JP2006100346A - Thermoelectric conversion system and method of manufacturing thermoelectric panel therefor - Google Patents

Thermoelectric conversion system and method of manufacturing thermoelectric panel therefor Download PDF

Info

Publication number
JP2006100346A
JP2006100346A JP2004281536A JP2004281536A JP2006100346A JP 2006100346 A JP2006100346 A JP 2006100346A JP 2004281536 A JP2004281536 A JP 2004281536A JP 2004281536 A JP2004281536 A JP 2004281536A JP 2006100346 A JP2006100346 A JP 2006100346A
Authority
JP
Japan
Prior art keywords
type conductor
thermoelectric conversion
conversion system
junction
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004281536A
Other languages
Japanese (ja)
Inventor
Katsutoshi Ono
勝敏 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004281536A priority Critical patent/JP2006100346A/en
Publication of JP2006100346A publication Critical patent/JP2006100346A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion system that can be procured inexpensively in a large amount and utilizes a highly economical low-temperature heat source, and to provide a method of manufacturing a thermoelectric panel for the thermoelectric conversion system. <P>SOLUTION: The thermoelectric conversion system is provided with a serial unit and a load R<SB>L</SB>which is directly connected between the anode terminal and cathode terminal of the serial unit. The serial unit is constituted in the alternative serial connection structure of a plurality of p-type conductor elements 1<SB>1</SB>-1<SB>n</SB>composed of Fe, and a plurality of n-type conductor elements 2<SB>1</SB>-2<SB>n</SB>composed of an Fe-Al alloy by alternately arranging the conductor elements 1<SB>1</SB>-1<SB>n</SB>and 2<SB>1</SB>-2<SB>n</SB>in an accordion fold structure. The elements 1<SB>1</SB>-1<SB>n</SB>and 2<SB>1</SB>-2<SB>n</SB>are connected to each other to form first p-n junctions in the plurality of crest sections of the accordion fold structure, and second p-n junctions in the plurality of valley sections of the structure. Thus, an electromotive force is obtained by the Seebeck effect by giving different temperatures to the first and second p-n junctions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エネルギー関連分野に係り、特に、低温熱源利用の熱電変換システム及びこの熱電変換システム用熱電パネルの製造方法に関する。   The present invention relates to an energy-related field, and more particularly, to a thermoelectric conversion system using a low-temperature heat source and a method for manufacturing a thermoelectric panel for the thermoelectric conversion system.

現在、石油、石炭、天然ガスなどの化石燃料による二酸化炭素の放出量は、地球温暖化と汚染など環境負荷に対して限界に達しつつあり、クリーンエネルギーシステムの導入が社会的に要望されている。その実現に対し、水素(H2)の経済的かつ安定的な供給が期待されている。 Currently, the amount of carbon dioxide released by fossil fuels such as oil, coal, and natural gas is reaching the limit for environmental impacts such as global warming and pollution, and there is a social demand for the introduction of a clean energy system. . For this realization, an economical and stable supply of hydrogen (H 2 ) is expected.

一方、低温熱源は、発電所廃熱及び製鉄所、廃棄物焼却工場はじめ各種工場廃熱など種々あるが、従来利用価値がなく投棄されている。高温岩体地下熱や蓄熱式太陽熱などの自然エネルギーも低温熱源として利用可能である。   On the other hand, there are various types of low-temperature heat sources such as power plant waste heat and steel mills, waste incineration plants, and various factory waste heat, but they have been dumped without utility value. Natural energy such as hot rock underground heat and regenerative solar heat can also be used as a low-temperature heat source.

さて、水素の工業的な製造法として、石炭の水性ガス反応、天然ガスやコークス炉ガス、更にはアルコール類の改質反応など高温化学反応に基づく方法と、常温での水の電気分解とが知られている。しかし、高温化学反応に基づく方法は、天然燃料改質反応は高温熱源を必要とし、又、一酸化炭素及び二酸化炭素を副生するため、将来の水素エネルギー生産の手段としては経済性と対環境性に関して不利を免れない。   Industrial production methods for hydrogen include methods based on high-temperature chemical reactions such as coal water-gas reactions, natural gas and coke oven gas, and reforming reactions of alcohols, and electrolysis of water at room temperature. Are known. However, in the method based on the high temperature chemical reaction, the natural fuel reforming reaction requires a high temperature heat source, and carbon monoxide and carbon dioxide are by-produced. I can't escape the disadvantage of sex.

これに対し、水の電気分解による水素の製造は、現在、火力・原子力・水力発電による一般の工業用電力を用い、低電圧大電流用の直流電源装置を介したシステムにより行われている。又、シリコン半導体による太陽光発電の利用も考えられるが、その電力は既存の発電方式よりも高価である。したがって、果てしなく推移する高い電力単価の国土では、安価な水素を安定して製造することは困難である。   On the other hand, the production of hydrogen by electrolysis of water is currently performed by a system via a DC power supply device for low voltage and large current using general industrial power generated by thermal power, nuclear power, and hydroelectric power generation. Moreover, although the utilization of the solar power generation by a silicon semiconductor is also considered, the electric power is more expensive than the existing power generation system. Therefore, it is difficult to stably produce inexpensive hydrogen in the country where the unit price of electricity, which is constantly changing, is high.

性能指数の高い半導体熱電変換素子を用い、500C以上の熱源を対象とする熱電変換システムは、極く小規模の発電用に実用化されている。この熱電物質は希有元素よりなる化合物半導体であり、例えばn型のビスマス・テルル・セレン(Bi2(Te,Se)3),p型のビスマス・アンチモン・(テルル(Bi,Sb)2Te3)などのビスマス・テルル系の化合物半導体が知られているが、量的な確保が困難又高価であるため、大容量の発電には適さない。更に、融点が低いことや毒性を有する問題もある。 A thermoelectric conversion system that uses a semiconductor thermoelectric conversion element with a high figure of merit and targets a heat source of 500 ° C. or more has been put to practical use for extremely small-scale power generation. This thermoelectric material is a compound semiconductor made of a rare element. For example, n-type bismuth, tellurium, selenium (Bi 2 (Te, Se) 3 ), p-type bismuth, antimony, (tellurium (Bi, Sb) 2 Te 3 ). ) And other bismuth-tellurium-based compound semiconductors are known, but are not suitable for large-capacity power generation because they are difficult and expensive to secure in quantity. Furthermore, there are problems of low melting point and toxicity.

このため、p型導電体素子として鉄(Fe)を選択し、これと接合するn型導電体素子をFe−12重量%Al合金とした低温用鉄系熱電変換素子が開発されている(非特許文献1〜3参照。)。
小野勝敏、他3名「低温用鉄系熱電変換素子」、鉄と鋼、社団法人日本鉄鋼協会、1997年、第83巻、第2号、p.73−77 正田雅裕、他4名、「Fe−Al−Si合金のゼーベック効果及び低温熱源熱電変換特性」、鉄と鋼、社団法人日本鉄鋼協会、1998年、第84巻、第2号、p.70−74 小野勝敏、他2名 「低温熱源を用いた熱電変換用のFe−Al合金及びFe−Al−Si合金の熱電変換特性(Thermoelectric properties of the Fe-Al and Fe-Al-Si alloys for thermoelectric generation utilizing low-temperature heat sources)」、スチール・リサーチ(steel research)、1998年9月、第69巻、p.387−390
For this reason, iron (Fe) is selected as the p-type conductor element, and a low-temperature iron-based thermoelectric conversion element in which the n-type conductor element to be joined with the Fe-12 wt% Al alloy has been developed (non-non-conductive). (See Patent Documents 1 to 3.)
Katsutoshi Ono and three others "iron-based thermoelectric conversion element for low temperature", iron and steel, Japan Iron and Steel Institute, 1997, Vol. 83, No. 2, p. 73-77 Masahiro Masada and 4 others, “Seebeck effect and low-temperature heat source thermoelectric conversion characteristics of Fe—Al—Si alloy”, Iron and Steel, Japan Iron and Steel Institute, 1998, Vol. 84, No. 2, p. 70-74 Katsutoshi Ono and two others "Thermoelectric properties of the Fe-Al and Fe-Al-Si alloys for thermoelectric generation utilizing thermoelectric conversion for thermoelectric conversion using a low-temperature heat source low-temperature heat sources), steel research, September 1998, volume 69, p. 387-390

本発明は、安価で大量に調達でき、経済性に優れた低温熱源利用の熱電変換システム及びこの熱電変換システム用熱電パネルの製造方法を提供することを目的とする。   An object of the present invention is to provide a thermoelectric conversion system using a low-temperature heat source that is inexpensive and can be procured in large quantities and is excellent in economy, and a method of manufacturing a thermoelectric panel for the thermoelectric conversion system.

上記目的を達成するために、本発明の第1の特徴は、(イ)第1のp−n接合及び第2のp−n接合により、複数のp型導電体素子と複数のn型導電体素子との交互直列接続構造をなし、第1のp−n接合及び第2のp−n接合に互いに異なる温度を与え、ゼーベック効果による起電力を得る直列ユニットと、(ロ)この直列ユニットの陽極端子と陰極端子との間に直接接続された負荷とを備える熱電変換システムであることを要旨とする。ここで、「複数のp型導電体素子と複数のn型導電体素子との交互直列接続構造」は、鉄からなる複数のp型導電体素子と鉄・アルミニウム合金からなる複数のn型導電体素子とを交互に蛇腹折り構造に配置し、この蛇腹折り構造の複数の山部でそれぞれ第1のp−n接合を構成し、蛇腹折り構造の複数の谷部でそれぞれ第2のp−n接合を構成するように接続したものである。
本発明の第2の特徴は:
(イ)鉄製で壁状の端子部と、この端子部と第1のL字型構造を構成するように直交方向に接続された鉄製で壁状の熱伝導部と、この熱伝導部に対し第1のL字型構造とは逆方向に曲がる方向に接続されこの熱伝導部とで第2のL字型構造を構成する鉄製の第1の接合形成部と、熱伝導部と離間して第1の接合形成部から熱伝導部に平行に延伸する鉄製の側壁部と、熱伝導部及び側壁部とそれぞれ耐熱性絶縁体を介して接続された鉄製の第2の接合形成部と、熱伝導部、第1の接合形成部及び側壁部に接し、第2の接合形成部の底部とは耐熱性絶縁体を介して接続された底板とからなる箱型の容器を用意する工程と、
(ロ)箱型の容器の第1及び第2の接合形成部以外の内面にの耐熱性電気絶縁体を塗装する工程と、
(ハ)容器の内部に溶融鉄・アルミニウム合金を鋳込んでn型導電体素子を形成し、更に溶融拡散接合により、p型導電体素子となる第1の接合形成部とn型導電体素子との界面に第1のp−n接合を、p型導電体素子となる第2の接合形成部とn型導電体素子との界面に第2のp−n接合を形成する工程
とを含む熱電変換システム用熱電パネルの製造方法であることを要旨とする。
In order to achieve the above object, the first feature of the present invention is that (a) a plurality of p-type conductor elements and a plurality of n-type conductors are formed by the first pn junction and the second pn junction. A series unit having an alternating series connection structure with a body element, giving different temperatures to the first pn junction and the second pn junction, and obtaining an electromotive force due to the Seebeck effect, and (b) the series unit This is a thermoelectric conversion system including a load directly connected between the anode terminal and the cathode terminal. Here, “alternate series connection structure of a plurality of p-type conductor elements and a plurality of n-type conductor elements” means that a plurality of p-type conductor elements made of iron and a plurality of n-type conductors made of iron / aluminum alloy are used. The body elements are alternately arranged in the bellows fold structure, and a plurality of peaks of the bellows fold structure constitute a first pn junction, respectively, and a plurality of valleys of the bellows fold structure each have a second p- It is connected so as to constitute an n junction.
The second feature of the present invention is:
(A) A wall-shaped terminal portion made of iron and a wall-shaped heat conduction portion made of iron and connected in an orthogonal direction so as to constitute the first L-shaped structure with the terminal portion, and the heat conduction portion The first L-shaped structure is connected to the first L-shaped structure and is bent in the opposite direction to form the second L-shaped structure, and the heat-conductive section is separated from the heat-conductive section. An iron side wall extending from the first joint forming part in parallel to the heat conducting part, a second iron joining forming part connected to the heat conducting part and the side wall part via a heat-resistant insulator, and heat A step of preparing a box-shaped container comprising a conduction plate, a first junction formation portion and a side wall portion, and a bottom plate connected to the bottom portion of the second junction formation portion via a heat-resistant insulator;
(B) painting a heat-resistant electrical insulator on the inner surface of the box-shaped container other than the first and second joint forming parts;
(C) A molten iron / aluminum alloy is cast into the container to form an n-type conductor element, and further, a first junction forming portion that becomes a p-type conductor element and an n-type conductor element by melt diffusion bonding Forming a first pn junction at an interface between the second junction forming portion and a second junction forming portion serving as a p-type conductor element, and a second pn junction at the interface between the n-type conductor element. The gist of the present invention is a method for manufacturing a thermoelectric panel for a thermoelectric conversion system.

本発明によれば、安価で大量に調達でき、経済性に優れた低温熱源利用の熱電変換システム及びこの熱電変換システム用熱電パネルの製造方法を提供することができる。特に、水の電気分解に応用すれば、システムの耐用性は半永久的で、付設の電子・電気機器を必要とせず、無償の低温熱源と海水、河川水、地下水及び雨水など自然水とを用いて、持続的かつ再生可能な形態で経済的に、大量の需要に適応しつつ、水素(H2)を発生させることができる。 According to the present invention, it is possible to provide a thermoelectric conversion system using a low-temperature heat source that is inexpensive and can be procured in large quantities and is excellent in economy, and a method for manufacturing the thermoelectric panel for the thermoelectric conversion system. In particular, when applied to water electrolysis, the durability of the system is semi-permanent, and there is no need for attached electronic and electrical equipment, and free low-temperature heat sources and natural water such as seawater, river water, groundwater, and rainwater are used. Thus, hydrogen (H 2 ) can be generated while adapting to a large amount of demand economically in a sustainable and renewable form.

図1(a)に示すように、p型導電体素子1とn型導電体素子(2a,2b)を2点で接合し、それぞれの接合部に異なった温度θh、θc(θh>θc)を印加すると、ゼーベック効果により、回路に起電力eが発生し、負荷Rに電流iが流れる。ここで、p型導電体素子1は正孔伝導物質であり、n型導電体素子(2a,2b)は電子伝導物質である。このように、物質のゼーベック効果に基づいた熱電変換は、熱エネルギーを電気エネルギーへ転化する直接エネルギー変換の形態に属するので、機械的駆動部を要しない放置型の発電方式としての有利な活用が期待できる。   As shown in FIG. 1A, a p-type conductor element 1 and an n-type conductor element (2a, 2b) are joined at two points, and different temperatures θh, θc (θh> θc) are applied to the respective joints. Is applied, an electromotive force e is generated in the circuit due to the Seebeck effect, and a current i flows through the load R. Here, the p-type conductor element 1 is a hole conductive material, and the n-type conductor elements (2a, 2b) are electron conductive materials. In this way, thermoelectric conversion based on the Seebeck effect of a substance belongs to the form of direct energy conversion that converts thermal energy into electrical energy, so it can be advantageously used as a neglected power generation method that does not require a mechanical drive unit. I can expect.

更に、図1(b)に示すように、n型導電体素子21,22,23,・・・・・,2n-1,2nと正孔伝導物質のp型導電体素子11,12,13,・・・・・,1n-1,1nを、対応するn個の高温側接合点及びn−1個の低温側接合点でそれぞれ接合し、高温側接合温度θh1,θh2,θh3,・・・・・,θhn-1,θhnと低温側接合温度θc1,θc2,θc3,・・・・・,θcn-1を印加すると、回路に起電力Vが発生する:
V =Δα(θh1−θc1)+Δα(θh2−θc2)+・・・・・+Δα(θhn−θcn
・・・・・(1)
次に、図面を参照して、上記原理に基づいた、本発明の第1及び第2の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。又、以下に示す第1及び第2の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
Further, as shown in FIG. 1B, n-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n and a p-type conductor element made of a hole conductive material. 1 1 , 1 2 , 1 3 ,..., 1 n−1 , 1 n are joined at the corresponding n high temperature side junctions and n−1 low temperature side junctions, respectively. Apply junction temperatures θh 1 , θh 2 , θh 3 ,..., Θh n-1 , θh n and low-temperature side junction temperatures θc 1 , θc 2 , θc 3 , ..., θc n-1 Then, an electromotive force V is generated in the circuit:
V = Δα (θh 1 −θc 1 ) + Δα (θh 2 −θc 2 ) + ・ ・ ・ ・ ・ + Δα (θh n −θc n )
(1)
Next, first and second embodiments of the present invention based on the above principle will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings. The first and second embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is The material, shape, structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the technical scope described in the claims.

(第1の実施の形態)
本発明の第1の実施の形態に係る熱電変換システムは、図2の模式図(概念図)に示すように、鉄(Fe)からなる複数のp型導電体素子11,12,13,・・・・・,1n-1,1nと鉄・アルミニウム(Fe−Al)合金からなる複数のn型導電体素子21,22,23,・・・・・,2n-1,2nとを交互に蛇腹折り構造に配置し、蛇腹折り構造の複数の山部でそれぞれ第1のp−n接合を構成し、蛇腹折り構造の複数の谷部でそれぞれ第2のp−n接合を構成するように接続し、これにより複数のp型導電体素子11,12,13,・・・・・,1n-1,1nと複数のn型導電体素子21,22,23,・・・・・,2n-1,2nとの交互直列接続構造をなし、第1及び第2のp−n接合に互いに異なる温度を与え、ゼーベック効果による起電力を得る直列ユニットと、この直列ユニットの陽極端子と陰極端子との間に直接接続された負荷RLとを備える。半導体と同様に、鉄(Fe)からなるp型導電体素子11,12,13,・・・・・,1n-1,1nは正孔伝導物質であり、鉄・アルミニウム(Fe−Al)合金からなるn型導電体素子21,22,23,・・・・・,2n-1,2nは電子伝導物質である。n型導電体素子21,22,23,・・・・・,2n-1,2nと正孔伝導物質のp型導電体素子11,12,13,・・・・・,1n-1,1nとは、蛇腹折り構造の山部で、それぞれ、対応するn個の高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnで第1のp−n接合を構成している。又、n型導電体素子21,22,23,・・・・・,2n-1,2nと正孔伝導物質のp型導電体素子11,12,13,・・・・・,1n-1,1nとは、蛇腹折り構造の谷部で、それぞれ、対応する(n−1)個の低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1で第2のp−n接合を構成している。そして、図2に示す蛇腹折り構造により、n個の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nの直列接続構造が構成されている。
(First embodiment)
The thermoelectric conversion system according to the first embodiment of the present invention includes a plurality of p-type conductor elements 1 1 , 1 2 , 1 made of iron (Fe) as shown in the schematic diagram (conceptual diagram) of FIG. 3 ,..., 1 n−1 , 1 n and a plurality of n-type conductor elements 2 1 , 2 2 , 2 3 ,. n-1 and 2n are alternately arranged in a bellows fold structure, a plurality of peak portions of the bellows fold structure form a first pn junction, and a plurality of valley portions of the bellows fold structure respectively. Are connected to form a plurality of p-n junctions, whereby a plurality of p-type conductor elements 1 1 , 1 2 , 1 3 ,..., 1 n−1 , 1 n and a plurality of n - type conductors are connected. Body elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n are connected in series, and different temperatures are applied to the first and second pn junctions, Due to the Seebeck effect A series unit for obtaining an electromotive force and a load RL directly connected between an anode terminal and a cathode terminal of the series unit are provided. As with semiconductors, p-type conductor elements 1 1 , 1 2 , 1 3 ,..., 1 n−1 , 1 n made of iron (Fe) are hole-conducting materials, and iron / aluminum ( The n-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n made of (Fe—Al) alloy are electron conductive materials. n-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n and p-type conductor elements 1 1 , 1 2 , 1 3 ,. .., 1 n-1 and 1 n are peak portions of the bellows fold structure, and corresponding n high temperature side joint surfaces J h1 , J h2 , J h3 ,. 1 and J hn constitute a first pn junction. Also, n-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n and hole-conducting material p-type conductor elements 1 1 , 1 2 , 1 3 ,. ..., 1 n−1 , 1 n are valley portions of the bellows fold structure, and corresponding (n−1) low temperature side joint surfaces J c1 , J c2 , J c3,. .., J cn-1 forms a second pn junction. Then, a series connection structure of n thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n is configured by the bellows fold structure shown in FIG.

図3は、本発明の第1の実施の形態に係る熱電変換システムに用いる熱電パネル(直列ユニット)の具体構造の一例である。なお、図10に示すように、第1の実施の形態に係る熱電変換システムでは、複数(m本)の直列ユニットを並列接続し、これにより全体のインピーダンスを低減し、負荷とのインピーダンスの調整を行う熱電パネルを構成可能であるが、m=1の場合も含めて、適宜「熱電パネル」と称することとする。   FIG. 3 is an example of a specific structure of a thermoelectric panel (series unit) used in the thermoelectric conversion system according to the first embodiment of the present invention. As shown in FIG. 10, in the thermoelectric conversion system according to the first embodiment, a plurality (m) of series units are connected in parallel, thereby reducing the overall impedance and adjusting the impedance with the load. Although the thermoelectric panel which performs this can be configured, it will be appropriately referred to as a “thermoelectric panel” including the case where m = 1.

図3では、S字型に折り曲がった帯状のp型導電体素子1j-1,1j,1j+1,1j+2,・・・・・,1n-1,1nと直線状(平板帯状)のn型導電体素子21,22,23,・・・・・,2n-1,2nとで、n個の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nが、電気的に直列に接続された直列ユニット(熱電パネル)を構成している。平板帯状のp型導電体素子のp型導電体素子1j-1,1j,1j+1,1j+2,・・・・・,1n-1,1nの幅と、S字状に折れ曲がった帯状のn型導電n型導電体素子21,22,23,・・・・・,2n-1,2nの幅とは等しい。 In Figure 3, p Katashirube conductor elements 1 j-1 of the belt-shaped bent in S-shape, 1 j, 1 j + 1 , 1 j + 2, ·····, and 1 n-1, 1 n The n-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n in a straight line (flat plate shape) are n thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n constitute a series unit (thermoelectric panel) electrically connected in series. P-type conductor elements 1 j−1 , 1 j , 1 j + 1 , 1 j + 2 ,..., 1 n−1 , 1 n , The band-shaped n-type conductive n-type conductive elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n are equal in width to each other.

n型導電体素子21,22,23,・・・・・,2n-1,2nは、Alの組成が6〜15重量%のFe−Al合金である。好ましくは、Alの組成は、7〜12重量%である。Fe−Al合金は、硬度及び脆性が大きいため機械加工が困難であるため、n型導電体素子2j-1,2j,2j+1,・・・・・の部分は折り曲げの応力が印加されないように直線上に構成され、Feからなるp型導電体素子11,12,13,・・・・・,1n-1,1nは、硬度及び脆性が小さく機械加工が容易であるため、それぞれS字型に折り曲げられている。この結果、高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhn及び低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1ともに、折れ曲がり構造の頂部及び谷部ではなく、頂部及び谷部からそれぞれ内部に移動した位置にある。 The n-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n are Fe—Al alloys having an Al composition of 6 to 15% by weight. Preferably, the composition of Al is 7 to 12% by weight. Fe-Al alloys, for machining the hardness and brittleness is larger and it is difficult, n Katashirube conductor element 2 j-1, 2 j, 2 j + 1, the stress of the bent portion of the ..... The p-type conductor elements 1 1 , 1 2 , 1 3 ,..., 1 n-1 , 1 n, which are configured in a straight line so as not to be applied, are less hard and brittle and can be machined. Since it is easy, each is bent into an S shape. As a result, the high-temperature side joint surfaces J h1 , J h2 , J h3 ,..., J hn−1 , J hn and the low-temperature side joint surfaces J c1 , J c2 , J c3,. Both cn-1 are not at the top and the valley of the bent structure, but at the positions respectively moved from the top and the valley to the inside.

そして、互いに対抗するp型導電体素子11とn型導電体素子11との間、p型導電体素子12とn型導電体素子22との間、p型導電体素子13とn型導電体素子23との間、・・・・・、p型導電体素子1n-1とn型導電体素子2n-1との間、p型導電体素子1nとn型導電体素子2nとの間には、それぞれ低温側絶縁膜3c1,3c2,3c3,・・・・・,3cn-1,3cnが挿入され、互いに対抗するn型導電体素子21とp型導電体素子12との間、n型導電体素子22とp型導電体素子13との間、・・・・・、n型導電体素子2n-1とp型導電体素子1nとの間には、それぞれ高温側絶縁膜3h1,3h2,・・・・・,3hn-1が挿入されている。 And between the p-type conductor element 1 1 and the n-type conductor element 1 1 facing each other, between the p-type conductor element 1 2 and the n-type conductor element 2 2, and the p-type conductor element 1 3. Between the n-type conductor element 2 3 ,... Between the p-type conductor element 1 n-1 and the n-type conductor element 2 n-1, and between the p-type conductor element 1 n and n The low temperature side insulating films 3 c1 , 3 c2 , 3 c3 ,..., 3 cn−1 , 3 cn are inserted between the n type conductor elements 2 n and the n type conductors that oppose each other. between the elements 2 1 and p Katashirube conductor element 1 2, between the n Katashirube conductor element 2 2 and p Katashirube collector element 1 3, ..., a n Katashirube conductor element 2 n-1 High temperature side insulating films 3 h1 , 3 h2 ,..., 3 hn−1 are inserted between the p-type conductor elements 1 n , respectively.

それぞれ低温側絶縁膜3c1,3c2,3c3,・・・・・,3cn-1,3cn及び高温側絶縁膜3h1,3h2,・・・・・,3hn-1は、電気的絶縁性が高く、使用温度に耐える材料ならば種々の材料が使用可能で、特定の材料や構造に限定されるものではない。例えば、図4に示すような多層構造で構成しても良い。図4では、低温側絶縁膜3cjが絶縁膜301j,302j,303j,304j,305jの5層の多層構造からなり、高温側絶縁膜3hjが絶縁膜301j+1,302j+1,303j+1,304j+1,305j+1,306j+1の6層の多層構造からなり、低温側絶縁膜3cj+1が絶縁膜301j+2,302j+2,303j+2,304j+2,305j+2,306j+2の6層の多層構造からなる例を示しているが、単層でも良く、2〜4層や7層以上等種々の構造が採用可能である。 The low temperature side insulating films 3 c1 , 3 c2 , 3 c3 ,..., 3 cn−1 , 3 cn and the high temperature side insulating films 3 h1 , 3 h2 ,. Various materials can be used as long as they have high electrical insulation and can withstand the use temperature, and are not limited to specific materials and structures. For example, you may comprise with a multilayer structure as shown in FIG. In FIG. 4, the low temperature side insulating film 3 cj has a five-layered structure of insulating films 301 j , 302 j , 303 j , 304 j , and 305 j , and the high temperature side insulating film 3 hj is formed of the insulating films 301 j + 1 , 302 j + 1 , 303 j + 1 , 304 j + 1 , 305 j + 1 , 306 j + 1, which has a six-layered structure, and the low temperature side insulating film 3 cj + 1 is the insulating film 301 j + 2 , 302 Although an example of a multi-layer structure of six layers j + 2 , 303 j + 2 , 304 j + 2 , 305 j + 2 , and 306 j + 2 is shown, a single layer may be used, and two to four layers or seven layers may be used. Various structures such as those described above can be employed.

図2及び図3に示す第1の実施の形態に係る熱電変換システムは、n個の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nが、電気的直列に接続されて直列ユニット(熱電パネル)を構成しているので、直列ユニット全体の開放電圧Vは、熱電変換素子ユニット1個分の起電力のn倍の直流の起電力が生じる。即ち式(1)において、高温側接合温度が互いに等しくθh1=θh2=θh3=・・・・・=θhn-1=θhnと低温側接合温度が互いに等しくθc1=θc2=θc3=・・・・・=θcn-1=θcnであるとすれば、
V = nΔαΔθ ・・・・・(2)
ここで、Δαは熱電変換素子ユニットのゼーベック係数、即ち、1Kの温度差に対する1つの熱電変換素子ユニットの起電力で、Δθは高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnと低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1,Jcnでの温度差である。高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnをθh(=θh1=θh2=θh3=・・・・・=θhn-1=θhn)とし、低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1,Jcnをθc(=θc1=θc2=θc3=・・・・・=θcn-1=θcn)とすれば、
Δθ=θh−θc ・・・・・(3)
である。
第1の実施の形態に係る熱電変換システムでは、図2のように、直列ユニット(熱電パネル)に抵抗値RLの負荷が直列に接続されている。この直列回路の全体に電流Iが流れるとすれば、負荷に対する出力Wは式(4)で与えられる。
The thermoelectric conversion system according to the first embodiment shown in FIGS. 2 and 3 has n thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n. Since the series unit (thermoelectric panel) is electrically connected in series, the open circuit voltage V of the entire series unit generates a DC electromotive force that is n times the electromotive force of one thermoelectric conversion element unit. . That is, in Equation (1), the high-temperature side junction temperatures are equal to each other and θh 1 = θh 2 = θh 3 =... = Θh n-1 = θh n and the low-temperature side junction temperatures are equal to each other θc 1 = θc 2 = If θc 3 = ・ ・ ・ ・ ・ = θc n-1 = θc n ,
V = nΔαΔθ (2)
Here, Δα is the Seebeck coefficient of the thermoelectric conversion element unit, that is, the electromotive force of one thermoelectric conversion element unit with respect to a temperature difference of 1 K, and Δθ is the high-temperature side joint surface J h1 , J h2 , J h3 ,. .. , J hn−1 , J hn and the low-temperature side joint surfaces J c1 , J c2 , J c3 ,..., J cn−1 , J cn . High-temperature side joint surfaces J h1 , J h2 , J h3 ,..., J hn−1 , J hn are changed to θh (= θh 1 = θh 2 = θh 3 = ・ ・ ・ ・ ・ = θh n-1 = θh n ), and the low-temperature side joint surfaces J c1 , J c2 , J c3 ,..., J cn−1 , J cn are θc (= θc 1 = θc 2 = θc 3 = ・ ・ ・ ・ ・ = θc n-1 = θc n )
Δθ = θh−θc (3)
It is.
In the thermoelectric conversion system according to the first embodiment, as shown in FIG. 2, a load having a resistance value R L is connected in series to a series unit (thermoelectric panel). If the current I flows through the entire series circuit, the output W for the load is given by equation (4).

W = nΔαΔθI − RG2 ・・・・・(4)
ここで、RG は直列ユニットを構成するn個の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nの全抵抗である。又右辺第2項は、直列ユニットにおけるジュール熱損失である。式(4)の出力は、電流Iが
I = nΔαΔθ/2RG ・・・・・(5)
のとき最大となり、式(6)で表わされる。
W = nΔαΔθI−R G I 2 (4)
Here, R G is the total resistance of n thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n constituting the series unit. The second term on the right side is Joule heat loss in the series unit. The output of equation (4) is that current I is I = nΔαΔθ / 2R G (5)
And becomes the maximum and is expressed by equation (6).

max = (nΔαΔθ)2/4RG ・・・・・(6)
水の電気分解において発生する水素(H2)の量は電解電流に比例する。したがって、図9又は図10に示すように、直列ユニット(熱電パネル)の陽極端子を水電解槽41に配置された陽極板42に直接接続し、直列ユニットの陰極端子を水電解槽41に配置された陰極板43に直接接続し、これにより陽極板42と陰極板43間の水の抵抗を負荷とし、水の電気分解を行うと、直列ユニットを構成するそれぞれの熱電変換素子ユニット内部に発生水素量に応じた電流が流れるので、式(5)から明らかなように、熱電変換素子ユニットの電気抵抗を小さくすることが要求される。
W max = (nΔαΔθ) 2 / 4R G (6)
The amount of hydrogen (H 2 ) generated in the electrolysis of water is proportional to the electrolysis current. Therefore, as shown in FIG. 9 or 10, the anode terminal of the series unit (thermoelectric panel) is directly connected to the anode plate 42 arranged in the water electrolysis tank 41, and the cathode terminal of the series unit is arranged in the water electrolysis tank 41. Directly connected to the cathode plate 43 thus formed, the resistance of water between the anode plate 42 and the cathode plate 43 is used as a load, and water electrolysis is generated inside each thermoelectric conversion element unit constituting the series unit. Since a current corresponding to the amount of hydrogen flows, it is required to reduce the electric resistance of the thermoelectric conversion element unit, as is apparent from Equation (5).

表1は、p型導電体素子として、室温での絶対ゼーベック係数がα=+12μV/Kの鉄(Fe)、n型導電体素子として絶対ゼーベック係数α=−20μV/Kを有するFe−Al合金(Al:6〜15重量%)を用いた場合の、熱電性能に係る物性の測定結果を示す。

Figure 2006100346
Table 1 shows that Fe (Fe) having an absolute Seebeck coefficient α p = + 12 μV / K at room temperature as a p -type conductor element and Fe − having an absolute Seebeck coefficient α n = −20 μV / K as an n -type conductor element. The measurement result of the physical property which concerns on the thermoelectric performance at the time of using Al alloy (Al: 6-15 weight%) is shown.
Figure 2006100346

表1に示すp型導電体素子としての鉄(Fe)及びn型導電体素子としてのFe−Al合金(Al:6〜15重量%、好ましくは7〜12重量%のFe−Al合金である。)は、安価で量産性に優れている。更に、表1から分かるように、良好な導電性を有する。   Iron (Fe) as a p-type conductor element and an Fe-Al alloy (Al: 6 to 15 wt%, preferably 7 to 12 wt% Fe-Al alloy shown in Table 1 as p-type conductor elements) .) Is inexpensive and excellent in mass productivity. Furthermore, as can be seen from Table 1, it has good conductivity.

表1に示した熱電変換素子ユニットのゼーベック係数の値は、同じく300C以下の低温で使用できる化合物半導体熱電変換素子と比較して10分の1のオーダーである。したがって10倍の熱電変換素子ユニットの直列結合数n(nは2以上の正の整数であるが、一般には数百から千以上の値をとりうる。)を要するが、FeとFe−Al合金の組み合わせは、価格と消費可能量並びに熱電変換素子ユニットへの加工性において格段の優位性がある。
更に、第1の実施の形態に係る熱電変換システムでは金属系の熱電変換素子ユニットを用いているので、半導体系熱電変換素子と異なり、微量な不純物によるゼーベック係数の変動は極く僅かである。したがって、p型導電体素子として普通鋼及び鉄鋼スクラップを用いることができる。又、n型導電体素子としてのFe−Al合金は鉄分を含むアルミニウムスクラップを用いて合金化することができる。又溶融の際に生成する酸化アルミニウム介在物が合金内に存在しても、熱電特性に与える影響はほとんど認められない。
The value of the Seebeck coefficient of the thermoelectric conversion element unit shown in Table 1 is on the order of 1/10 compared to a compound semiconductor thermoelectric conversion element that can be used at a low temperature of 300 ° C. or less. Therefore, ten times the number of serial couplings n of thermoelectric conversion element units (n is a positive integer of 2 or more, but generally can take a value of several hundred to 1,000 or more), but Fe and Fe—Al alloy This combination has a significant advantage in terms of price, consumable amount, and processability to a thermoelectric conversion element unit.
Furthermore, since the thermoelectric conversion system according to the first embodiment uses a metal-based thermoelectric conversion element unit, unlike the semiconductor thermoelectric conversion element, the Seebeck coefficient varies very little due to a small amount of impurities. Therefore, ordinary steel and steel scrap can be used as the p-type conductor element. Further, the Fe—Al alloy as the n-type conductor element can be alloyed using aluminum scrap containing iron. Further, even if aluminum oxide inclusions produced during melting are present in the alloy, the influence on the thermoelectric properties is hardly recognized.

更に、第1の実施の形態に係る熱電変換システムでは、図2のシステムの概念図が示すように、熱源として高温ガスを適用する場合、熱源領域の側面が、多数の熱電変換素子ユニット群を備える熱電パネル(直列ユニット)をなし、熱電パネルの端子を直接に水電解槽41内の陽極(陽極板)42と陰極(陰極板)43に接続している。したがって、第1の実施の形態に係る熱電変換システムには、操業用補助電源及び機械的駆動部などは存在せず、資材として熱電パネル(直列ユニット)、低温熱源及び水電解槽41のみからなるシステムの構成で、定常状態に放置すれば連続的に水素(H2)及び酸素(O2)が発生する。 Furthermore, in the thermoelectric conversion system according to the first embodiment, as shown in the conceptual diagram of the system of FIG. 2, when a high-temperature gas is applied as a heat source, the side surface of the heat source region includes a large number of thermoelectric conversion element unit groups. A thermoelectric panel (series unit) is provided, and terminals of the thermoelectric panel are directly connected to an anode (anode plate) 42 and a cathode (cathode plate) 43 in the water electrolysis tank 41. Therefore, the thermoelectric conversion system according to the first embodiment does not include an operation auxiliary power source and a mechanical drive unit, and includes only a thermoelectric panel (series unit), a low-temperature heat source, and a water electrolysis tank 41 as materials. If the system is left in a steady state, hydrogen (H 2 ) and oxygen (O 2 ) are continuously generated.

第1の実施の形態に係る熱電変換システムに用いるそれぞれの熱電変換素子ユニットの形状に関しては、特に、それぞれの高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnと低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1,Jcnの接合面間距離Lが重要な因子である。更に、p型導電体素子11,12,13,・・・・・,1n-1,1nの断面積Sp及びn型導電体素子21,22,23,・・・・・,2n-1,2nの断面積Snが、熱電変換素子ユニットの性能に対して重要な因子となる。即ち、n型導電体素子21,22,23,・・・・・,2n-1,2nの比抵抗をρn、p型導電体素子11,12,13,・・・・・,1n-1,1nの比抵抗をρp、高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnにおける接触抵抗をrch、低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1における接触抵抗をrccとすれば、n個の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nからなる熱電パネル(直列ユニット)端子間抵抗RGは、
G=n(ρnL/Sn+ρpL/Sp+rch+rcc) ・・・・・(7)
となる。又、n型導電体素子21,22,23,・・・・・,2n-1,2nの熱伝導率をκn、p型導電体素子11,12,13,・・・・・,1n-1,1nの熱伝導率をκpとすれば、n個の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nからなる熱電パネルの熱抵抗Rthは、
1/Rth=n(κnn/L+κpp/L) ・・・・・(8)
となる。したがって、高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnから低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1に流れる熱流(heat flow rate)Qは、
Q= Δθ/Rth ・・・・・(9)
となる。
Regarding the shape of each thermoelectric conversion element unit used in the thermoelectric conversion system according to the first embodiment, in particular, the respective high temperature side joint surfaces J h1 , J h2 , J h3 ,..., J hn− 1 and J hn and the low-temperature-side joint surfaces J c1 , J c2 , J c3 ,..., J cn−1 , J cn are distances L between the joint surfaces. Further, p Katashirube conductor elements 1 1, 1 2, 1 3, · · · · ·, 1 n-1, 1 n the cross-sectional area of S p and n Katashirube conductor element 2 1, 2 2, 2 3, · ..., 2 n−1 , 2 n cross-sectional areas Sn are important factors for the performance of the thermoelectric conversion element unit. That is, the resistivity of the n-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n is ρ n , and the p-type conductor elements 1 1 , 1 2 , 1 3 , ..., 1 n-1 , 1 n specific resistance ρ p , high temperature side joint surface J h1 , J h2 , J h3 ,..., J hn-1 , J hn r ch , assuming that the contact resistance at the low temperature side joint surfaces J c1 , J c2 , J c3 ,..., J cn-1 is r cc , n thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n thermoelectric panel (series unit) terminal resistance R G is
R G = n (ρ n L / S n + ρ p L / S p + r ch + r cc ) (7)
It becomes. Further, the thermal conductivity of the n-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n-1 , 2 n is κ n , and the p-type conductor elements 1 1 , 1 2 , 1 3 , ..., 1 if n-1, 1 a thermal conductivity of n and kappa p, n pieces of the thermoelectric conversion element unit 51 1, 51 2, 51 3 , ·····, 51 n- The thermal resistance R th of the thermoelectric panel consisting of 1 and 51 n is
1 / R th = n (κ n Sn / L + κ p Sp / L) (8)
It becomes. Therefore, the high temperature side joint surfaces J h1 , J h2 , J h3 ,..., J hn−1 , J hn to the low temperature side joint surfaces J c1 , J c2 , J c3 ,. The heat flow rate Q flowing to -1 is
Q = Δθ / R th (9)
It becomes.

第1の実施の形態に係る熱電変換システムにおいては、熱電パネル(直列ユニット)が水電解装置(41,42,43)に直結し、1つの直流電源と2つの抵抗RC,RGからなる閉回路を構成している故に、両者は相互に連動して作動する。熱電パネルの出力が最大となる条件は、式(6)の導出過程から明らかなように、水電解槽端子間抵抗RCと熱電パネル端子間抵抗RGの間に、
G=RC ・・・・・(10)
の関係が成立するときである。式(10)の関係を維持した上で、水の電気分解において水素発生の担体となる回路電流を大きくするためには、水電解槽端子間抵抗RCと熱電パネル端子間抵抗RGの両抵抗を小さくすることが好ましい。
従来行われている水の電気分解におけるエネルギー収支に関しては、水の分解反応吸熱量、70〜80Cの最適電解浴温度に保持するための電解槽熱量及び給水の昇温熱量など全所要熱量は、電解電流の浴抵抗ジュール熱により補償されている。したがってこの場合、浴抵抗(水電解槽端子間抵抗)RCは、陽極42と陰極43の極間距離に比例するので、ある限度以下に極間距離を短くすることはできないが、 第1の実施の形態に係る熱電変換システムにおいては、発電に用いる低温熱源を一部流用し、熱交換器を浴に浸漬して所要熱量を補償するので、陽極42と陰極43の極間距離を極く短くとり、水電解槽端子間抵抗RCを小さくすることが可能となる。
In the thermoelectric conversion system according to the first embodiment, the thermoelectric panel (series unit) is directly connected to the water electrolysis device (41, 42, 43), and includes one DC power supply and two resistors R C and R G. Since they constitute a closed circuit, they operate in conjunction with each other. As is clear from the derivation process of Equation (6), the condition that maximizes the output of the thermoelectric panel is between the resistance R C between the water electrolyzer terminals and the resistance R G between the thermoelectric panel terminals.
R G = R C (10)
This is when the relationship is established. In order to increase the circuit current that becomes a carrier for hydrogen generation in the electrolysis of water while maintaining the relationship of the equation (10), both the resistance R C between the water electrolyzer terminals and the resistance R G between the thermoelectric panel terminals are used. It is preferable to reduce the resistance.
Regarding the energy balance in the electrolysis of water that has been carried out conventionally, the total required heat amount such as water decomposition reaction endotherm, electrolytic cell heat amount to maintain the optimal electrolytic bath temperature of 70 to 80 ° C., and heating temperature of the feed water Is compensated by the bath resistance Joule heat of the electrolysis current. Therefore, in this case, since the bath resistance (resistance between water electrolysis cell terminals) RC is proportional to the distance between the anode 42 and the cathode 43, the distance between the electrodes cannot be reduced below a certain limit. In the thermoelectric conversion system according to the embodiment, part of the low-temperature heat source used for power generation is used, and the heat exchanger is immersed in the bath to compensate for the required amount of heat, so the distance between the anode 42 and the cathode 43 is extremely small. It is possible to reduce the resistance R C between the water electrolyzer terminals.

一方、熱電パネルの端子間抵抗RGに関しては、n個の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nからなる直列ユニットを、図10に示すようにm本並列接続(mは2以上の正の整数)してn×mマトリクス状の熱電パネルとすることにより低減することができる。 On the other hand, regarding the inter-terminal resistance R G of the thermoelectric panel, a series unit composed of n thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n is shown in FIG. As shown in Fig. 4, m can be reduced by connecting in parallel (m is a positive integer of 2 or more) to form an n × m matrix thermoelectric panel.

水の電気分解に対する理論分解電圧は1.2Vにあり、従来の水の電気分解は1.7〜2.0Vの電解電圧で行われている。第1の実施の形態に係る熱電変換システムに用いる水電解装置(41,42,43)においては、水電解槽41の改良設計により最低1.5Vの電解電圧を用いる。   The theoretical decomposition voltage for water electrolysis is 1.2V, and conventional water electrolysis is performed at an electrolysis voltage of 1.7 to 2.0V. In the water electrolysis apparatus (41, 42, 43) used in the thermoelectric conversion system according to the first embodiment, an electrolysis voltage of 1.5 V is used at the minimum due to the improved design of the water electrolysis tank 41.

金属系の熱電変換素子は表1に示すように熱伝導度κが大きいため、熱源の温度差:
ΔT=Th−TC ・・・・・(11)
に対して、式(3)で示される各熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nに付与されるそれぞれの高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnと低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1,Jcn間の温度差ΔθをΔTに近づけるためには、高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnに大容量の加熱フィンを装備した容積の大きなヒートシンク部を設け、低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1,Jcnは冷却フィンをp−n接合面に近づけて冷却効果を強化すべきである。
第1の実施の形態に係る熱電変換システムにおいては、熱電パネル53が水電解装置(41,42,43)に直結して、図10の等価回路に示すように、1つの直流電源VGと2つの電気抵抗RG,RCからなる閉回路を構成している故に、両者は相互に連動して作動する。熱電パネル端子間抵抗RGと水電解槽端子間抵抗RCの間に
G C ・・・・・(12)
の関係が成り立つように、熱電パネル53と水電解槽41の設計を行う必要がある。式(6)の導出過程から明らかなように、RG=RCのとき熱電パネル53の出力は最大となるが、もしRG>RCならば回路電流が流れると、熱電パネル53での電圧降下が水電解槽41での電圧降下よりも大きくなるので不利になるからである。又、回路電流Iは、水の電気分解における水素発生の担体となるので、閉回路内の全電気抵抗を小さくすることが望ましい。
図10の電気回路において、回路電流Iが流れているとき、熱電パネル53の開放電圧がVGであったとすれば、
G = I(RG+RC) ・・・・・(13)
であるから、水電解槽41の端子間に掛かる電圧VCは式(14)で与えられる。
Since the metal-based thermoelectric conversion element has a large thermal conductivity κ as shown in Table 1, the temperature difference of the heat source:
ΔT = T h −T C (11)
In contrast, each of the thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n represented by the formula (3) is connected to each high-temperature side joint surface J h1. , J h2 , J h3 ,..., J hn-1 , J hn and the temperature between the low-temperature side joints J c1 , J c2 , J c3 , ..., J cn-1 , J cn In order to bring the difference Δθ close to ΔT, the high-temperature heat sink part is equipped with high-capacity heating fins on the high-temperature side joint surfaces J h1 , J h2 , J h3 , ..., J hn-1 , J hn. the provided low temperature side bonding surface J c1, J c2, J c3 , ·····, J cn-1, J cn should enhance the cooling effect closer to the cooling fins on the p-n junction plane.
In the thermoelectric conversion system according to the first embodiment, the thermoelectric panels 53 are directly connected to the water electrolysis apparatus (41, 42, 43), as shown in the equivalent circuit of FIG. 10, and one of the DC power supply V G Since they constitute a closed circuit composed of two electric resistances R G and R C , both operate in conjunction with each other. Between resistance R G between thermoelectric panel terminals and resistance R C between water electrolyzer terminals
R G < RC (12)
Therefore, it is necessary to design the thermoelectric panel 53 and the water electrolysis tank 41 so that the above relationship is established. As is clear from the derivation process of Equation (6), the output of the thermoelectric panel 53 is maximum when R G = R C , but if R G > R C, if a circuit current flows, This is because the voltage drop becomes larger than the voltage drop in the water electrolysis tank 41, which is disadvantageous. Further, since the circuit current I serves as a carrier for hydrogen generation in the electrolysis of water, it is desirable to reduce the total electric resistance in the closed circuit.
In the electric circuit of FIG. 10, when the circuit current I is flowing, if the open-circuit voltage of the thermoelectric panel 53 was V G,
V G = I (R G + R C ) (13)
Therefore, the voltage V C applied between the terminals of the water electrolysis tank 41 is given by the equation (14).

C = VG /(RG/RC+1) ・・・・・(14)
C=1.5Vの水電解槽41に接続する熱電パネル53に要求される開放電圧VGを、(RG/RC)比の関数として求め、それぞれのVGを発生させるために必要な熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nの直列結合数nと熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nの高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnと低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1,Jcn間の温度差Δθとの関係を求めると、表2の通りである。

Figure 2006100346
V C = V G / (R G / R C +1) (14)
The open circuit voltage V G which is required for the thermoelectric panel 53 to be connected to the water electrolyser 41 of V C = 1.5V, determined as a function of the (R G / R C) ratio, required to generate the respective V G Thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n in series connection number n and thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,. .., 51 n-1 , 51 n high-temperature side joint surfaces J h1 , J h2 , J h3 ,..., J hn-1 , J hn and low-temperature side joint surfaces J c1 , J c2 , J c3 , ..., J cn−1 , J cn are related to the temperature difference Δθ.
Figure 2006100346

以上説明したように、本発明の第1の実施の形態に係る熱電変換システムによれば、金属系の安価な熱電物質からなる熱電変換素子を用いて発電機に相当する直列ユニット(素子直列結合群)を構成し、整流器など電子機器を介在させることなく、負荷となる水電解装置(41,42,43)に直結して、回路電流に比例する量の水素を発生させるシステムを構築することができる。そして、第1の実施の形態に係る熱電変換システムでは、大容量変換のための熱源としては、「効率」よりも「効用」を重視し、利用価値がなく捨て去られている主として温度が300C以下の無償の低温熱源を用いて、水の電気分解に必要な直流電力を直接取り出すことが可能となる。
図5を用いて、本発明の第1の実施の形態に係る熱電変換システムに用いる直列ユニットの製造方法を説明する。なお、以下に述べる直列ユニットの製造方法は、一例であり、この変形例を含めて、これ以外の種々の製造方法により、実現可能であることは勿論である。
As described above, according to the thermoelectric conversion system according to the first embodiment of the present invention, a series unit (element series coupling) corresponding to a generator using a thermoelectric conversion element made of a metal-based inexpensive thermoelectric material. And a system that generates hydrogen in an amount proportional to the circuit current, directly connected to the water electrolysis device (41, 42, 43) serving as a load without interposing electronic devices such as rectifiers. Can do. In the thermoelectric conversion system according to the first embodiment, as a heat source for large-capacity conversion, “utility” is more important than “efficiency”, and the temperature is mainly discarded because it has no utility value. It is possible to directly extract DC power necessary for electrolysis of water using a free low-temperature heat source of o C or less.
The manufacturing method of the serial unit used for the thermoelectric conversion system which concerns on the 1st Embodiment of this invention is demonstrated using FIG. The serial unit manufacturing method described below is merely an example, and it is needless to say that the present invention can be realized by various other manufacturing methods including this modification.

(イ)先ず、図5(a)に示すように、厚さt=0.06mmから0.2mm程度、幅5〜20mm程度の鉄(冷延鋼板)の帯を用意する。冷延鋼板の帯の厚さtは、アルミニウム(Al)の拡散深さを考慮して決めれば良い。即ち、冷延鋼板の帯の表面と裏面の両方から拡散したAlにより、冷延鋼板の帯が完全にFe−Al合金になる厚さtを選ぶ。冷延鋼板の帯の幅は、熱電パネル端子間抵抗RGの設計によるが、並列接続を考慮すれば任意性がある。冷延鋼板の帯の幅は、その後の折り曲げ加工の容易さをも考慮するのが好ましい。 (A) First, as shown in FIG. 5A, a strip of iron (cold rolled steel sheet) having a thickness t = 0.06 mm to about 0.2 mm and a width of about 5 to 20 mm is prepared. The thickness t of the cold-rolled steel sheet may be determined in consideration of the diffusion depth of aluminum (Al). That is, the thickness t at which the cold-rolled steel strip is completely Fe-Al alloy is selected by Al diffused from both the front and back surfaces of the cold-rolled steel strip. The width of the cold-rolled steel strip depends on the design of the resistance RG between the thermoelectric panel terminals, but is arbitrary if parallel connection is considered. The width of the cold-rolled steel sheet preferably takes into account the ease of subsequent bending.

(ロ)その後、図5(b)に示すように、n型導電体素子形成予定部となる部分に、単位長さあたり、冷延鋼板の6〜15重量%、好ましくは7〜12重量%に相当する重量のアルミニウム箔12a,12b,12c,・・・・・を一定間隔で周期的に巻き付ける。即ち、単位長さあたり、厚さtの鉄(Fe)の帯の重量の6〜15重量%、好ましくは7〜12重量%の1/2に相当する厚さのアルミニウム箔12a,12b,12c,・・・・・を冷延鋼板の帯に巻き付ける。   (B) Thereafter, as shown in FIG. 5 (b), 6-15% by weight of the cold-rolled steel sheet, preferably 7-12% by weight, per unit length, in the portion to be the n-type conductor element formation scheduled part. The aluminum foils 12a, 12b, 12c,... Having a weight corresponding to are wound periodically at regular intervals. That is, the aluminum foils 12a, 12b, and 12c having a thickness corresponding to 1/2 to 6 to 15% by weight, preferably 7 to 12% by weight of the weight of the iron (Fe) band having a thickness t per unit length. Wrapped around a strip of cold-rolled steel sheet.

(ハ)更に、アルゴン(Ar)ガス雰囲気中、1000Cで24時間の拡散焼鈍を行う。この処理により、図5(c)に示すように、アルミニウム箔12a,12b,12c,・・・・・の位置に、Alが拡散し、Feと合金化される。この結果、Alの組成が6〜15重量%、好ましくは7〜12重量%のFe−Al合金からなるn型導電体素子2j-1,2j,2j+1,・・・・・が一定間隔で周期的に形成され、アルミニウム箔が巻かれていなかった冷延鋼板の帯の位置にはp型導電体素子1j-1,1j,1j+1,1j+2,・・・・・が一定間隔で周期的に形成される。この結果、p型導電体素子1j-1とn型導電体素子2j-1との界面、n型導電体素子2j-1とp型導電体素子1jとの界面、p型導電体素子1jとn型導電体素子2jとの界面、n型導電体素子2jとp型導電体素子1j+1との界面、p型導電体素子1j+1とn型導電体素子2j+1との界面、n型導電体素子2j+1とp型導電体素子1j+2との界面、・・・・・にはそれぞれp−n接合が形成される。 (C) Further, diffusion annealing is performed for 24 hours at 1000 ° C. in an argon (Ar) gas atmosphere. By this treatment, as shown in FIG. 5 (c), Al diffuses at the positions of the aluminum foils 12a, 12b, 12c,... And is alloyed with Fe. As a result, the n-type conductor elements 2 j-1 , 2 j , 2 j + 1 ,... Made of Fe—Al alloy having an Al composition of 6 to 15 wt%, preferably 7 to 12 wt%. Are periodically formed at regular intervals, and the positions of the strips of the cold-rolled steel sheet on which the aluminum foil is not wound are located at the p-type conductor elements 1 j-1 , 1 j , 1 j + 1 , 1 j + 2 , Are formed periodically at regular intervals. As a result, the interface between the p-type conductor element 1 j-1 and the n-type conductor element 2 j-1 , the interface between the n-type conductor element 2 j-1 and the p-type conductor element 1 j , p-type conductivity Interface between body element 1 j and n-type conductor element 2 j , interface between n-type conductor element 2 j and p-type conductor element 1 j + 1 , p-type conductor element 1 j + 1 and n-type conductor A pn junction is formed at each of the interface between the body element 2 j + 1 and the interface between the n-type conductor element 2 j + 1 and the p-type conductor element 1 j + 2 .

(ニ)次に、図5(d)に示すように、各接合部から1〜5mm程度、好ましくは2〜3mm程度離間した位置のp型導電体素子1j-1,1j,1j+1,1j+2,・・・・・の位置を折り曲げ位置とし、この折り曲げ位置で、交互に山折りと谷折りを繰り返し、逐次、逆方向にU字型に折り曲げる。Fe−Al合金は、硬度及び脆性が大きいため機械加工が困難であるため、n型導電体素子2j-1,2j,2j+1,・・・・・の部分は折り曲げの応力が印加されないように、各接合部の位置を折り曲げ位置からずらす。このため、高温側及び低温側ともに、p−n接合面は折り曲げ位置である頂部及び谷部ではなく、蛇腹折り構造の頂部及び谷部から2〜10mm程度、好ましくは3〜5mm程度内部方向に移動した位置にある。この結果、図5(d)に示すような蛇腹折り構造の直列ユニットが完成する。 (D) Next, as shown in FIG. 5 (d), 1 to 5 mm approximately from the junction, preferably p Katashirube conductor elements 1 j-1 position spaced about 2 to 3 mm, 1 j, 1 j The position of +1 , 1 j + 2 ,... Is set as a folding position, and at this folding position, a mountain fold and a valley fold are repeated alternately, and then sequentially bent in a U-shape in the opposite direction. Fe-Al alloys, for machining the hardness and brittleness is larger and it is difficult, n Katashirube conductor element 2 j-1, 2 j, 2 j + 1, the stress of the bent portion of the ..... The position of each joint is shifted from the bending position so that it is not applied. For this reason, on both the high temperature side and the low temperature side, the pn junction surface is not the top and the valley at the folding position, but is about 2 to 10 mm, preferably about 3 to 5 mm from the top and the valley of the bellows fold structure. It is in the moved position. As a result, a series unit having a bellows fold structure as shown in FIG. 5D is completed.

第1の実施の形態に係る熱電変換システムの全体の性能は、個々の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nが示す熱電特性の加法性によって決まるが、熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nの直列結合数nが数百から千以上になる場合があるこの場合は、図6に示すようなメアンダライン(蛇行線)状のパターンを利用するのが好都合である。即ち:
(イ)厚さ0.2mm程度、平面寸法0.38m×2.5m程度の冷延鋼板を用い、図6の如く直角に折れ曲がる線幅10mmのメアンダライン状に切り込みを入れる。切り込みはプレスを用いても良く、金切り鋏やカッタを用いても良く、種々の手段が採用可能である。隣接するメアンダライン相互間には、図6に示すように幅5mmの平行なスリットが設けられ、周期的繰り返しパターンが形成される。
The overall performance of the thermoelectric conversion system according to the first embodiment is that of the thermoelectric characteristics indicated by the individual thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n . is determined by the additive, the thermoelectric conversion element unit 51 1, 51 2, 51 3 , ·····, 51 n-1, 51 if this series combination number n of n may become a thousand or more of several hundred It is convenient to use a meander line (meandering line) pattern as shown in FIG. That is:
(A) Using a cold-rolled steel sheet having a thickness of about 0.2 mm and a plane size of about 0.38 m × 2.5 m, cut into a meander line shape with a line width of 10 mm that bends at right angles as shown in FIG. For the cutting, a press may be used, or a gold cutter or cutter may be used, and various means can be employed. As shown in FIG. 6, parallel slits having a width of 5 mm are provided between adjacent meander lines to form a periodically repeated pattern.

(ロ)そして、n型導電体素子21,22,23,・・・・・,2n-1,2n形成予定部となる長さ50mmの部分に6〜15重量%、好ましくは7〜12重量%の合金化量に相当する長さ46mmのアルミニウム箔を密着させ、アルゴン雰囲気中、1000Cで24時間の拡散焼鈍を行う。この結果、Alの組成が6〜15重量% 、好ましくは7〜12重量%のFe−Al合金からなるn型導電体素子21,・・・・・,2j,2j+1,・・・・・,2n-1,2nが一定間隔で周期的に形成され、アルミニウム箔が巻かれていなかった冷延鋼板の帯の位置にはp型導電体素子11,・・・・・,1j,1j+1,・・・・・,1n-1,1nが一定間隔で周期的に形成される。この結果、n型導電体素子21とp型導電体素子11との界面、・・・・・、p型導電体素子1j-1とn型導電体素子2jとの界面、n型導電体素子2jとp型導電体素子1jとの界面、p型導電体素子1jとn型導電体素子2j+1との界面、n型導電体素子2j+1とp型導電体素子1j+1との界面、p型導電体素子1j+1とn型導電体素子2j+2との界面、・・・・・、p型導電体素子1n-1とn型導電体素子2nとの界面、n型導電体素子2nとp型導電体素子1nとの界面にはそれぞれp−n接合が形成され、0.38m×2.5mの鋼板上にn=625組の熱電変換素子ユニットの直列結合からなる直列ユニット平型が得られる。同様に、更に、9枚の鋼板について同様の処理を行い、全10組の直列ユニット平型を作製する(m=10)。 (B) The n-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n are 6 to 15 wt%, preferably 6 to 15 wt%, Is closely contacted with an aluminum foil having a length of 46 mm corresponding to an alloying amount of 7 to 12% by weight, and is subjected to diffusion annealing at 1000 ° C. for 24 hours in an argon atmosphere. As a result, n-type conductor elements 2 1 ,..., 2 j , 2 j + 1 ,... Made of Fe—Al alloy having an Al composition of 6 to 15% by weight, preferably 7 to 12% by weight. ..., 2 n−1 , 2 n are periodically formed at regular intervals, and the p-type conductor elements 1 1 ,. .., 1 j , 1 j + 1 ,..., 1 n−1 , 1 n are periodically formed at regular intervals. As a result, the interface between the n-type conductor element 2 1 and the p-type conductor element 1 1 ,..., The interface between the p-type conductor element 1 j-1 and the n-type conductor element 2 j , n Interface between p-type conductor element 2 j and p-type conductor element 1 j , interface between p-type conductor element 1 j and n-type conductor element 2 j + 1 , n-type conductor elements 2 j + 1 and p interface between Katashirube conductor elements 1 j + 1, the interface between the p Katashirube conductor elements 1 j + 1 and n Katashirube collector element 2 j + 2, ·····, p Katashirube conductor element 1 n-1 A pn junction is formed at the interface between the n-type conductor element 2 n and the interface between the n-type conductor element 2 n and the p-type conductor element 1 n, and a steel plate of 0.38 m × 2.5 m A series unit flat type composed of n = 625 sets of thermoelectric conversion element units connected in series is obtained. Similarly, the same treatment is performed on the nine steel plates to produce a total of 10 series unit flat molds (m = 10).

(ハ)次に、図7のように各接合部を少しずれた位置のp型導電体素子11,・・・・・,1j,1j+1,・・・・・,1n-1,1nに設けられた折曲位置Bc1,Bh1,・・・・・,Bcn,Bhnで、逐次、交互に逆方向に、折り曲げ、蛇腹折り構造にする。そして、隣り合うすべての間隙に厚手の紙を挿入して電気絶縁をとり、直列ユニットとする。同様に、更に、9枚の直列ユニット平型について同様の処理を行い、全10組の直列ユニットを作製する(m=10)。10組の直列ユニットについて端子間の電気抵抗を測定したところ、平均17.2Ωであった。又、10組の直列ユニットを並列に接続して熱電パネルを構成し、この熱電パネルの端子間の電気抵抗を測定したところ、1.83Ωを示した。 (C) Next, p Katashirube conductor elements 1 1 position slightly deviated each joint as shown in FIG. 7, ·····, 1 j, 1 j + 1, ·····, 1 n -1 and 1 n are bent at the bending positions B c1 , B h1 ,..., B cn and B hn , and are alternately and alternately bent in the opposite direction to form a bellows fold structure. Then, thick paper is inserted into all adjacent gaps to provide electrical insulation, and a series unit is obtained. Similarly, the same processing is further performed on the nine series unit flat molds to produce a total of 10 series units (m = 10). When the electrical resistance between the terminals was measured for 10 series units, the average was 17.2Ω. In addition, when 10 series units were connected in parallel to form a thermoelectric panel, and the electrical resistance between the terminals of this thermoelectric panel was measured, it was 1.83Ω.

(ニ)次に、図8に示すように、上壁35及び下壁37を備える風洞内にこれらの熱電パネルを配置し、内壁36により、高温側チャンネル31と低温側チャンネル32の2つのチャンネルに仕切る。そして、高温側チャンネル31と低温側チャンネル32に、それぞれ熱風及び冷風を送り込む。例えば、定常状態で素子の接合部に127Cの温度差を付与すると、このときの熱電パネル53の端子間の開放電圧は2.05Vを示す。 (D) Next, as shown in FIG. 8, these thermoelectric panels are arranged in a wind tunnel including an upper wall 35 and a lower wall 37, and two channels, a high temperature side channel 31 and a low temperature side channel 32, are formed by the inner wall 36. Partition. And hot air and cold air are sent into the high temperature side channel 31 and the low temperature side channel 32, respectively. For example, when a temperature difference of 127 ° C. is applied to the joint portion of the element in a steady state, the open circuit voltage between the terminals of the thermoelectric panel 53 at this time is 2.05V.

熱電パネル53の端子に接続する水電解槽41に関しては、80C、28%KOH水溶液を電解液とし、陽極(陽極板)42は20mm×20mmのニッケルメッキ鋼板、陰極(陰極板)43は同じ寸法の普通鋼板を用い、電極間距離を100mmとした。この水電解槽41の端子間抵抗は24.7Ωを示した。したがって、(R/R)比は0.074となり、水電解装置(41,42,43)を熱電パネル53に直結するための電気回路の条件である式(12)の関係を満足している。この場合、熱電パネル53と水電解槽41からなる回路を閉じると、回路に0.077Aの電流が流れて水の電気分解が行われ、24時間で6.15Ncmの水素ガスを採取できる。 Regarding the water electrolysis tank 41 connected to the terminals of the thermoelectric panel 53, an 80 ° C., 28% KOH aqueous solution is used as the electrolyte, the anode (anode plate) 42 is a 20 mm × 20 mm nickel-plated steel plate, and the cathode (cathode plate) 43 is Normal steel plates with the same dimensions were used, and the distance between the electrodes was 100 mm. The inter-terminal resistance of this water electrolysis tank 41 was 24.7Ω. Therefore, the (R G / R C ) ratio is 0.074, which satisfies the relationship of Expression (12), which is a condition of an electric circuit for directly connecting the water electrolysis device (41, 42, 43) to the thermoelectric panel 53. ing. In this case, when the circuit composed of the thermoelectric panel 53 and the water electrolysis tank 41 is closed, a current of 0.077 A flows through the circuit and water is electrolyzed, and 6.15 Ncm 3 of hydrogen gas can be collected in 24 hours.

(第2の実施の形態)
本発明の第2の実施の形態に係る熱電変換システムは、第1の実施の形態に係る熱電変換システムの図2と同様に、鉄(Fe)からなる複数のp型導電体素子11,12,13,・・・・・,1n-1,1nと鉄・アルミニウム(Fe−Al)合金からなる複数のn型導電体素子21,22,23,・・・・・,2n-1,2nとを交互に蛇腹折り構造に配置し、蛇腹折り構造の複数の山部でそれぞれ第1のp−n接合を構成し、蛇腹折り構造の複数の谷部でそれぞれ第2のp−n接合を構成するように接続し、これにより複数のp型導電体素子11,12,13,・・・・・,1n-1,1nと複数のn型導電体素子21,22,23,・・・・・,2n-1,2nとの交互直列接続構造をなし、第1及び第2のp−n接合に互いに異なる温度を与え、ゼーベック効果による起電力を得る直列ユニット(熱電パネル)と、この直列ユニットの陽極端子と陰極端子との間に直接接続された負荷RLとを備える。ここで、n型導電体素子21,22,23,・・・・・,2n-1,2nとp型導電体素子11,12,13,・・・・・,1n-1,1nとは、蛇腹折り構造の山部において、対応するn個の高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnでそれぞれ第1のp−n接合を構成し、谷部において、対応する(n−1)個の低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1でそれぞれ第2のp−n接合を構成し、これにより、n個の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nを構成している。
(Second Embodiment)
The thermoelectric conversion system according to the second embodiment of the present invention has a plurality of p-type conductor elements 1 1 made of iron (Fe), similar to FIG. 2 of the thermoelectric conversion system according to the first embodiment. 1 2 , 1 3 ,..., 1 n−1 , 1 n and a plurality of n-type conductor elements 2 1 , 2 2 , 2 3 ,. .., 2 n-1 , 2 n are alternately arranged in a bellows fold structure, and a plurality of peak portions of the bellows fold structure constitute a first pn junction, and a plurality of valley portions of the bellows fold structure Are connected to form a second pn junction, whereby a plurality of p-type conductor elements 1 1 , 1 2 , 1 3 ,..., 1 n−1 , 1 n and a plurality N-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n are connected in series and are different from each other in the first and second pn junctions. Give temperature and z A series unit (thermoelectric panel) for obtaining an electromotive force by the Beck effect, and a load RL directly connected between an anode terminal and a cathode terminal of the series unit. Here, n-type conductor elements 2 1 , 2 2 , 2 3 ,..., 2 n−1 , 2 n and p-type conductor elements 1 1 , 1 2 , 1 3 ,. , 1 n−1 , 1 n are n high temperature side joint surfaces J h1 , J h2 , J h3 ,..., J hn−1 , J hn in the peak portion of the bellows fold structure. in constitute a first p-n junction, respectively, in the valleys, the corresponding (n-1) pieces of the low temperature side joint surface J c1, J c2, J c3 , ·····, in J cn-1 The second pn junctions are respectively configured, and thereby n thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n are configured.

なお、図10に示すように、第2の実施の形態に係る熱電変換システムでは、複数(m本)の直列ユニットを並列接続し、これにより全体のインピーダンスを低減し、負荷とのインピーダンスの調整を行う熱電パネルを構成可能であるが、m=1の場合も含めて、適宜「熱電パネル」と称することは、第1の実施の形態に係る熱電変換システムでの説明と同様である。 As shown in FIG. 10, in the thermoelectric conversion system according to the second embodiment, a plurality (m) of serial units are connected in parallel, thereby reducing the overall impedance and adjusting the impedance with the load. Although it is possible to configure a thermoelectric panel for performing the above, including “when m = 1”, appropriately referred to as “thermoelectric panel” is the same as in the description of the thermoelectric conversion system according to the first embodiment.

図11は直列結合数nの直列ユニットの内の3つの熱電変換素子ユニットを接続した状態を示す模式的な鳥瞰図である。又、図14は、直列結合数nの直列ユニットの内の7つの熱電変換素子ユニットを接続した状態を示す上面図である。第1の実施の形態に係る熱電変換システムにおいて、式(2)或いは表2を用いて説明したように、第2の実施の形態に係る熱電変換システムの熱電パネルにおいても、用いる熱電変換素子ユニットの数(直列結合数n)は、非常に多くなる。このため、熱電変換素子ユニットの構造は、熱電パネルを作製するに際しては、流れ作業による組み立て可能な単純な構造をなしている。   FIG. 11 is a schematic bird's-eye view showing a state in which three thermoelectric conversion element units are connected in a series unit having n series connections. FIG. 14 is a top view showing a state in which seven thermoelectric conversion element units among the series units having the number n of series couplings are connected. In the thermoelectric conversion system according to the first embodiment, the thermoelectric conversion element unit used also in the thermoelectric panel of the thermoelectric conversion system according to the second embodiment, as described using the formula (2) or Table 2. (The number n in series connection) is very large. For this reason, the structure of the thermoelectric conversion element unit has a simple structure that can be assembled by a flow operation when producing a thermoelectric panel.

特に、n型導電体素子2j-1,2j,2j+1,・・・・・とp型導電体素子1j-1,1j,1j+1,・・・・・の内、n型導電体素子2j-1,2j,2j+1,・・・・・は、硬度及び脆性が大きいため機械加工が困難である。このため、図11に示すように、絶縁膜4j-1,4j,4j+1,・・・・・により、電気的絶縁を施したp型導電体素子1j-1,1j,1j+1,・・・・・として機能する鉄製容器への直接鋳造によりn型導電体素子2j-1,2j,2j+1,・・・・・を形成している。p型導電体素子1j-1とn型導電体素子2j-1との界面には高温側接合面Jhj-1が形成され、n型導電体素子2j-1とp型導電体素子1jとの界面には低温側接合面Jcj-1が形成されている。又、p型導電体素子1jとn型導電体素子2jとの界面には高温側接合面Jhjが形成され、n型導電体素子2jとp型導電体素子1j+1との界面には低温側接合面Jcjが形成されている。更に、p型導電体素子1j+1とn型導電体素子2j+1との界面には高温側接合面Jhj+1が形成され、n型導電体素子2j+1とp型導電体素子1j+2との界面には低温側接合面Jcj+1が形成されている。 In particular, the n-type conductor elements 2 j−1 , 2 j , 2 j + 1 ,... And the p-type conductor elements 1 j−1 , 1 j , 1 j + 1 ,. Among them, the n-type conductor elements 2 j−1 , 2 j , 2 j + 1 ,... Are difficult to machine because of their high hardness and brittleness. Therefore, as shown in FIG. 11, p-type conductor elements 1 j-1 , 1 j electrically insulated by the insulating films 4 j-1 , 4 j , 4 j + 1 ,... , 1 j + 1 ,... To form an n-type conductor element 2 j−1 , 2 j , 2 j + 1 ,. A high-temperature side junction surface J hj-1 is formed at the interface between the p-type conductor element 1 j-1 and the n-type conductor element 2 j-1, and the n-type conductor element 2 j-1 and the p - type conductor A low-temperature-side bonding surface J cj-1 is formed at the interface with the element 1 j . Further, a high-temperature side junction surface J hj is formed at the interface between the p-type conductor element 1 j and the n-type conductor element 2 j, and the n-type conductor element 2 j and the p-type conductor element 1 j + 1 are A low-temperature-side joint surface J cj is formed at the interface. Furthermore, a high-temperature side junction surface J hj + 1 is formed at the interface between the p-type conductor element 1 j + 1 and the n-type conductor element 2 j + 1, and the n-type conductor element 2 j + 1 and the p-type conductor element A low-temperature-side bonding surface J cj + 1 is formed at the interface with the conductor element 1 j + 2 .

図12に示すように、鉄製容器は、鉄製で壁状の端子部1jと、この端子部1jと第1のL字型構造を構成するように直交方向に接続された鉄製で壁状の熱伝導部1jと、この熱伝導部1jに対し第1のL字型構造とは逆方向に曲がる方向に接続されこの熱伝導部1jとで第2のL字型構造を構成する鉄製の第1の接合形成部1jと、熱伝導部1jと離間して第1の接合形成部1jから熱伝導部に平行に延伸する鉄製の側壁部1jと、熱伝導部1j及び側壁部1jとそれぞれ耐熱性絶縁体71j,72jを介して接続された鉄製の第2の接合形成部1j+1と、熱伝導部1j、第1の接合形成部1j及び側壁部1jに接し、第2の接合形成1j+1部の底部とは耐熱性絶縁体を介して接続された底板9jとを備える箱型である。熱伝導部1jと第1の接合形成部1jとは肉盛り溶接81jで接続されている。又、第1の接合形成部1jと側壁部1jとも、肉盛り溶接82jで接続されている。この結果、熱伝導部1j、第1の接合形成部1j及び側壁部1jとでコの字型形状を構成している。 As shown in FIG. 12, the iron container is made of iron and has a wall-like terminal portion 1 j, and the terminal portion 1 j and the terminal portion 1 j are made of iron and connected in an orthogonal direction so as to form a first L-shaped structure. The heat conducting portion 1 j and the heat conducting portion 1 j are connected to the heat conducting portion 1 j so as to bend in the direction opposite to the first L-shaped structure, thereby forming a second L-shaped structure. a first bonding portion 1 j of iron for the iron of the side wall portion 1 j extending parallel to the heat-conducting portion from the first bonding portion 1 j spaced from the heat conductive portion 1 j, the heat-conducting portion 1 and j and the side wall portion 1 j and the second bonding portion 1 j + 1 of iron which are respectively connected via a heat insulator 71 j, 72 j, the heat-conducting portion 1 j, the first bonding portion 1 j and the side wall portion 1 j are in a box shape having a bottom plate 9 j connected to the bottom portion of the second bonding formation 1 j + 1 portion through a heat-resistant insulator. The heat conducting portion 1 j and the first joint forming portion 1 j are connected by overlay welding 81 j . The first joint forming portion 1 j and the side wall portion 1 j are also connected by build-up welding 82 j . As a result, the heat conducting portion 1 j , the first junction forming portion 1 j and the side wall portion 1 j form a U-shape.

図11に示すように、それぞれの熱電変換素子ユニットは、鉄製の加熱フィン5j-1,5j,5j+1を有する高温側電極、鉄製の冷却フィン6j-1,6j,6j+1を有する低温側電極、鋼板製のp型導電体素子1j-1,1j,1j+1及び鋳造Fe−Al合金からなるn型導電体素子2j-1,2j,2j+1よりなっている(Alの組成は、6〜15重量%、好ましくは7〜12重量%である。)鉄製の加熱フィン5j-1を有する高温側電極(第1の接合形成部)から断面積Snの大きなn型導電体素子2j-1を介して、鉄製の冷却フィン6j-1を有する低温側電極(第2の接合形成部)へ還流熱Pj-1が流れると同時に、鉄製の加熱フィン5j-1を有する高温側電極(第1の接合形成部)から断面積Spの小さなp型導電体素子1j-1を介して、鉄製の冷却フィン6j-2を有する低温側電極(第2の接合形成部)(図示省略)へ還流熱Pj-1が流れる。又、鉄製の加熱フィン5jを有する高温側電極(第1の接合形成部)から断面積Snの大きなn型導電体素子2jを介して、鉄製の冷却フィン6jを有する低温側電極(第2の接合形成部)へ還流熱Pjが流れると同時に、鉄製の加熱フィン5jを有する高温側電極(第1の接合形成部)から断面積Spの小さなp型導電体素子1jを介して、鉄製の冷却フィン6j-1を有する低温側電極(第2の接合形成部)へ還流熱Pjが流れる。更に、鉄製の加熱フィン5j+1を有する高温側電極(第1の接合形成部)から断面積Snの大きなn型導電体素子2j+1を介して、鉄製の冷却フィン6j+1を有する低温側電極(第2の接合形成部)へ還流熱Pj+1が流れると同時に、鉄製の加熱フィン5j+1を有する高温側電極(第1の接合形成部)から断面積Spの小さなp型導電体素子1j+1を介して、鉄製の冷却フィン6jを有する低温側電極(第2の接合形成部)へ還流熱Pjが流れる。 As shown in FIG. 11, each thermoelectric conversion element unit includes a high-temperature side electrode having iron heating fins 5 j−1 , 5 j , 5 j + 1 , and iron cooling fins 6 j−1 , 6 j , 6. low-temperature side electrode having j + 1 , p-type conductor elements 1 j-1 , 1 j , 1 j + 1 made of steel plate and n-type conductor elements 2 j-1 , 2 j , made of cast Fe—Al alloy 2 j + 1 (Al composition is 6 to 15% by weight, preferably 7 to 12% by weight) High-temperature side electrode having iron heating fins 5 j-1 (first bonding formation) part) via a large n Katashirube conductor element 2 j-1 of the cross-sectional area S n from the reflux heat P j-1 to the low-temperature side electrode having an iron cooling fins 6 j-1 (second bonding section) At the same time flows through the Do p Katashirube conductor elements 1 j-1 small cross-sectional area S p from the hot-side electrode (first bonding portion) having a heating fin 5 j-1 of iron, iron cooling fins The reflux heat P j-1 flows to the low temperature side electrode (second junction forming portion) (not shown) having 6 j-2 . Also, through the large n Katashirube conductor element 2 j of the cross-sectional area S n from the hot-side electrode (first bonding portion) having an iron heating fins 5 j, the low-temperature side electrode having an iron cooling fins 6 j At the same time (the second bonding portion) reflux heat P j flows to the high temperature side electrode from the cross-sectional area S p (first bonding portion) small p Katashirube conductor element 1 having an iron heating fins 5 j Through j , the reflux heat P j flows to the low temperature side electrode (second junction forming portion) having the iron cooling fins 6 j-1 . Furthermore, through the high temperature side electrode larger n Katashirube conductor element 2 j + 1 of the cross-sectional area S n (first bonding portion) having a heating fin 5 j + 1 of the iron, iron cooling fins 6 j + sectional area from the low temperature side electrode and at the same time (the second bonding portion) reflux heat P j + 1 flows to the high temperature side electrode having a heating fin 5 j + 1 of the iron (first bonding section) with 1 The reflux heat P j flows to the low temperature side electrode (second junction forming portion) having the iron cooling fins 6 j through the p-type conductor element 1 j + 1 having a small S p .

一方、ゼーベック効果による電流Ij-1は、図11に示すように、p型導電体素子1j-1から高温側電極(第1の接合形成部)を介して高温側接合面Jhj-1を経由し、n型導電体素子2j-1に流れ、その後、n型導電体素子2j-1から低温側接合面Jcj-1を経由し、p型導電体素子1jに流れる。更に、ゼーベック効果による電流Ij=Ij-1は、p型導電体素子1jから高温側電極(第1の接合形成部)を介して高温側接合面Jhjを経由し、n型導電体素子2jに流れ、その後、n型導電体素子2jから低温側接合面Jcjを経由し、p型導電体素子1j+1に流れる。更に、ゼーベック効果による電流Ij+1=Ijは、p型導電体素子1j+1から高温側電極(第1の接合形成部)を介して高温側接合面Jhj+1を経由し、n型導電体素子2j+1に流れ、その後、n型導電体素子2j+1から低温側接合面Jcj+1を経由し、p型導電体素子1j+2に流れる。このため、与えられた高温側の熱源温度Th と低温側の冷媒(大気)温度TC の間で、高温側接合面Jhj-1,Jhj,Jhj+1,・・・・・と低温側接合面Jcj-1,Jcj,Jcj+1,・・・・・間に最大限の温度差Δθを効果的に付与するための熱電変換素子ユニットの形状と寸法の設計は、伝熱学的原理と実験による解析に準拠して設計すれば良い。その際、特に、それぞれの高温側接合面Jhj-1,Jhj,Jhj+1,・・・・・と低温側接合面Jcj-1,Jcj,Jcj+1,・・・・・の接合面間距離L、及びp型導電体素子1j-1,1j,1j+1,・・・・・の断面積Sp及びn型導電体素子2j-1,2j,2j+1,・・・・・の断面積Snが、熱電変換素子ユニットの性能に対して重要な因子となるのは、第1の実施の形態に係る熱電変換システムで説明した通りである。 On the other hand, the current I j-1 due to the Seebeck effect is, as shown in FIG. 11, from the p-type conductor element 1 j-1 via the high temperature side electrode (first junction forming portion) to the high temperature side junction surface J hj−. 1 flows to the n-type conductor element 2 j-1 , and then flows from the n-type conductor element 2 j-1 to the p-type conductor element 1 j via the low - temperature side junction surface J cj-1. . Furthermore, the current I j = I j-1 due to the Seebeck effect is transferred from the p-type conductor element 1 j through the high-temperature side electrode (first junction formation portion) to the n-type conductivity via the high-temperature side junction surface J hj. Flows to the body element 2 j , and then flows from the n-type conductor element 2 j to the p-type conductor element 1 j + 1 via the low-temperature side junction surface J cj . Furthermore, the current I j + 1 = I j due to the Seebeck effect passes from the p-type conductor element 1 j + 1 through the high temperature side electrode (first junction forming portion) via the high temperature side junction surface J hj + 1. , Flows to the n-type conductor element 2 j + 1 , and then flows from the n-type conductor element 2 j + 1 to the p-type conductor element 1 j + 2 via the low-temperature side junction surface J cj + 1 . Therefore, between the given high-temperature side heat source temperature T h and the low-temperature side refrigerant (atmosphere) temperature T C , the high-temperature side joint surfaces J hj−1 , J hj , J hj + 1 ,. The design of the shape and dimensions of the thermoelectric conversion element unit for effectively giving the maximum temperature difference Δθ between the contact surface J cj-1 , J cj , J cj + 1,. The design should be based on the heat transfer principle and experimental analysis. At that time, in particular, the respective high-temperature side joint surfaces J hj−1 , J hj , J hj + 1 ,... And the low-temperature side joint surfaces J cj−1 , J cj , J cj + 1,. joining surface between the distance L ..., and p Katashirube conductor elements 1 j-1, 1 j, 1 j + 1, the cross-sectional area of · · · · · S p and n Katashirube conductor element 2 j-1, 2 j, 2 j + 1, · · · · · of the cross-sectional area S n is to become an important factor to the performance of the thermoelectric conversion element unit, described thermoelectric conversion system according to a first embodiment Street.

従来行われている水の電気分解におけるエネルギー収支に関しては、水の分解反応吸熱量、70〜80Cの最適電解浴温度に保持するための電解槽熱量及び給水の昇温熱量など全所要熱量は、電解電流の浴抵抗ジュール熱により補償されている。したがってこの場合、浴抵抗は陽極(陽極板)42と陰極(陰極板)43の極間距離に比例するので、ある限度以下に極間距離を短くすることはできないが、本発明のシステムに直結する水電解装置(41,42,43)においては、発電に用いる低温熱源を一部流用し、熱交換器を浴に浸漬して所要熱量を補償するので、極間距離を短くとり、よって水電解槽端子間抵抗RCを小さくすることが可能となる。 Regarding the energy balance in the electrolysis of water that has been carried out conventionally, the total required heat amount such as water decomposition reaction endotherm, electrolytic cell heat amount to maintain the optimal electrolytic bath temperature of 70 to 80 ° C., and heating temperature of the feed water Is compensated by the bath resistance Joule heat of the electrolysis current. Therefore, in this case, since the bath resistance is proportional to the distance between the anode (anode plate) 42 and the cathode (cathode plate) 43, the distance between the electrodes cannot be reduced below a certain limit, but it is directly connected to the system of the present invention. In the water electrolysis apparatus (41, 42, 43), a part of the low-temperature heat source used for power generation is used, and the heat exchanger is immersed in the bath to compensate for the required amount of heat. It is possible to reduce the electrolytic cell terminal resistance RC .

第1の実施の形態に係る熱電変換システムで説明したように、熱電パネルの端子間抵抗RGに関しては、直列結合されたn個の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nを、図10に示すようにm個並列接続(mは2以上の正の整数)により低減することができる。
金属系の熱電変換素子は表1に示すように熱伝導度κが大きいため、式(3)で示される各熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nに付与されるそれぞれの高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnと低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1,Jcn間の温度差Δθを熱源の温度差ΔTに近づけるためには、図11等に示すように、高温側接合面Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhnに大容量の加熱フィン5j-1,5j,5j+1を装備した容積の大きなヒートシンク部を設け、低温側接合面Jc1,Jc2,Jc3,・・・・・,Jcn-1,Jcnは冷却フィン6j-1,6j,6j+1をp−n接合面に近づけて冷却効果を強化している。
As described in the thermoelectric conversion system according to the first embodiment, regarding the inter-terminal resistance RG of the thermoelectric panel, n thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,. .., 51 n−1 , 51 n can be reduced by m parallel connections (m is a positive integer of 2 or more) as shown in FIG.
Since the thermoelectric conversion element of the metal lines is larger thermal conductivity κ as shown in Table 1, each of the thermoelectric conversion element unit represented by formula (3) 51 1, 51 2 , 51 3, ·····, 51 n -1, 51 each of the hot-side joint surface J, which is given to n h1, J h2, J h3 , ·····, J hn-1, J hn and cold side joint surface J c1, J c2, J c3 In order to bring the temperature difference Δθ between J cn-1 and J cn closer to the temperature difference ΔT of the heat source, as shown in FIG. 11 and the like, the high-temperature side joint surfaces J h1 , J h2 , J h3, ·····, J hn-1 , J hn large heat sink portion of the heating fins 5 j-1, 5 j, 5 j + 1 equipped with the volume of the large-capacity provided on the low temperature side bonding surface J c1 , J c2 , J c3 ,..., J cn-1 , J cn enhance the cooling effect by bringing the cooling fins 6 j-1 , 6 j , 6 j + 1 closer to the pn junction surface. Yes.

第2の実施の形態に係る熱電変換システムは、金属系の熱電変換素子を用いているので、半導体系熱電変換素子と異なり、微量な不純物によるゼーベック係数の変動は極く僅かである。したがって、p型導電体素子として普通鋼及び鉄鋼スクラップを用いることができる。又、n型導電体素子としてのFe−Al合金は鉄分を含むアルミニウムスクラップを用いて合金化することができる。又溶融の際に生成する酸化アルミニウム介在物が合金内に存在しても、熱電特性に与える影響はほとんど認められない。   Since the thermoelectric conversion system according to the second embodiment uses a metal thermoelectric conversion element, unlike the semiconductor thermoelectric conversion element, the Seebeck coefficient fluctuates very little due to a small amount of impurities. Therefore, ordinary steel and steel scrap can be used as the p-type conductor element. Further, the Fe—Al alloy as the n-type conductor element can be alloyed using aluminum scrap containing iron. Further, even if aluminum oxide inclusions produced during melting are present in the alloy, the influence on the thermoelectric properties is hardly recognized.

第2の実施の形態に係る熱電変換システムには、操業用補助電源及び機械的駆動部などは存在せず、資材として直列ユニット(熱電パネル)、低温熱源及び水電解槽のみからなるシステムの構成で、定常状態に放置して連続的に水素及び酸素が発生させることが可能であり、管理も容易である。   In the thermoelectric conversion system according to the second embodiment, there is no auxiliary power source for operation and no mechanical drive unit, and the system configuration is composed of only a series unit (thermoelectric panel), a low-temperature heat source, and a water electrolyzer as materials. Therefore, it is possible to generate hydrogen and oxygen continuously in a steady state, and management is easy.

第2の実施の形態に係る熱電変換システムは、非常に多くのp−n接合面(Jh1,Jh2,Jh3,・・・・・,Jhn-1,Jhn;Jc1,Jc2,Jc3,・・・・・,Jcn-1,Jcn)を装備するため、接合界面に空隙や欠陥が存在するならば、熱電パネル端子間抵抗RGの増大によるエネルギー損失の原因となる。それ故、接合界面は、溶融拡散接合法で形成する。 The thermoelectric conversion system according to the second embodiment has a large number of pn junction surfaces ( Jh1 , Jh2 , Jh3 ,..., Jhn-1 , Jhn ; Jc1 , J c2 , J c3 ,..., J cn-1 , J cn ), if there are voids or defects at the joint interface, the cause of energy loss due to the increase in resistance R G between the thermoelectric panel terminals It becomes. Therefore, the bonding interface is formed by a melt diffusion bonding method.

第2の実施の形態に係る熱電変換システムに用いる熱電パネルは以下のような手法で製造可能である。なお、以下に述べる熱電パネルの製造方法は、一例であり、この変形例を含めて、これ以外の種々の製造方法により、実現可能であることは勿論である:
(イ)先ず熱電変換素子ユニットの基本構造をなす鉄容器を溶接加工で作製する。即ち、図12(a)に示すように、鉄製で壁状の端子部1jと、この端子部1jと第1のL字型構造を構成するように直交方向に接続された鉄製で壁状の熱伝導部1jと、この熱伝導部1jに対し第1のL字型構造とは逆方向に曲がる方向に接続されこの熱伝導部1jとで第2のL字型構造を構成する鉄製の第1の接合形成部1jと、熱伝導部1jと離間して第1の接合形成部1jから熱伝導部に平行に延伸する鉄製の側壁部1jと、熱伝導部1j及び側壁部1jとそれぞれ耐熱性絶縁体71j,72jを介して接続された鉄製の第2の接合形成部1j+1とを備える箱型の容器を溶接加工で作製する。例えば、熱伝導部1jと第1の接合形成部1jとは肉盛り溶接81jで接続し、第1の接合形成部1jと側壁部1jとは、肉盛り溶接82jで接続する。第1の接合形成部1jには、放熱フィン5jが構成され、第2の接合形成部1j+1には、冷却フィン6jが構成されている。更に、図12(b)に示すように、熱伝導部1j、第1の接合形成部1j及び側壁部1jの底部と底板9jと溶接で接続する。但し、図12(b)に示すように、第2の接合形成1j+1部の底部と底板9jとは耐熱性絶縁体を介して接続されている。
The thermoelectric panel used for the thermoelectric conversion system according to the second embodiment can be manufactured by the following method. Note that the thermoelectric panel manufacturing method described below is merely an example, and it is needless to say that the thermoelectric panel can be realized by various other manufacturing methods including this modification example:
(A) First, an iron container forming the basic structure of the thermoelectric conversion element unit is produced by welding. That is, FIG. 12 (a), the terminal portions 1 j walled made of iron, the terminal portion 1 j and the first L-shaped structure walls connected iron orthogonally to configure Jo of the heat-conducting portion 1 j, the second L-shaped structure with respect to the heat-conducting portion 1 j from the first L-shaped structure is connected to a bending direction in the direction opposite the heat-conducting portion 1 j a first bonding portion 1 j of iron constituting the iron of the side wall portion 1 j extending parallel to the heat-conducting portion from the first bonding portion 1 j spaced from the heat conductive portion 1 j, thermal conductivity A box-shaped container including a second joint forming portion 1 j + 1 made of iron connected to the portion 1 j and the side wall portion 1 j via the heat-resistant insulators 71 j and 72 j is produced by welding. . For example, the heat conducting portion 1 j and the first joint forming portion 1 j are connected by the build-up welding 81 j , and the first joint forming portion 1 j and the side wall portion 1 j are connected by the build-up welding 82 j . To do. The first joint forming portion 1 j is configured with a heat radiating fin 5 j , and the second joint forming portion 1 j + 1 is configured with a cooling fin 6 j . Furthermore, as shown in FIG. 12 (b), the bottoms of the heat conducting part 1 j , the first joint forming part 1 j and the side wall part 1 j are connected to the bottom plate 9 j by welding. However, as shown in FIG. 12B, the bottom of the second bonding formation 1 j + 1 portion and the bottom plate 9 j are connected via a heat-resistant insulator.

(ロ)次に、第1の接合形成部1j及び第2の接合形成部1j+1の表面を残して、鉄容器の内面に耐熱性電気絶縁体、例えば、アルミナ(Al23)セメントを、絶縁膜4j-1,4j,4j+1として塗装する。 (B) Next, leaving the surfaces of the first junction forming portion 1 j and the second junction forming portion 1 j + 1 , a heat resistant electrical insulator such as alumina (Al 2 O 3) is formed on the inner surface of the iron container. ) Cement is applied as insulating films 4j-1 , 4j , 4j + 1 .

(ハ)その後、図12(a)に示すように、容器の内部に、所定の溶融Fe−Al合金(Fe−Al溶湯)6を注入する(鋳込む)。   (C) Thereafter, as shown in FIG. 12A, a predetermined molten Fe—Al alloy (Fe—Al molten metal) 6 is poured (cast) into the container.

(ニ)Fe−Al溶湯6が凝固すると、図12(b)及び(c)に示すように、素子形状の鉄容器が鋳型となり、Fe−Al合金2jがn型導電体素子として鋳造される(Alの組成は、6〜15重量%、好ましくは7〜12重量%である。)。そのとき、鉄が露出している接合面に溶融Fe−Al合金が接触し、溶融拡散接合することにより、p型導電体素子となる第1の接合形成部とn型導電体素子との界面に第1のp−n接合が、p型導電体素子となる第2の接合形成部とn型導電体素子との界面に第2のp−n接合が形成される。このとき、第1及び第2の接合形成部の固体鉄表面の数100μm内部までアルミニウムが拡散浸透し、凝固後の顕微鏡組織は、拡散層を介して鉄とFe−Al合金が理想的に接合される。即ち、図13に示すように、p−n遷移層に相当するこの拡散ゾーンは、数100μmの微小幅であり、その範囲内での温度変化は極く僅かであるため、熱電変換素子ユニット全体の起電力に殆んど影響を与えない。 (D) When the Fe—Al molten metal 6 is solidified, as shown in FIGS. 12B and 12C, the element-shaped iron container becomes a mold, and the Fe—Al alloy 2 j is cast as an n-type conductor element. (The composition of Al is 6 to 15% by weight, preferably 7 to 12% by weight.) At that time, the molten Fe—Al alloy is brought into contact with the joint surface where the iron is exposed, and melt diffusion bonding is performed, so that the interface between the first junction forming portion that becomes the p-type conductor element and the n-type conductor element is formed. In addition, the first pn junction is formed at the interface between the second junction forming portion that becomes the p-type conductor element and the n-type conductor element. At this time, aluminum diffuses and penetrates to the inside of several hundreds μm of the solid iron surface of the first and second joint forming portions, and in the microstructure after solidification, iron and Fe—Al alloy are ideally joined through the diffusion layer. Is done. That is, as shown in FIG. 13, this diffusion zone corresponding to the pn transition layer has a minute width of several hundreds μm, and the temperature change within that range is very slight. Has little effect on the electromotive force.

(ホ)第2の実施の形態に係る熱電変換システムの直列ユニット(熱電パネル)としての全体の性能は、個々の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nが示す熱電特性の加法性によって決まる。このため、熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nが完成した段階で、個々の熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nの熱起電力と電気抵抗を、それぞれ正確に測定して理論値であることを確認する。 (E) The overall performance as a series unit (thermoelectric panel) of the thermoelectric conversion system according to the second embodiment is the same as that of the individual thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,. n-1 and 51 n are determined by the additivity of the thermoelectric characteristics indicated by n . Therefore, when the thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n are completed, the individual thermoelectric conversion element units 51 1 , 51 2 , 51 3 , ..., 51 n−1 , 51 n are accurately measured to confirm that they are theoretical values.

(ヘ)次に、熱電特性の加法性を実測により確認しながら、熱電変換素子ユニット511,512,513,・・・・・,51n-1,51nを直列又は並列に溶接する。即ち、次段の端子部(図示省略)と第2の接合形成部1j+2とを、例えば図11の溶接面6j+1を用いて接合する。この溶接で接合する工程を逐次繰り返すことにより複数のp型導電体素子と複数のn型導電体素子との交互直列接続構造からなる直列ユニット(熱電パネル)が完成する。図11では、次段の端子部1jと第2の接合形成部1jとが溶接部83jで接合され、次段の端子部1j+1と第2の接合形成部1j+1とが溶接部83j+1で接合されている。この結果、図14に示すように、熱電変換素子ユニット511,512,513,・・・・・,51n-1,51n間が、溶接箇所83j-2,83j-1,83j,83j+1,83j+2,・・・・・で、溶接により接合され、熱電パネルが完成する。 (F) Next, the thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n are welded in series or in parallel while confirming the additivity of the thermoelectric characteristics by actual measurement. To do. That is, the terminal portion (not shown) at the next stage and the second joint forming portion 1 j + 2 are joined using, for example, the welding surface 6 j + 1 in FIG. A series unit (thermoelectric panel) composed of an alternating series connection structure of a plurality of p-type conductor elements and a plurality of n-type conductor elements is completed by sequentially repeating this welding step. In FIG. 11, the next-stage terminal portion 1 j and the second joint forming portion 1 j are joined by the weld portion 83 j , and the next-stage terminal portion 1 j + 1 and the second joint forming portion 1 j + 1 are joined. Are joined at the weld 83j + 1 . As a result, as shown in FIG. 14, the thermoelectric conversion element units 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n are welded points 83 j−2 , 83 j−1. , 83 j , 83 j + 1 , 83 j + 2 ,... Are joined by welding to complete the thermoelectric panel.

(その他の実施の形態)
上記のように、本発明は第1及び第2の実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
(Other embodiments)
As described above, the present invention has been described according to the first and second embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

熱電変換の原理を説明する模式図である。It is a schematic diagram explaining the principle of thermoelectric conversion. 本発明の第1の実施の形態に係る熱電変換システムを説明する模式図(概念図)である。It is a mimetic diagram (conceptual diagram) explaining a thermoelectric conversion system concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る熱電変換システムに用いる熱電パネル(直列ユニット)の具体的な構造の一例を示す断面図である。It is sectional drawing which shows an example of the specific structure of the thermoelectric panel (series unit) used for the thermoelectric conversion system which concerns on the 1st Embodiment of this invention. 図3に示した熱電パネル(直列ユニット)に用いる低温側絶縁膜と高温側絶縁膜の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the low temperature side insulating film and high temperature side insulating film which are used for the thermoelectric panel (series unit) shown in FIG. 本発明の第1の実施の形態に係る熱電変換システムに用いる熱電パネル(直列ユニット)の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the thermoelectric panel (series unit) used for the thermoelectric conversion system which concerns on the 1st Embodiment of this invention. 熱電変換素子ユニットの直列結合数が多い場合の、熱電パネル(直列ユニット)の製造方法を説明するための平面図である。It is a top view for demonstrating the manufacturing method of a thermoelectric panel (series unit) in case there are many serial couplings of a thermoelectric conversion element unit. 図7の工程に引き続き、折曲位置で折り曲げた状態を示す鳥瞰図である。It is a bird's-eye view which shows the state bent at the bending position following the process of FIG. 風洞内に熱電パネルを配置し、高温側チャンネルと低温側チャンネルに、それぞれ熱風及び冷風を送り込んだ状態を説明する模式的な断面図である。It is typical sectional drawing explaining the state which has arrange | positioned the thermoelectric panel in a wind tunnel, and sent the hot air and the cold wind to the high temperature side channel and the low temperature side channel, respectively. 本発明の第1の実施の形態に係る熱電変換システムを用いて、水の電気分解を行う場合の構成を説明する模式図である。It is a schematic diagram explaining the structure in the case of electrolyzing water using the thermoelectric conversion system which concerns on the 1st Embodiment of this invention. 直列結合数nの直列ユニットを、m本並列接続したn×mマトリクス状の熱電パネルとした場合の回路図である。It is a circuit diagram at the time of setting it as the n * m matrix-shaped thermoelectric panel which connected the serial unit of the serial coupling number n to m pieces. 本発明の第2の実施の形態に係る熱電変換システムに用いる熱電パネル(直列ユニット)の具体的な構造の一例を示す鳥瞰図で、直列結合数nの直列ユニットの内の3つの熱電変換素子ユニットを接続した状態を示す。模式的な鳥瞰図である。又、図14は、直列結合数nの直列ユニットの内の7つの熱電変換素子ユニットを接続した状態を示す上面図である。It is a bird's-eye view which shows an example of the specific structure of the thermoelectric panel (series unit) used for the thermoelectric conversion system which concerns on the 2nd Embodiment of this invention, and is the three thermoelectric conversion element units in the serial unit of the serial connection number n. Shows the connected state. It is a typical bird's-eye view. FIG. 14 is a top view showing a state in which seven thermoelectric conversion element units among the series units having the number n of series couplings are connected. 本発明の第2の実施の形態に係る熱電変換システムに用いる熱電変換素子ユニットの製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the thermoelectric conversion element unit used for the thermoelectric conversion system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る熱電変換素子ユニットのp−n接合部分のAlの濃度分布を説明する図である。It is a figure explaining the concentration distribution of Al of the pn junction part of the thermoelectric conversion element unit which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る熱電変換システムに用いる熱電パネル(直列ユニット)の具体的な構造の一例を示す上面図で、直列結合数nの直列ユニットの内の7つの熱電変換素子ユニットを接続した状態を示す。It is a top view which shows an example of the specific structure of the thermoelectric panel (series unit) used for the thermoelectric conversion system which concerns on the 2nd Embodiment of this invention, and is 7 thermoelectric conversion elements in the series unit of the serial coupling number n Indicates that the unit is connected.

符号の説明Explanation of symbols

c1,Jc2,Jc3,・・・・・,Jcn-1…低温側接合面
h1,Jh2,Jh3,・・・・・,Jhn-1,Jhn…高温側接合面
L…接合面間距離
j-1,Pj,Pj+1…還流熱
W…出力
C…水電解槽端子間抵抗
G…熱電パネル端子間抵抗
R…負荷
L…抵抗値
n…断面積
p…断面積
TC…温度
Th…熱源温度
C…水電解槽端子間電圧
G…開放電圧(直流電源)
V…起電力(開放電圧)
e…起電力
i…電流
1,12,13,・・・・・,1n-1,1n…p型導電体素子
1,22,23,・・・・・,2n-1,2n…n型導電体素子(Fe−Al合金)
c1,3c2,3c3,・・・・・,3cn-1,3cn…低温側絶縁膜
h1,3h2,・・・・・,3hn-1…高温側絶縁膜
j-1,4j,4j+1…絶縁膜
j-1,5j,5j+1…加熱フィン
j-1,6j,6j+1…冷却フィン
6…Fe−Al溶湯
12a,12b,12c,…アルミニウム箔
31…高温側チャンネル
32…低温側チャンネル
35…上壁
36…内壁
37…下壁
41…水電解槽
42…陽極
43…陰極
53…熱電パネル
301j…絶縁膜
301j,302j,303j,304j,305j,;301j+1,302j+1,303j+1,304j+1,305j+1,306j+1;301j+2,302j+2,303j+2,304j+2,305j+2,306j+2…絶縁膜
511,512,513,・・・・・,51n-1,51n…熱電変換素子ユニット
J c1 , J c2 , J c3 ,..., J cn-1 ... low temperature side joint surface J h1 , J h2 , J h3 , ..., J hn-1 , J hn ... high temperature side joint Surface L ... Distance between joints Pj-1 , Pj , Pj + 1 ... Heat of reflux W ... Output RC ... Resistance between water electrolyzer terminals RG ... Resistance between thermoelectric panel terminals R ... Load RL ... Resistance value S n ... Cross sectional area S p ... Cross sectional area TC ... Temperature Th ... Heat source temperature V C ... Water electrolytic cell terminal voltage V G ... Open circuit voltage (DC power supply)
V ... Electromotive force (open voltage)
e ... electromotive force i ... current 1 1 , 1 2 , 1 3 , ..., 1 n-1 , 1 n ... p-type conductor elements 2 1 , 2 2 , 2 3 , ..., 2 n-1 , 2 n ... n-type conductor element (Fe-Al alloy)
3 c1 , 3 c2 , 3 c3 ,..., 3 cn-1 , 3 cn ... low temperature side insulating film 3 h1 , 3 h2 , ..., 3 hn-1 ... high temperature side insulating film 4 j -1 , 4 j , 4 j + 1 ... insulating films 5 j-1 , 5 j , 5 j + 1 ... heating fins 6 j-1 , 6 j , 6 j + 1 ... cooling fins 6 ... Fe-Al molten metal 12a , 12b, 12c, ... aluminum foil 31 ... high temperature side channels 32 ... low-temperature side channel 35 ... top wall 36 ... inner wall 37 ... bottom wall 41 ... water electrolyzer 42 ... anode 43 ... cathode 53 ... thermoelectric panel 301j ... insulating film 301 j , 302 j , 303 j , 304 j , 305 j , 301 j + 1 , 302 j + 1 , 303 j + 1 , 304 j + 1 , 305 j + 1 , 306 j + 1 ; 301 j + 2 , 302 j + 2 , 303 j + 2 , 304 j + 2 , 305 j + 2 , 306 j + 2 ... insulating films 51 1 , 51 2 , 51 3 ,..., 51 n−1 , 51 n . Transformation element Unit

Claims (10)

鉄からなる複数のp型導電体素子と鉄・アルミニウム合金からなる複数のn型導電体素子とを交互に蛇腹折り構造に配置し、前記蛇腹折り構造の複数の山部でそれぞれ第1のp−n接合を構成し、前記蛇腹折り構造の複数の谷部でそれぞれ第2のp−n接合を構成するように接続し、これにより前記複数のp型導電体素子と複数のn型導電体素子との交互直列接続構造をなし、前記第1及び第2のp−n接合に互いに異なる温度を与え、ゼーベック効果による起電力を得る直列ユニットと、
該直列ユニットの陽極端子と陰極端子との間に直接接続された負荷
とを備えることを特徴とする熱電変換システム。
A plurality of p-type conductor elements made of iron and a plurality of n-type conductor elements made of iron / aluminum alloy are alternately arranged in a bellows fold structure, and a first p is formed at each of the plurality of peaks of the bellows fold structure. A plurality of p-type conductor elements and a plurality of n-type conductors are formed by forming a n-junction and connecting the plurality of valley portions of the bellows fold structure to form a second pn junction. A series unit having an alternating series connection structure with an element, giving different temperatures to the first and second pn junctions, and obtaining an electromotive force due to the Seebeck effect;
A thermoelectric conversion system comprising: a load directly connected between an anode terminal and a cathode terminal of the series unit.
前記直列ユニットを並列接続し、これにより全体のインピーダンスを低減し、前記負荷とのインピーダンスの調整を行っていることを特徴とする請求項1に記載の熱電変換システム。   The thermoelectric conversion system according to claim 1, wherein the series units are connected in parallel, thereby reducing the overall impedance and adjusting the impedance with the load. 前記陽極端子を水電解槽に配置された陽極板に直接接続し、
前記陰極端子を前記水電解槽に配置された陰極板に直接接続し、
これにより前記陽極板と前記陰極板間の水の抵抗を前記負荷とし、水の電気分解を行うことを特徴とする請求項1又は2に記載の熱電変換システム。
Directly connecting the anode terminal to the anode plate disposed in the water electrolyzer;
Directly connecting the cathode terminal to a cathode plate disposed in the water electrolyzer;
3. The thermoelectric conversion system according to claim 1, wherein water is electrolyzed using the resistance of water between the anode plate and the cathode plate as the load.
前記交互配置されたp型導電体素子とn型導電体素子との間に、それぞれ絶縁膜が配置されていることを特徴とする請求項1〜3のいずれか1項に記載の熱電変換システム。   The thermoelectric conversion system according to any one of claims 1 to 3, wherein an insulating film is disposed between the alternately arranged p-type conductor elements and n-type conductor elements. . 前記交互直列接続構造は、平板帯状の前記複数のp型導電体素子と、該p型導電体素子と同一の幅を有し、S字状に折れ曲がった帯状の前記複数のn型導電体素子との交互接続であることを特徴とする請求項1〜4のいずれか1項に記載の熱電変換システム。   The alternating series connection structure includes a plurality of p-type conductor elements having a flat strip shape, and a plurality of n-type conductor elements having the same width as the p-type conductor element and bent in an S shape. The thermoelectric conversion system according to any one of claims 1 to 4, wherein the thermoelectric conversion system is alternately connected to each other. 前記p型導電体素子は、壁状の端子部と、該端子部と第1のL字型構造を構成するように直交方向に接続された壁状の熱伝導部と、該熱伝導部に対し前記第1のL字型構造とは逆方向に曲がる方向に接続され該熱伝導部とで第2のL字型構造を構成する第1の接合形成部とを備え、
前記n型導電体素子は、一端が前記接合形成部とで前記第1のp−n接合をなし、前記熱伝導部と平行に延伸する柱状であり、
前記n型導電体素子の他端は、次段の前記p型導電体素子の端子部と接合された前記p型導電体素子からなる第2の接合形成部と前記第2のp−n接合をなし、
これにより前記交互直列接続構造を構成したことを特徴とする請求項1〜4のいずれか1項に記載の熱電変換システム。
The p-type conductor element includes a wall-shaped terminal portion, a wall-shaped heat conduction portion connected to the terminal portion in an orthogonal direction so as to form a first L-shaped structure, and a heat conduction portion On the other hand, the first L-shaped structure is connected in a direction that is bent in the opposite direction, and includes a first junction forming portion that forms a second L-shaped structure with the heat conducting portion,
The n-type conductor element has a columnar shape in which one end forms the first pn junction with the junction formation portion and extends parallel to the heat conduction portion,
The other end of the n-type conductor element is connected to a second junction forming portion made of the p-type conductor element joined to a terminal portion of the next-stage p-type conductor element and the second pn junction. ,
The thermoelectric conversion system according to any one of claims 1 to 4, wherein the alternating series connection structure is configured thereby.
前記第1の接合形成部に放熱フィン、前記第2の接合形成部に冷却フィンを更に備えることを特徴とする請求項6に記載の熱電変換システム。   The thermoelectric conversion system according to claim 6, further comprising a heat radiating fin in the first joint forming portion and a cooling fin in the second joint forming portion. 前記次段の端子部と前記第2の接合形成部とは溶接で接合されていることを特徴とする請求項6又は7に記載の熱電変換システム。   The thermoelectric conversion system according to claim 6 or 7, wherein the terminal part of the next stage and the second joint forming part are joined by welding. 鉄製で壁状の端子部と、該端子部と第1のL字型構造を構成するように直交方向に接続された鉄製で壁状の熱伝導部と、該熱伝導部に対し前記第1のL字型構造とは逆方向に曲がる方向に接続され該熱伝導部とで第2のL字型構造を構成する鉄製の第1の接合形成部と、前記熱伝導部と離間して前記第1の接合形成部から前記熱伝導部に平行に延伸する鉄製の側壁部と、前記熱伝導部及び前記側壁部とそれぞれ耐熱性絶縁体を介して接続された鉄製の第2の接合形成部と、前記熱伝導部、前記第1の接合形成部及び前記側壁部に接し、前記第2の接合形成部の底部とは耐熱性絶縁体を介して接続された底板とからなる箱型の容器を用意する工程と、
箱型の容器の前記第1及び第2の接合形成部以外の内面にの耐熱性電気絶縁体を塗装する工程と、
前記容器の内部に溶融鉄・アルミニウム合金を鋳込んでn型導電体素子を形成し、更に溶融拡散接合により、p型導電体素子となる前記第1の接合形成部と前記n型導電体素子との界面に第1のp−n接合を、p型導電体素子となる前記第2の接合形成部と前記n型導電体素子との界面に第2のp−n接合を形成する工程
とを含むことを特徴とする熱電変換システム用熱電パネルの製造方法。
A wall-shaped terminal portion made of iron, a wall-shaped heat conduction portion made of iron and connected to the terminal portion in an orthogonal direction so as to form a first L-shaped structure, and the first heat conduction portion with respect to the heat conduction portion. The iron first joint forming portion that is connected in a direction that is bent in the opposite direction to the L-shaped structure and constitutes the second L-shaped structure with the heat conducting portion, and is separated from the heat conducting portion and An iron side wall extending parallel to the heat conducting part from the first joint forming part, and an iron second joint forming part connected to the heat conducting part and the side wall part via a heat resistant insulator, respectively. And a bottom plate that is in contact with the heat conduction part, the first joint formation part, and the side wall part, and is connected to the bottom part of the second joint formation part via a heat-resistant insulator. A process of preparing
Painting a heat-resistant electrical insulator on the inner surface of the box-shaped container other than the first and second joint forming parts;
The n-type conductor element is formed by casting molten iron / aluminum alloy into the container, and the p-type conductor element is formed by melting diffusion bonding and the n-type conductor element. Forming a first pn junction at the interface between the second junction forming portion and the n-type conductor element, and forming a second pn junction at the interface between the second junction forming portion and the n-type conductor element. The manufacturing method of the thermoelectric panel for thermoelectric conversion systems characterized by including this.
次段の端子部と前記第2の接合形成部とを溶接で接合する工程を更に含み、
該溶接で接合する工程を逐次繰り返すことにより複数のp型導電体素子と複数のn型導電体素子との交互直列接続構造を構成することを特徴とする請求項9に記載の熱電変換システム用熱電パネルの製造方法。

Further comprising the step of joining the terminal portion of the next stage and the second joint forming portion by welding,
10. The thermoelectric conversion system according to claim 9, wherein an alternating series connection structure of a plurality of p-type conductor elements and a plurality of n-type conductor elements is formed by sequentially repeating the step of joining by welding. A method for manufacturing a thermoelectric panel.

JP2004281536A 2004-09-28 2004-09-28 Thermoelectric conversion system and method of manufacturing thermoelectric panel therefor Withdrawn JP2006100346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281536A JP2006100346A (en) 2004-09-28 2004-09-28 Thermoelectric conversion system and method of manufacturing thermoelectric panel therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004281536A JP2006100346A (en) 2004-09-28 2004-09-28 Thermoelectric conversion system and method of manufacturing thermoelectric panel therefor

Publications (1)

Publication Number Publication Date
JP2006100346A true JP2006100346A (en) 2006-04-13

Family

ID=36239905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281536A Withdrawn JP2006100346A (en) 2004-09-28 2004-09-28 Thermoelectric conversion system and method of manufacturing thermoelectric panel therefor

Country Status (1)

Country Link
JP (1) JP2006100346A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160552A (en) * 2010-01-30 2011-08-18 Jfe Steel Corp Thermoelectric power-generating apparatus
JP5316912B2 (en) * 2009-08-13 2013-10-16 独立行政法人産業技術総合研究所 High speed manufacturing method of flexible thermoelectric power generation device
WO2013185903A1 (en) * 2012-06-13 2013-12-19 Karlsruher Institut für Technologie Wound and folded thermoelectric systems and method for producing same
JP5540289B2 (en) * 2009-08-13 2014-07-02 独立行政法人産業技術総合研究所 Method for manufacturing thermoelectric power generation device
JP2015165554A (en) * 2014-02-05 2015-09-17 パナソニック株式会社 Thermoelectric generator unit and thermoelectric generation system
JP2017059698A (en) * 2015-09-17 2017-03-23 古河機械金属株式会社 Manufacturing method for thermoelectric transducer
JP2017175110A (en) * 2016-03-18 2017-09-28 現代自動車株式会社Hyundai Motor Company Flexible thermoelectric element and method for manufacturing the same
WO2019044931A1 (en) * 2017-08-31 2019-03-07 国立研究開発法人物質・材料研究機構 Thermoelectric material, method for producing same and thermoelectric power generation module using same
JPWO2017208929A1 (en) * 2016-05-31 2019-04-04 富士フイルム株式会社 Thermoelectric conversion module
US11832518B2 (en) 2021-02-04 2023-11-28 Purdue Research Foundation Woven thermoelectric ribbon

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540289B2 (en) * 2009-08-13 2014-07-02 独立行政法人産業技術総合研究所 Method for manufacturing thermoelectric power generation device
JP5316912B2 (en) * 2009-08-13 2013-10-16 独立行政法人産業技術総合研究所 High speed manufacturing method of flexible thermoelectric power generation device
JP2011160552A (en) * 2010-01-30 2011-08-18 Jfe Steel Corp Thermoelectric power-generating apparatus
US9660167B2 (en) 2012-06-13 2017-05-23 Karlsruher Institut Fuer Technologie Wound and folded thermoelectric systems and method for producing same
WO2013185903A1 (en) * 2012-06-13 2013-12-19 Karlsruher Institut für Technologie Wound and folded thermoelectric systems and method for producing same
JP2015165554A (en) * 2014-02-05 2015-09-17 パナソニック株式会社 Thermoelectric generator unit and thermoelectric generation system
JP2017059698A (en) * 2015-09-17 2017-03-23 古河機械金属株式会社 Manufacturing method for thermoelectric transducer
JP2017175110A (en) * 2016-03-18 2017-09-28 現代自動車株式会社Hyundai Motor Company Flexible thermoelectric element and method for manufacturing the same
JP7030410B2 (en) 2016-03-18 2022-03-07 現代自動車株式会社 Flexible thermoelectric element and manufacturing method
JPWO2017208929A1 (en) * 2016-05-31 2019-04-04 富士フイルム株式会社 Thermoelectric conversion module
WO2019044931A1 (en) * 2017-08-31 2019-03-07 国立研究開発法人物質・材料研究機構 Thermoelectric material, method for producing same and thermoelectric power generation module using same
JPWO2019044931A1 (en) * 2017-08-31 2020-04-09 国立研究開発法人物質・材料研究機構 Thermoelectric material, manufacturing method thereof, and thermoelectric power generation module using the same
US11527693B2 (en) 2017-08-31 2022-12-13 National Institute For Materials Science Thermoelectric material, method for producing (manufacturing) same and thermoelectric power generation module using same
US11832518B2 (en) 2021-02-04 2023-11-28 Purdue Research Foundation Woven thermoelectric ribbon

Similar Documents

Publication Publication Date Title
Tohidi et al. Thermoelectric Generators: A comprehensive review of characteristics and applications
EP2457270B1 (en) Thermoelectric module
US6096966A (en) Tubular thermoelectric module
JPS63500275A (en) Electrochemical converter and cycle system combination
US7985918B2 (en) Thermoelectric module
US10218011B2 (en) High-temperature or fuel-cell electrochemical system having improved thermal management
JP5834256B2 (en) Thermoelectric generator, thermoelectric generator unit and thermoelectric generator system
CN102738378A (en) Thermoelectric cluster, method for operating same, device for connecting an active element in said cluster to a thermoelectric drive, generator (variants) and heat pump (variants) based thereon
CN106568341B (en) A kind of plate-fin heat power generation heat exchanger
RU124840U1 (en) RADIAL-RING THERMOELECTRIC GENERATOR BATTERY
CN106025317B (en) The temperature difference and fuel cell of vehicle exhaust couple efficient generating apparatus
JP2006100346A (en) Thermoelectric conversion system and method of manufacturing thermoelectric panel therefor
JPWO2005117154A1 (en) High density integrated thin layer thermoelectric module and hybrid power generation system
Liu Feasibility of large-scale power plants based on thermoelectric effects
US9755132B2 (en) Thermoelectric generation unit and thermoelectric generation system
TW200818579A (en) Portable fuel cell assembly
US20140305479A1 (en) Thermoelectric devices having reduced parasitics
JP2002238272A (en) Generating station utilizing high-temperature exhaust heat
JP2010135619A (en) Thermoelectric conversion module and generator using the same
US11393969B2 (en) Thermoelectric generation cell and thermoelectric generation module
CN102270947A (en) Vertical row type solar temperature difference generating heat collector with metal runners
US10873018B2 (en) Thermoelectric generator system
US4284838A (en) Thermoelectric converter and method
US9941457B2 (en) Thermoelectric generator unit and thermoelectric generator system
JP2000173640A (en) Thermoelectric conversion method and device thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204