RU2012108925A - HEAT EXCHANGE LAYER FROM CASCADE OF MAGNETO-CALORIC MATERIALS - Google Patents

HEAT EXCHANGE LAYER FROM CASCADE OF MAGNETO-CALORIC MATERIALS Download PDF

Info

Publication number
RU2012108925A
RU2012108925A RU2012108925/07A RU2012108925A RU2012108925A RU 2012108925 A RU2012108925 A RU 2012108925A RU 2012108925/07 A RU2012108925/07 A RU 2012108925/07A RU 2012108925 A RU2012108925 A RU 2012108925A RU 2012108925 A RU2012108925 A RU 2012108925A
Authority
RU
Russia
Prior art keywords
heat transfer
transfer layer
layer according
magnetocaloric materials
thermal
Prior art date
Application number
RU2012108925/07A
Other languages
Russian (ru)
Inventor
Колмэн-Патрик КЭРРОЛЛ
Олаф РОГГЕ
Бенни РЕЙСИНК
Original Assignee
Басф Се
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42629291&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2012108925(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Басф Се filed Critical Басф Се
Publication of RU2012108925A publication Critical patent/RU2012108925A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49352Repairing, converting, servicing or salvaging

Abstract

1. Теплообменный слой из каскада по меньшей мере трех различных магнетокалорических материалов с различными температурами Кюри, которые расположены друг за другом в порядке возрастания или убывания температуры Кюри и предпочтительно в каждом случае изолированы друг от друга расположенными между ними термическими и/или электрическими изоляторами, причем разность температур Кюри у соседствующих магнетокалорических материалов составляет от 0,5 до 4°С.2. Теплообменный слой по п.1, отличающийся тем, что разность температур Кюри соседствующих магнетокалорических материалов составляет от 1,5 до 2,5°С.3. Теплообменный слой по п.2, отличающийся тем, что разность температур Кюри соседствующих магнетокалорических материалов составляет от 1,8 до 2,2°С.4. Теплообменный слой по одному из пп.1-3, отличающийся тем, что в теплообменном слое присутствуют от 5 до 50 различных магнетокалорических материалов.5. Теплообменный слой по одному из пп.1-3, отличающийся тем, что термические и/или электрические изоляторы состоят из органического полимера, керамики, неорганических оксидов, углеродных волокон или сетей углеродных волокон, различных сортов стекла, полупроводников или сочетания этих компонентов.6. Теплообменный слой по одному из пп.1-3, отличающийся тем, что термические и/или электрические изоляторы образуют матрицу, в которую введены магнетокалорические материалы.7. Теплообменный слой по одному из пп.1-3, отличающийся тем, что расстояние между соседствующими магнетокалорическими материалами составляет от 0,05 до 3 мм.8. Теплообменный слой по одному из пп.1-3, отличающийся тем, что магнетокалорические материалы и термические и/или электр1. A heat transfer layer of a cascade of at least three different magnetocaloric materials with different Curie temperatures, which are arranged one after another in increasing or decreasing Curie temperatures and are preferably in each case insulated from each other by thermal and / or electrical insulators located between them, and the Curie temperature difference between adjacent magnetocaloric materials is from 0.5 to 4 ° C. 2. The heat exchange layer according to claim 1, characterized in that the Curie temperature difference of the adjacent magnetocaloric materials is from 1.5 to 2.5 ° C. The heat exchange layer according to claim 2, characterized in that the Curie temperature difference of adjacent magnetocaloric materials is from 1.8 to 2.2 ° C. A heat transfer layer according to one of claims 1 to 3, characterized in that from 5 to 50 different magnetocaloric materials are present in the heat transfer layer. A heat transfer layer according to one of claims 1 to 3, characterized in that the thermal and / or electrical insulators consist of an organic polymer, ceramic, inorganic oxides, carbon fibers or carbon fiber networks, various types of glass, semiconductors, or a combination of these components. 6. A heat exchange layer according to one of claims 1 to 3, characterized in that thermal and / or electrical insulators form a matrix into which magnetocaloric materials are introduced. A heat transfer layer according to one of claims 1 to 3, characterized in that the distance between adjacent magnetocaloric materials is from 0.05 to 3 mm. Heat transfer layer according to one of claims 1 to 3, characterized in that the magnetocaloric materials and thermal and / or electronic

Claims (15)

1. Теплообменный слой из каскада по меньшей мере трех различных магнетокалорических материалов с различными температурами Кюри, которые расположены друг за другом в порядке возрастания или убывания температуры Кюри и предпочтительно в каждом случае изолированы друг от друга расположенными между ними термическими и/или электрическими изоляторами, причем разность температур Кюри у соседствующих магнетокалорических материалов составляет от 0,5 до 4°С.1. A heat transfer layer of a cascade of at least three different magnetocaloric materials with different Curie temperatures, which are arranged one after another in increasing or decreasing Curie temperatures and are preferably in each case insulated from each other by thermal and / or electrical insulators located between them, and the Curie temperature difference between adjacent magnetocaloric materials is from 0.5 to 4 ° C. 2. Теплообменный слой по п.1, отличающийся тем, что разность температур Кюри соседствующих магнетокалорических материалов составляет от 1,5 до 2,5°С.2. The heat transfer layer according to claim 1, characterized in that the Curie temperature difference of adjacent magnetocaloric materials is from 1.5 to 2.5 ° C. 3. Теплообменный слой по п.2, отличающийся тем, что разность температур Кюри соседствующих магнетокалорических материалов составляет от 1,8 до 2,2°С.3. The heat transfer layer according to claim 2, characterized in that the Curie temperature difference of adjacent magnetocaloric materials is from 1.8 to 2.2 ° C. 4. Теплообменный слой по одному из пп.1-3, отличающийся тем, что в теплообменном слое присутствуют от 5 до 50 различных магнетокалорических материалов.4. The heat transfer layer according to one of claims 1 to 3, characterized in that from 5 to 50 different magnetocaloric materials are present in the heat transfer layer. 5. Теплообменный слой по одному из пп.1-3, отличающийся тем, что термические и/или электрические изоляторы состоят из органического полимера, керамики, неорганических оксидов, углеродных волокон или сетей углеродных волокон, различных сортов стекла, полупроводников или сочетания этих компонентов.5. The heat transfer layer according to one of claims 1 to 3, characterized in that the thermal and / or electrical insulators are composed of an organic polymer, ceramic, inorganic oxides, carbon fibers or networks of carbon fibers, various grades of glass, semiconductors or a combination of these components. 6. Теплообменный слой по одному из пп.1-3, отличающийся тем, что термические и/или электрические изоляторы образуют матрицу, в которую введены магнетокалорические материалы.6. The heat transfer layer according to one of claims 1 to 3, characterized in that the thermal and / or electrical insulators form a matrix into which magnetocaloric materials are introduced. 7. Теплообменный слой по одному из пп.1-3, отличающийся тем, что расстояние между соседствующими магнетокалорическими материалами составляет от 0,05 до 3 мм.7. The heat transfer layer according to one of claims 1 to 3, characterized in that the distance between adjacent magnetocaloric materials is from 0.05 to 3 mm. 8. Теплообменный слой по одному из пп.1-3, отличающийся тем, что магнетокалорические материалы и термические и/или электрические изоляторы образуют последовательность слоев, причем толщина слоев магнетокалорических материалов в каждом случае составляет от 1 до 100 мм.8. The heat exchange layer according to one of claims 1 to 3, characterized in that the magnetocaloric materials and thermal and / or electrical insulators form a sequence of layers, and the thickness of the layers of magnetocaloric materials in each case is from 1 to 100 mm. 9. Теплообменный слой по одному из пп.1-3, отличающийся тем, что он состоит из термомагнитных монолитов различных магнетокалорических материалов, в которых имеются сквозные каналы с площадью сечения отдельных каналов в пределах от 0,001 до 0,2 мм2 и толщиной стенки от 50 до 300 мкм, монолиты обладают пористостью в пределах от 10 до 60% и соотношением площади поверхности к объему в пределах от 3000 до 50000 м23 или включают в себя одну или несколько параллельных пластин с толщиной от 0,1 до 2 мм и расстоянием между пластинами в 0,05-1 мм, или пакетированный теплообменный слой состоит из частиц термомагнитного материала, имеющих средний диаметр в пределах от 50 мкм до 1 мм и дающих в пакетированном слое пористость в пределах от 30 до 45%.9. The heat exchange layer according to one of claims 1 to 3, characterized in that it consists of thermomagnetic monoliths of various magnetocaloric materials, in which there are through channels with a cross-sectional area of individual channels ranging from 0.001 to 0.2 mm 2 and wall thickness from 50 to 300 microns, monoliths have porosity in the range from 10 to 60% and the ratio of surface area to volume in the range from 3000 to 50,000 m 2 / m 3 or include one or more parallel plates with a thickness of from 0.1 to 2 mm and the distance between the plates in 0.05-1 mm, or packaged heat the exchange layer consists of particles of thermomagnetic material having an average diameter ranging from 50 μm to 1 mm and giving a porosity in the packaged layer ranging from 30 to 45%. 10. Теплообменный слой по одному из пп.1-3, отличающийся тем, что пористость магнетокалорических материалов составляет 20-30%.10. The heat transfer layer according to one of claims 1 to 3, characterized in that the porosity of magnetocaloric materials is 20-30%. 11. Теплообменный слой по п.9, отличающийся тем, что площадь сечения отдельных каналов составляет от 0,01 до 0,03 мм2, а толщина стенки от 50 до 150 мкм.11. The heat transfer layer according to claim 9, characterized in that the cross-sectional area of the individual channels is from 0.01 to 0.03 mm 2 and the wall thickness is from 50 to 150 microns. 12. Теплообменный слой по одному из пп.1-3, отличающийся тем, что термомагнитные материалы выбирают из группы, которую образуют12. The heat transfer layer according to one of claims 1 to 3, characterized in that the thermomagnetic materials are selected from the group that form (1) Соединения с общей формулой (I)(1) Compounds with the general formula (I) ( A y B y 1 ) 2 + δ C w D x E z ( I )
Figure 00000001
,
( A y B y - one ) 2 + δ C w D x E z ( I )
Figure 00000001
,
где параметры имеют следующие значения:where the parameters have the following meanings: А - Мn или Со,A is Mn or Co, В - Fe, Cr или Ni,B - Fe, Cr or Ni, С, D, Е по меньшей мере два из С, D, Е отличны друг от друга, концентрации их не исчезающе малы, иC, D, E at least two of C, D, E are different from each other, their concentrations are not vanishingly small, and они выбраны из группы, которую образуют Р, В, Se, Ge, Ga, Si, Sn, N, As и Sb, причем по меньшей мере один из С, D и Е представляет собой Ge или Si,they are selected from the group that P, B, Se, Ge, Ga, Si, Sn, N, As and Sb form, with at least one of C, D and E being Ge or Si, δ число в пределах от -0,1 до 0,1δ number ranging from -0.1 to 0.1 w, х, y, z числа в пределах от 0 до 1, причем w+х+z=1;w, x, y, z numbers ranging from 0 to 1, and w + x + z = 1; (2) соединения на основе La и Fe общих формул (II) и/или (III) и/или (IV)(2) compounds based on La and Fe of the general formulas (II) and / or (III) and / or (IV) L a ( F e x A l 1 x ) 13 H y
Figure 00000002
или L a ( F e x S i ) 1 x 13 H y ( I I )
Figure 00000003
,
L a ( F e x A l one - x ) 13 H y
Figure 00000002
or L a ( F e x S i ) one - x 13 H y ( I I )
Figure 00000003
,
где х число от 0,7 до 0,95where x is a number from 0.7 to 0.95 y число от 0 до 3y is a number from 0 to 3 L a ( F e x A l y C o z ) 13 и л и L a ( F e x S i y C o z ) 13 ( I I I )
Figure 00000004
,
L a ( F e x A l y C o z ) 13 and l and L a ( F e x S i y C o z ) 13 ( I I I )
Figure 00000004
,
где х число от 0,7 до 0,95where x is a number from 0.7 to 0.95 y число от 0,05 до 1-хy number from 0.05 to 1 z число от 0,005 до 0,5z is a number from 0.005 to 0.5 L a M n x F e 2 x G e ( I V )
Figure 00000005
,
L a M n x F e 2 - x G e ( I V )
Figure 00000005
,
где x число от 1,7 до 1,95, иwhere x is a number from 1.7 to 1.95, and (3) гейслеровские сплавы типа МnТР, где Т - это переходный металл, а Р металл с добавками р-типа и числом электронов на атом е/а в пределах от 7 до 8,5,(3) Geisler alloys of the MnTP type, where T is a transition metal, and P is a metal with p-type additives and the number of electrons per atom e / a in the range from 7 to 8.5, (4) соединения на основе Gd и Si общей формулы (V)(4) compounds based on Gd and Si of the general formula (V) G d 5 ( S i x G e 1 x ) 4 ( V )
Figure 00000006
,
G d 5 ( S i x G e one - x ) four ( V )
Figure 00000006
,
где х число от 0,2 до 1where x is a number from 0.2 to 1 (5) соединения на основе Fe2P,(5) compounds based on Fe 2 P, (6) манганиты со структурой перовскита,(6) manganites with perovskite structure, (7) содержащие редкоземельные элементы соединения с общими формулами (VI) и (VII)(7) compounds containing rare earth elements with the general formulas (VI) and (VII) T b 5 ( S i 4 x G e x ) ( V I )
Figure 00000007
,
T b 5 ( S i four - x G e x ) ( V I )
Figure 00000007
,
где х=0, 1, 2, 3, 4where x = 0, 1, 2, 3, 4 X T i G e ( V I I )
Figure 00000008
,
X T i G e ( V I I )
Figure 00000008
,
где X=Dy, Но, Tm,where X = Dy, But, Tm, (8) соединения на основе Мn и Sb или As с общими формулами (VIII) и (IX)(8) compounds based on Mn and Sb or As with the general formulas (VIII) and (IX) M n 2 x Z x S b ( V I I I )
Figure 00000009
M n 2 - x Z x S b ( V I I I )
Figure 00000009
M n 2 Z x S b 1 x ( I X )
Figure 00000010
,
M n 2 Z x S b one - x ( I X )
Figure 00000010
,
где Z - Сr, Сu, Zn, Co, V, As, Ge,where Z is Cr, Cu, Zn, Co, V, As, Ge, х от 0,01 до 0,5,x from 0.01 to 0.5, причем Sb можно заменить на As, если только Z - это не As.moreover, Sb can be replaced by As, if only Z is not As.
13. Теплообменный слой по п.12, отличающийся тем, что магнетокалорический материал выбирают из по меньшей мере четвертичных соединений общей формулы (I), которые помимо Mn, Fe, P и при необходимости Sb дополнительно содержат Ge или As, или Si, или Ge и Si, или Ge и As, или Si и As, или Ge, Si и As.13. The heat transfer layer according to claim 12, characterized in that the magnetocaloric material is selected from at least quaternary compounds of the general formula (I), which, in addition to Mn, Fe, P and optionally Sb, additionally contain Ge or As, or Si, or Ge and Si, or Ge and As, or Si and As, or Ge, Si and As. 14. Способ изготовления теплообменных слоев по одному из пп.1-3, отличающийся тем, что порошок данного термомагнитного материала подвергают формовочной обработке для образования термомагнитного материала, а затем пакетируют материалы для формирования теплообменного слоя, предпочтительно перемежая их термическими и/или электрическими изоляторами, либо же интегрируют их в матрицу из термического и/или электрического изолятора.14. A method of manufacturing heat transfer layers according to one of claims 1 to 3, characterized in that the powder of a given thermomagnetic material is subjected to molding processing to form a thermomagnetic material, and then the materials are packaged to form a heat transfer layer, preferably alternating with thermal and / or electrical insulators, or integrate them into a matrix from a thermal and / or electrical insulator. 15. Применение теплообменного слоя по одному из пп.1-3 в холодильниках, кондиционерах, тепловых насосах или в производстве электроэнергии путем прямого преобразования тепла. 15. The use of the heat transfer layer according to one of claims 1 to 3 in refrigerators, air conditioners, heat pumps or in the production of electricity by direct heat conversion.
RU2012108925/07A 2009-08-10 2010-07-29 HEAT EXCHANGE LAYER FROM CASCADE OF MAGNETO-CALORIC MATERIALS RU2012108925A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09167550 2009-08-10
EP09167550.4 2009-08-10
PCT/EP2010/061025 WO2011018347A1 (en) 2009-08-10 2010-07-29 Heat exchanger bed made of a cascade of magnetocaloric materials

Publications (1)

Publication Number Publication Date
RU2012108925A true RU2012108925A (en) 2013-09-20

Family

ID=42629291

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2012108925/07A RU2012108925A (en) 2009-08-10 2010-07-29 HEAT EXCHANGE LAYER FROM CASCADE OF MAGNETO-CALORIC MATERIALS
RU2012108924/07A RU2012108924A (en) 2009-08-10 2010-07-29 HEAT EXCHANGE LAYERS FROM THERMOMAGNETIC MATERIAL

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2012108924/07A RU2012108924A (en) 2009-08-10 2010-07-29 HEAT EXCHANGE LAYERS FROM THERMOMAGNETIC MATERIAL

Country Status (11)

Country Link
US (3) US9147511B2 (en)
EP (3) EP2465118B1 (en)
JP (4) JP2013502061A (en)
KR (4) KR101848592B1 (en)
CN (2) CN102511067B (en)
AU (1) AU2010283855A1 (en)
BR (2) BR112012003125A2 (en)
CA (1) CA2770862A1 (en)
RU (2) RU2012108925A (en)
TW (2) TW201111731A (en)
WO (2) WO2011018348A2 (en)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703699B2 (en) * 2008-09-04 2011-06-15 株式会社東芝 Magnetic material for magnetic refrigeration, magnetic refrigeration device and magnetic refrigeration system
TW201101345A (en) * 2009-04-08 2011-01-01 Basf Se Heat carrier medium for magnetocaloric materials
US9476617B2 (en) 2010-10-04 2016-10-25 Basf Se Thermoelectric modules for an exhaust system
US20130019610A1 (en) * 2011-07-19 2013-01-24 Zimm Carl B System and method for reverse degradation of a magnetocaloric material
TWI453365B (en) * 2011-10-31 2014-09-21 Delta Electronics Inc Magnetic refrigerator and magnetocaloric module thereof
CN103090583B (en) * 2011-10-31 2016-03-09 台达电子工业股份有限公司 Magnetic refrigeration apparatus and magnetic thermal modules thereof
CN103137281B (en) * 2011-11-22 2016-06-01 中国科学院物理研究所 Bonding La (Fe, Si)13Base magnetothermal effect material and its production and use
CN104136867A (en) * 2012-03-30 2014-11-05 株式会社东芝 Material for magnetic refrigeration and magnetically refrigerating device
US20130319012A1 (en) * 2012-05-29 2013-12-05 Delta Electronics, Inc. Magnetic cooling device
FR2999013B1 (en) * 2012-12-03 2014-12-26 Schneider Electric Ind Sas MAGNETOTHERMIC CURRENT LIMITATION DEVICE
US9245673B2 (en) 2013-01-24 2016-01-26 Basf Se Performance improvement of magnetocaloric cascades through optimized material arrangement
JP6285463B2 (en) * 2013-01-24 2018-02-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Improving the performance of magnetocaloric cascades by optimizing material alignment
FR3004795A1 (en) * 2013-04-19 2014-10-24 Erasteel MAGNETOCALORIC PLATE FOR A REFRIGERANT MAGNETIC ELEMENT AND METHOD FOR MANUFACTURING SAME, BLOCK FOR MAGNETIC ELEMENT REFRIGERATING THE COMPONENT AND METHODS OF MANUFACTURING SAME, AND REFRIGERANT MAGNETIC ELEMENT COMPRISING THESE BLOCKS
EP3031058B1 (en) * 2013-08-09 2017-09-20 Basf Se Magnetocaloric materials containing b
JP6465884B2 (en) * 2013-08-09 2019-02-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Magneto-caloric material containing B
WO2015018678A1 (en) * 2013-08-09 2015-02-12 Basf Se Magnetocaloric materials containing b
JP6289935B2 (en) * 2014-02-05 2018-03-07 株式会社三徳 Magnetic refrigeration device and magnetic refrigeration system
KR101575861B1 (en) 2014-02-13 2015-12-10 충북대학교 산학협력단 Magnetocaloric metal compound and method for preparing thereof
US11384966B2 (en) 2014-03-21 2022-07-12 The Charles Stark Draper Laboratory, Inc. Cooler with remote heat sink
DE102014107294B4 (en) * 2014-05-23 2017-02-09 Andreas Hettich Gmbh & Co. Kg centrifuge
JP6369299B2 (en) * 2014-11-20 2018-08-08 株式会社デンソー Magneto-caloric element and thermomagnetism cycle device
KR20170095987A (en) * 2014-12-18 2017-08-23 바스프 에스이 Magnetocaloric cascade and method for fabricating a magnetocaloric cascade
KR20170097131A (en) 2014-12-18 2017-08-25 바스프 에스이 Magnetocaloric cascade and method for fabricating a magnetocaloric cascade
US11577210B2 (en) * 2015-08-28 2023-02-14 Haldor Topsøe A/S Induction heating of endothermic reactions
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US20190252097A1 (en) 2016-07-11 2019-08-15 Basf Se Magnetocaloric regenerators comprising materials containing cobalt, manganese, boron and carbon
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
WO2018041958A1 (en) 2016-08-31 2018-03-08 Basf Se Controlled variation of parameters of magnetocaloric materials
CN106344017A (en) * 2016-08-31 2017-01-25 刘奎杰 Magnetic resonance imaging device for medical diagnosis of general surgery
DE102017126803B4 (en) 2016-11-18 2022-02-03 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. DEVICE AND METHOD FOR CONVERSING THERMAL ENERGY INTO ELECTRICAL ENERGY
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
EP3561021A4 (en) * 2016-12-22 2020-07-22 Santoku Corporation Cooling storage material and method for producing same, cooling storage device, and refrigerating machine
DE102017102163B4 (en) * 2017-02-03 2020-10-01 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Magnetocaloric heat exchanger and process for its manufacture
CN110462319B (en) * 2017-03-28 2022-03-18 巴特尔纪念研究所 Active magnetic regeneration process and system using hydrogen heat transfer fluid
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
FR3065063A1 (en) * 2017-04-11 2018-10-12 Centre National De La Recherche Scientifique (Cnrs) METHOD FOR OBTAINING MATERIAL WITH MAGNETOCALORIC EFFECT GIANT BY IRRADIATION OF IONS
WO2018197612A1 (en) 2017-04-27 2018-11-01 Basf Se Preparation of powders of nitrided inorganic materials
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
DE102017120371B3 (en) 2017-09-05 2019-01-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Method for operating a magnetocaloric heat pump and magnetocaloric heat pump assembly
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
WO2019121766A1 (en) 2017-12-18 2019-06-27 Basf Se Building unit for magnetocaloric heat exchanger
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
CN110556221B (en) * 2019-08-13 2021-09-10 北京工业大学 Single crystal-like heterojunction room temperature magnetic refrigeration material with large magnetic entropy change and wide working temperature zone and preparation process thereof
DE102020118370B3 (en) 2020-07-13 2021-11-04 Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e.V. (IFW Dresden e.V.) Device and method for converting thermal energy into electrical energy
US11889661B2 (en) 2020-09-17 2024-01-30 Rolls-Royce North American Technologies Inc. Integrated circuit thermal management system
CN115798856B (en) * 2023-01-31 2023-08-25 苏州赛特锐精密机械配件有限公司 Soft magnetic thermoelectric composite material, wireless charging member and preparation method

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US364631A (en) * 1887-06-14 bey an
US364540A (en) * 1887-06-07 Burglar-alarm
GB655088A (en) 1945-12-19 1951-07-11 Constantin Chilowsky Method and apparatus for producing electrical and mechanical energy from thermal energy
US2589775A (en) 1948-10-12 1952-03-18 Technical Assets Inc Method and apparatus for refrigeration
US4332135A (en) * 1981-01-27 1982-06-01 The United States Of America As Respresented By The United States Department Of Energy Active magnetic regenerator
JPS60204852A (en) 1984-03-30 1985-10-16 Tokyo Inst Of Technol Magnetic material for magnetic refrigeration
JPS60260468A (en) * 1984-06-07 1985-12-23 ティーディーケイ株式会社 Composite temperature sensitive ferrite material
JP2582753B2 (en) * 1986-04-15 1997-02-19 巍洲 橋本 Manufacturing method of laminated magnetic body
US4702090A (en) * 1986-10-24 1987-10-27 Astronautics Corporation Of America Magnetic refrigeration apparatus with conductive heat transfer
DE3800098A1 (en) * 1987-09-25 1989-07-13 Heinz Munk MAGNETOCALORIC INDUCTOR WITH COMPENSATION CORE FOR GENERATING ELECTRICAL ENERGY
US6758046B1 (en) * 1988-08-22 2004-07-06 Astronautics Corporation Of America Slush hydrogen production method and apparatus
US5332029A (en) * 1992-01-08 1994-07-26 Kabushiki Kaisha Toshiba Regenerator
US5249424A (en) * 1992-06-05 1993-10-05 Astronautics Corporation Of America Active magnetic regenerator method and apparatus
DE4242642C2 (en) * 1992-12-17 1996-10-17 Deutsche Forsch Luft Raumfahrt Heat pumping process and heat pump, in particular for generating cryogenic temperatures
JPH0745411A (en) * 1993-07-26 1995-02-14 Fuji Elelctrochem Co Ltd Perovskite type composite oxide magnetic material, and temperature switch and temperature change detection element using same
US5887449A (en) * 1996-07-03 1999-03-30 Iowa State University Research Foundation, Inc. Dual stage active magnetic regenerator and method
US5893275A (en) * 1997-09-04 1999-04-13 In-X Corporation Compact small volume liquid oxygen production system
US5934078A (en) * 1998-02-03 1999-08-10 Astronautics Corporation Of America Reciprocating active magnetic regenerator refrigeration apparatus
JP2000020937A (en) * 1998-07-03 2000-01-21 Hitachi Ltd Magnetic recording medium and magnetic storage device using the same
WO2000038831A1 (en) * 1998-12-31 2000-07-06 Hexablock, Inc. Magneto absorbent
US6589366B1 (en) * 2000-03-08 2003-07-08 Iowa State University Research Foundation, Inc. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys
US7114340B2 (en) 2000-03-08 2006-10-03 Iowa State University Research Foundation, Inc. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys
US6293106B1 (en) * 2000-05-18 2001-09-25 Praxair Technology, Inc. Magnetic refrigeration system with multicomponent refrigerant fluid forecooling
CN100412467C (en) * 2000-08-09 2008-08-20 美国宇航公司 Rotating bed magnetic refrigeration apparatus
US6676772B2 (en) * 2001-03-27 2004-01-13 Kabushiki Kaisha Toshiba Magnetic material
JP4622179B2 (en) * 2001-07-16 2011-02-02 日立金属株式会社 Magnetic refrigeration work substance, regenerative heat exchanger and magnetic refrigeration equipment
US6502404B1 (en) * 2001-07-31 2003-01-07 Praxair Technology, Inc. Cryogenic rectification system using magnetic refrigeration
JP3967572B2 (en) * 2001-09-21 2007-08-29 株式会社東芝 Magnetic refrigeration material
US6453677B1 (en) * 2002-04-05 2002-09-24 Praxair Technology, Inc. Magnetic refrigeration cryogenic vessel system
US20030154865A1 (en) * 2002-10-16 2003-08-21 Zornes David A. Nano coupling magnetoadsorbent
JP4663328B2 (en) * 2003-01-29 2011-04-06 スティッチング ヴォール デ テクニッシェ ヴェッテンシャッペン Magnetic material having cooling capacity, method for producing the material, and method for using the material
TW575158U (en) * 2003-03-20 2004-02-01 Ind Tech Res Inst Heat transfer structure for magnetic heat energy
JP3967728B2 (en) * 2003-03-28 2007-08-29 株式会社東芝 Composite magnetic material and manufacturing method thereof
US7168255B2 (en) * 2003-03-28 2007-01-30 Kabushiki Kaisha Toshiba Magnetic composite material and method for producing the same
US20040261420A1 (en) * 2003-06-30 2004-12-30 Lewis Laura J. Henderson Enhanced magnetocaloric effect material
JP2005090921A (en) * 2003-09-19 2005-04-07 Canon Inc Temperature controlling device using magnetic body
JP4240380B2 (en) * 2003-10-14 2009-03-18 日立金属株式会社 Manufacturing method of magnetic material
US7601327B2 (en) * 2004-11-23 2009-10-13 E.I. Du Pont De Nemours And Company Mesoporous oxide of hafnium
US7601326B2 (en) * 2004-11-23 2009-10-13 E. I. Du Pont De Nemours And Company Mesoporous oxide of zirconium
US7988947B2 (en) * 2004-11-23 2011-08-02 E. I. Du Pont De Nemours And Company Mesoporous oxide of titanium
US20060263291A1 (en) * 2004-11-23 2006-11-23 Carmine Torardi Mesoporous amorphous oxide of titanium
US7578892B2 (en) * 2005-03-31 2009-08-25 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
EP1736717A1 (en) 2005-06-20 2006-12-27 Haute Ecole d'Ingénieurs et de Gestion du Canton Continuously rotary magnetic refrigerator and heat pump and process for magnetic heating and/or cooling with such a refrigerator or heat pump
WO2007001009A1 (en) * 2005-06-27 2007-01-04 Japan Science And Technology Agency Ferromagnetic shape memory alloy and its use
DE102006006326B4 (en) * 2006-02-11 2007-12-06 Bruker Biospin Ag Hybrid heat pump / chiller with magnetic cooling stage
JP4481949B2 (en) * 2006-03-27 2010-06-16 株式会社東芝 Magnetic material for magnetic refrigeration
JP2007291437A (en) * 2006-04-24 2007-11-08 Hitachi Metals Ltd Sintered compact for magnetic refrigeration working bed, and its manufacturing method
JP4282707B2 (en) * 2006-09-29 2009-06-24 株式会社東芝 Alloy and magnetic refrigeration material particle manufacturing method
US8549857B2 (en) * 2006-12-16 2013-10-08 Christopher J. Papile Methods and/or systems for magnetobaric assisted generation of power from low temperature heat
GB2459066B (en) * 2007-02-12 2012-02-15 Vacuumschmelze Gmbh & Co Kg Article for magnetic heat exchange and method of manufacturing the same
DE112007003121T5 (en) * 2007-02-12 2009-10-15 Vacuumschmelze Gmbh & Co. Kg An article for magnetic heat exchange and a process for its production
JP4987514B2 (en) * 2007-03-08 2012-07-25 株式会社東芝 Magnetic refrigeration material and magnetic refrigeration apparatus
JP2008270677A (en) * 2007-04-25 2008-11-06 National Institute For Materials Science Giant anisotropic magnetoresistance element using doped perovskite manganite single crystal
US20080276623A1 (en) * 2007-05-11 2008-11-13 Naushad Ali Magnetic refrigerant material
US8104293B2 (en) * 2007-06-19 2012-01-31 General Electric Company Magneto-caloric cooling device and method of operation
KR101107870B1 (en) * 2007-12-27 2012-01-31 바쿰슈멜체 게엠베하 운트 코. 카게 Composite article with magnetocalorically active material and method for its production
JP4950918B2 (en) * 2008-02-28 2012-06-13 株式会社東芝 Magnetic material for magnetic refrigeration equipment, heat exchange container and magnetic refrigeration equipment
JP4643668B2 (en) 2008-03-03 2011-03-02 株式会社東芝 Magnetic refrigeration device and magnetic refrigeration system
TW201003024A (en) * 2008-04-28 2010-01-16 Basf Se Open-cell porous shaped bodies for heat exchangers
CN101785072A (en) * 2008-05-16 2010-07-21 真空熔焠有限两合公司 Article for magnetic heat exchange and manufacture method thereof
JP4703699B2 (en) * 2008-09-04 2011-06-15 株式会社東芝 Magnetic material for magnetic refrigeration, magnetic refrigeration device and magnetic refrigeration system
FR2936364B1 (en) * 2008-09-25 2010-10-15 Cooltech Applications MAGNETOCALORIC ELEMENT
US9739510B2 (en) * 2009-09-17 2017-08-22 Charles N. Hassen Flow-synchronous field motion refrigeration
US20110154832A1 (en) * 2009-12-29 2011-06-30 General Electric Company Composition and method for producing the same
US9702594B2 (en) * 2010-06-07 2017-07-11 Aip Management, Llc Magnetocaloric refrigerator
JP5449104B2 (en) * 2010-09-29 2014-03-19 株式会社東芝 Heat exchange vessel unit and heat cycle unit

Also Published As

Publication number Publication date
EP2465119A1 (en) 2012-06-20
WO2011018347A1 (en) 2011-02-17
KR20170054541A (en) 2017-05-17
EP2465118A2 (en) 2012-06-20
US9147511B2 (en) 2015-09-29
TW201111731A (en) 2011-04-01
JP2013501910A (en) 2013-01-17
US20150330721A1 (en) 2015-11-19
EP2465118B1 (en) 2016-11-16
CN102511067A (en) 2012-06-20
KR101789341B1 (en) 2017-10-23
TW201120387A (en) 2011-06-16
EP3128520B1 (en) 2018-10-17
KR20170078886A (en) 2017-07-07
RU2012108924A (en) 2013-09-20
CN102549679B (en) 2015-09-09
WO2011018348A3 (en) 2011-04-07
US20110094243A1 (en) 2011-04-28
CN102549679A (en) 2012-07-04
CN102511067B (en) 2017-02-08
EP2465119B2 (en) 2019-07-24
JP6185621B2 (en) 2017-08-23
KR20120053034A (en) 2012-05-24
AU2010283855A1 (en) 2012-04-05
CA2770862A1 (en) 2011-02-17
US8763407B2 (en) 2014-07-01
JP2013502061A (en) 2013-01-17
US20110030939A1 (en) 2011-02-10
KR101848592B1 (en) 2018-04-12
JP2016040512A (en) 2016-03-24
EP2465119B1 (en) 2016-01-27
EP3128520A1 (en) 2017-02-08
JP2016173228A (en) 2016-09-29
KR20120053033A (en) 2012-05-24
BR112012003133A2 (en) 2019-09-24
BR112012003125A2 (en) 2016-03-01
WO2011018348A2 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
RU2012108925A (en) HEAT EXCHANGE LAYER FROM CASCADE OF MAGNETO-CALORIC MATERIALS
JP2016040512A5 (en)
JP2013501910A5 (en)
Harada et al. Lithium ion conductivity of polycrystalline perovskite La0. 67− xLi3xTiO3 with ordered and disordered arrangements of the A-site ions
CN103400932A (en) Novel thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using same
Reddy et al. Study of calcium–magnesium–aluminum–silicate (CMAS) glass and glass-ceramic sealant for solid oxide fuel cells
US20140209140A1 (en) Stacked thermoelectric conversion module
Kumar et al. Thermal and physical properties of 30SrO–40SiO2–20B2O3–10A2O3 (A= La, Y, Al) glasses and their chemical reaction with bismuth vanadate for SOFC
Dong et al. Improved oxidation resistance of thermoelectric skutterudites coated with composite glass
CN103562127A (en) Novel compound semiconductor and usage for same
TW201001895A (en) Thermomagnetic generator
Wang et al. Characteristics of glass sealants for intermediate-temperature solid oxide fuel cell applications
CN103534199A (en) Novel compound semiconductor and usage for same
CN101561322A (en) Dispersion strengthening platinum/rhodium13-platinum thermocouple wires and production method thereof
US20130008479A1 (en) Thermoelectric element design
CN103492310A (en) Novel compound semiconductor and use thereof
Kim et al. Electrical transport properties of Ca0. 9La0. 1− xBixMnO3− δ (0≤ x≤ 0.1) thermoelectric materials
CN103562128A (en) Novel compound semiconductor and usage for same
CN103247752B (en) Ge-Pb-Te-Se composite thermoelectric material and preparation method thereof
Zhou et al. Electrical, Thermoelectric, and Structural Properties of La (M x Fe1− x) O3 (M= Mn, Ni, Cu)
CN101905972A (en) Aluminum-doped zinc oxide-based thermoelectric material and preparation method thereof
Kim et al. Structural and thermoelectric properties of n-type Sr 1− x Ti x MnO 3− δ perovskite system
CN103502145A (en) Novel compound semiconductor and usage for same
JP2006100346A (en) Thermoelectric conversion system and method of manufacturing thermoelectric panel therefor
CN103534200A (en) Novel compound semiconductor and usage for same

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20141028