q = 0, что означает Uи = 0 и Uх = 0. В последнем случае преобразование заканчивается с окончанием Ти, так как отсутствие сигналов 63, 64 и 65 выключает из работы элементы И 42, 43 и 44 и через них импульс 53 не проходит на триггеры 34, 35 и 36, которые остаются в нуле, и с установкой в ноль триггера 37 в элементе И 41 формируется сигнал 54, информирующий об окончании преобразования, а в счетчике 14 остается без изменения после установки в ноль импульсами 51 код Хр = 0.
Все это показывает, что в предлагаемом АЦП, как и в прототипе, время измерения преобразуемого сигнала может быть задано произвольно по внешним сигналам и для подавления помехи оно может быть кратно периоду помехи или ее гармоник. Если в течение этого времени выходное напряжение интегратоpа перекрывает его рабочий диапазон, то работа АЦП не нарушается и это может произойти многократно до q раз. В этом случае преобразование выполняется до получения окончательного результата с установленной для АЦП точностью и на него не оказывают влияние изменения в широких пределах времени Ти измерения преобразуемого напряжения.
В отличие от прототипа, в котором при изменении Ти, приводящем к q-кратному срабатыванию компаратора, происходят соответствующее изменение времени компенсационного интегрирования и увеличение времени преобразования, в предлагаемом АЦП благодаря формированию с помощью делителей частоты различных временных квантов: tи для выполнения разынтегрирования в течение Тр, t1 для дальнейшего формирования временного кванта tq, используемого в течение Тк при компенсационном интегрировании, и использованию tи и tq для преобразования временных интервалов Тр и Тк в коды Х1 и Х2 результата преобразования затраты времени на получение последнего сокращены в q раз, что уменьшает общее время преобразования и повышает быстродействие АЦП.
Таким образом, предлагаемый АЦП решает поставленную перед ним задачу, направленную на устранение недостатка прототипа, по сравнению с которым достигается повышение быстродействия его работы.
Необходимо также отметить, что по сравнению с прототипом в предлагаемом АЦП устранены дополнительные погрешности, обусловленные в прототипе необходимостью преобразования кода, который получается при измерении времени интегрирования, в напряжение компенсационного интегрирования с помощью ЦАП, работающего в режиме переключения знака опорного напряжения. Эти погрешности в предлагаемом АЦП устранены, так как такого преобразования и наличия ЦАП в нем не требуется, что достигнуто благодаря образованию временных квантов работы АЦП при получении результата преобразования, которые формируются из результата измерения полного времени интегрирования преобразуемого сигнала и с помощью делителей частоты, которые основываются на пересчете импульсов без применения аналоговых элементов.

Claims (2)

1. ИНТЕГРИРУЮЩИЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ, содержащий первый счетчик, информационные выходы которого являются выходной шиной, первый ключ, информационный вход которого является входной шиной, управляющий вход соединен с первым выходом блока управления и объединен с первым входом первого элемента И, а выход объединен с выходом второго ключа и через резистивный элемент подключен к входу интегратора и информационному входу третьего ключа, управляющий вход второго ключа соединен с вторым выходом блока управления, а его информационный вход - с выходом переключателя, управляющий вход которого соединен с третьим выходом блока управления, первый информационный вход через аналоговый инвертор соединен с его вторым информационным входом, который соединен с выходом источника опорного напряжения и объединен с первым входом компаратора, выход которого соединен со счетным входом второго счетчика и первым входом первого элемента ИЛИ, а второй вход соединен с выходами третьего ключа и интегратора и объединен с первым входом нуль-органа , второй вход которого соединен с входом источника опорного напряжения, который является шиной нулевого потенциала, выход нуль-органа соединен с первым входом блока управления, управляющий вход третьего ключа соединен с выходом первого элемента ИЛИ, второй вход которого соединен с четвертым выходом блока управления и объединен с первым входом второго элемента И, выход которого подключен к входам установки в "0" второго и третьего счетчиков, а второй вход объединен с вторым входом блока управления, входом установки в "0" первого счетчика, который является входной шиной синхронизации, и с первым входом второго элемента ИЛИ, выход которого соединен с входом установки в "0" первого делителя частоты, информационные входы которого подключены к выходам соответствующих разрядов третьего счетчика, выход - к первому входу третьего элемента И, импульсный вход подключен к пятому выходу блока управления и объединен с вторым входом первого элемента И, выход которого соединен с первым входом третьего элемента ИЛИ, выход которого подключен к счетному входу первого счетчика, выход переполнения которого соединен со счетным входом третьего счетчика, единичные выходы соответствующих старших разрядов второго счетчика подсоединены к входам четвертого элемента ИЛИ, выход которого соединен с третьим входом блока управления, и четвертый счетчик, отличающийся тем, что, с целью повышения быстродействия, в него введены второй делитель частоты, коммутатор кодов, с четвертого по седьмой элементы И и пятый элемент ИЛИ, первый вход которого объединен с четвертым входом блока управления и первыми входами третьего и четвертого элементов И, второй вход соединен с выходом второго элемента ИЛИ, а выход - с входом установки в "0" второго делителя частоты, выход которого соединен с первыми входами пятого и шестого элементов И, а информационные входы - с соответствующими выходами коммутаторов кодов, вход управления которого объединен с вторым входом шестого элемента И и подключен к шестому выходу блока управления, информационные входы первого кода - к соответствующим выходам разрядов четвертого счетчика, а информационные входы второго кода - к соответствующим единичным выходам старших разрядов и младшему разряду второго счетчика, выход младшего разряда объединен с первым входом седьмого элемента И, остальные входы которого подсоединены к нулевым выходам старших разрядов второго счетчика, а выход - к пятому входу блока управления и второму входу четвертого элемента И, третий вход которого соединен с третьим выходом блока управления и вторым входом пятого элемента И, а выход - с вторым входом третьего элемента ИЛИ, третий и четвертый входы которого подключены к выходам третьего и пятого элементов И, третий вход последнего из которых объединен с третьим входом блока управления, пятый, седьмой и восьмой выходы которого подсоединены соответственно к импульсному входу второго делителя частоты, к второму входу третьего элемента И и второму входу второго элемента ИЛИ, шестой и седьмой входы - к выходам соответственно компаратора и второго элемента И, а второй вход объединен с входом установки в "0" четвертого счетчика, счетный вход которого соединен с выходом шестого элемента И.
2. Преобразователь по п. 1, отличающийся тем, что блок управления выполнен на четырех триггерах, элементе задержки, шести элементах И, четырех элементах ИЛИ, формирователе импульсов и управляемом генераторе импульсов, выход которого является пятым выходом блока, а вход соединен с выходом первого элемента ИЛИ, первый вход которого является вторым входом блока и объединен с первым входом первого элемента И, а второй вход является восьмым выходом блока, через формирователь импульсов подключен к нулевому выходу первого триггера и объединен с первым входом второго элемента И, выход которого является четвертым выходом блока, а второй, третий и четвертый входы соединены с нулевыми выходами второго, третьего и четвертого триггеров соответственно, единичный выход последнего из которых является первым выходом блока и соединен с вторым входом первого элемента И, выход которого подключен к первым входам третьего, четвертого и пятого элементов И и нулевому входу четвертого триггера, единичный вход которого является седьмым входом блока, а вход установки в исходное состояние объединен с одноименными входами остальных триггеров и подключен к выходу элемента задержки, выход второго элемента ИЛИ является вторым выходом блока, а его первый и второй входы - соответственно третьим и седьмым выходами блока, которые соответственно соединены с единичными выходами первого и второго триггеров, последний из которых соединен с первым входом шестого элемента И, выход и второй вход которого подключены соответственно к первому входу третьего элемента ИЛИ и к выходу четвертого элемента ИЛИ, первый и второй входы которого являются соответственно третьим и пятым выходами блока, которые объединены с вторыми входами соответственно пятого и четвертого элементов И, выходы которых подключены соответственно к единичному входу третьего триггера и второму входу третьего элемента ИЛИ, третий вход которого является шестым выходом блока и соединен с единичным выходом третьего триггера, нулевой вход которого является четвертым входом блока, первым входом которого является нулевой вход второго триггера, который объединен с вторым входом третьего элемента И, выход которого соединен с единичным входом второго триггера, единичный вход первого триггера соединен с выходом третьего элемента ИЛИ, а его нулевой вход является шестым входом блока.
SU4933392 1991-05-06 1991-05-06 Интегрирующий аналого-цифровой преобразователь RU2012130C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4933392 RU2012130C1 (ru) 1991-05-06 1991-05-06 Интегрирующий аналого-цифровой преобразователь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4933392 RU2012130C1 (ru) 1991-05-06 1991-05-06 Интегрирующий аналого-цифровой преобразователь

Publications (1)

Publication Number Publication Date
RU2012130C1 true RU2012130C1 (ru) 1994-04-30

Family

ID=21572992

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4933392 RU2012130C1 (ru) 1991-05-06 1991-05-06 Интегрирующий аналого-цифровой преобразователь

Country Status (1)

Country Link
RU (1) RU2012130C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2460210C1 (ru) * 2011-06-17 2012-08-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Интегрирующий преобразователь "аналог-цифра-аналог"
RU2464702C1 (ru) * 2011-10-12 2012-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Интегрирующий число-импульсный аналого-цифровой преобразователь

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2460210C1 (ru) * 2011-06-17 2012-08-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Интегрирующий преобразователь "аналог-цифра-аналог"
RU2464702C1 (ru) * 2011-10-12 2012-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Интегрирующий число-импульсный аналого-цифровой преобразователь

Similar Documents

Publication Publication Date Title
US4703310A (en) Digital/analog converter with capacitor-free elimination of a.c. components
EP0289081B1 (en) Digital-to-analog converter
CA1257932A (en) A/d or d/a converter
RU2012130C1 (ru) Интегрирующий аналого-цифровой преобразователь
US5148171A (en) Multislope continuously integrating analog to digital converter
RU2012131C1 (ru) Интегрирующий аналого-цифровой преобразователь
EP0289082A1 (en) Digital-to-analog converter
RU2007029C1 (ru) Аналого-цифровой преобразователь с промежуточным преобразованием в частоту
RU2036559C1 (ru) Аналого-цифровой преобразователь совмещенного интегрирования
SU1388989A2 (ru) Аналого-цифровой преобразователь
RU2012132C1 (ru) Аналого-цифровой преобразователь
RU2038694C1 (ru) Аналого-цифровой преобразователь
SU1728857A2 (ru) Многоканальное измерительное устройство
RU2062549C1 (ru) Аналого-цифровой преобразователь
SU970685A1 (ru) Преобразователь код-момент времени
SU1160552A1 (ru) Преобразователь периода следования импульсов в напряжение
RU2028730C1 (ru) Аналого-цифровой преобразователь
SU1383399A1 (ru) Устройство дл определени средней мощности случайных сигналов
SU1383495A2 (ru) Делитель частоты с дробным коэффициентом делени
RU1785075C (ru) Аналого-цифровой преобразователь совмещенного интегрировани
JPS6143818A (ja) 遅延パルス発生装置
SU1695503A1 (ru) Аналого-цифровой преобразователь совмещенного интегрировани
Kościelnik et al. Analysis of conversion time of time-to-digital converters with charge redistribution
SU1422404A1 (ru) Счетчик импульсов
SU1644382A1 (ru) Аналого-цифровой преобразователь с промежуточным преобразованием в частоту