RU2011981C1 - Способ определения содержания примесей в потоке газа - Google Patents

Способ определения содержания примесей в потоке газа Download PDF

Info

Publication number
RU2011981C1
RU2011981C1 SU884356941A SU4356941A RU2011981C1 RU 2011981 C1 RU2011981 C1 RU 2011981C1 SU 884356941 A SU884356941 A SU 884356941A SU 4356941 A SU4356941 A SU 4356941A RU 2011981 C1 RU2011981 C1 RU 2011981C1
Authority
RU
Russia
Prior art keywords
ionized
chambers
gas
stream
passed
Prior art date
Application number
SU884356941A
Other languages
English (en)
Inventor
Пуумалайнен Пертти
Original Assignee
Пуумалайнен Пертти
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8522745&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2011981(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Пуумалайнен Пертти filed Critical Пуумалайнен Пертти
Application granted granted Critical
Publication of RU2011981C1 publication Critical patent/RU2011981C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
    • G01N27/66Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber and measuring current or voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Использование: аналитическое приборостроение. Сущность изобретения: способ определения содержания примесей в потоке газа заключается в ионизации потока газа, пропускании его через камеры с электрическими полями, ориентированными перпендикулярно направлению потока, и нахождении отношения полевых токов. Полевые камеры могут быть расположены смежно или последовательно, а поток газа можно пропускать по извилистому пути. 3 з. п. ф-лы, 2 ил.

Description

Изобретение относится к аналитическому приборостроению и служит для определения содержания примесей в газах.
В данное время чаще всего используется способ анализа с применением детектора газового хроматографа. В этом способе радиоактивное излучение ионизирует газ-носитель и содержащиеся в нем посторонние примеси, а ионизированные молекулы газа-носителя могут частично за счет задержки рекомбинироваться сами, после чего измеряют ионы газа. При таком способе получают, например, измеряемый сигнал в присутствии органических веществ, испаренных в газ-носитель. Также разработаны измерительные устройства, основанные на этом принципе, для анализа в воздухе газов непрерывного действия. Эти устройства бывают двух типов: в первом - ионизированные молекулы заводят в лабиринт, где собственные молекулы воздуха могут сами рекомбинировать, а после этого измеряют ток ионов, вызванный органическими молекулами. В другом случае вхождению легких молекул воздуха в ионное измерительное пространство препятствуют посредством установки в поток газа сеток с напряжением. На практике этот способ и устройство для его осуществления показали недостаточную чувствительность при измерении низких концентраций таких веществ, как газы нервного действия или соответствующие им газы в воздухе, либо сигнал зависит также и от других материалов и примесей, содержащихся в газе, типа табачного дыма, выхлопных газов, взрывных газов, маскирующих дымов и других веществ. Кроме того, причиной изменения сигнала также может стать, например, изменение влажности воздуха, так что измеренный выходной сигнал оказывается неточным и ненадежным [1] .
Известен способ определения содержания примесей в потоке газа, заключающийся в том, что поток газа ионизируют, пропускают ионизированный поток через камеру с созданным в ней электрическим полем и измеряют полевой ток [2] .
Целью изобретения является повышение точности.
Цель достигается за счет того, что в способе определения содержания примесей в потоке газа, заключающемся в том, что поток газа ионизируют, пропускают ионизированный поток через камеру с созданным в ней электрическим полем, измеряют полевой ток, ионизированный поток пропускают через по крайней мере одну дополнительную камеру с электрическим полем, отличающимся по величине от величины электрического поля в первой камере, причем электрические поля в камерах ориентируют перпендикулярно направлению потока газа, измеряют полевой ток во второй и определяют содержание примесей по отношению полевых токов.
Кроме того, ионизированный поток газа можно пропускать через смежные камеры или через последовательно установленные камеры.
В соответствии с изобретением газ и находящиеся в нем вещества подаются через камеры с различными электрическими полями и по меньшей мере по прохождении через одну камеру измеряют ток поля, за счет чего получают измерительный сигнал, который говорит о наличии посторонних веществ в газе. Весь объем газа сначала ионизируют, а после этого поток газа обрабатывают в различных электрических полях. По меньшей мере в одной камере электрического поля измеряют ток между пластинами напряжения. После того, как ионизированный газ прошел обработку в различных электрических полях, можно уже анализировать при одном токе, позволяющем, например, измерять наличие высокомолекулярных органических веществ в воздухе. Отличительным признаком изобретения является то, что перемещение и рекомбинация различных молекул улучшаются в различных электрических полях, когда весь объем газа сначала ионизируется.
На фиг. 1 показано выполнение устройства для определения содержания примесей в потоке газа; на фиг. 2 - вариант такого устройства.
Устройство содержит ионизационную камеру 1 и измерительные камеры, образованные электродами 2, которые подсоединены к усилителю 3, второй вход которого соединен с общей заземленной шиной. Устройство снабжено входным 4 и выходным 5 штуцерами для ввода и вывода анализируемой смеси. Анализируемое пространство создается электрическими полями 6, которые образуются между пластинами, являющимися электродами 7, а при другом варианте исполнения - между фигурными пластинами 8, которые также выполняют функцию электродов. Для ионизации потока используется подходящий радиоактивный изотоп 9.
Способ осуществляется следующим образом. Анализируемый газ вводят путем всасывания через входной патрубок 4 в ионизационную камеру 1, а оттуда ионизированный газ подают через камеры, расположенные друг за другом, через выходное отверстие 5 из устройства. Поток через устройство создают с помощью воздушного насоса, которым газ и его составляющие всасываются через систему анализа устройства. Ионизированные молекулы и расщепленные молекулы транспортируются через камеры и через различные электрические поля, имеющиеся в камерах. После этого молекулы стремятся рекомбинировать или разрушить свои заряды, а в различных электрических полях удаляются из системы также и ионы.
Напряжения образуют вместе с соединенными с землей нижними пластинами силовые линии в промежутке прохода, а когда усилители 3 заземлены, можно начать обработку сигнала. За счет проведения двух или более текущих измерений в одном и том же канале потока можно при использовании электрического поля различной величины отделять различные молекулярные группы друг от друга с помощью типичных сигналов потока из различных мест. При рассмотрении величин сигналов потока, характерных для каждой молекулярной группы, можно получить необходимый результат наблюдения и измерения.
В устройстве, показанном на фиг. 2, ионизационное помещение 1 находится в середине в основном плоского корпуса, где камеры анализа расположены по обеим сторонам от ионизационного пространства. С ионизационной камерой радиально соединяются несколько камер или по меньшей мере каналов, образованных одной камерой. В этом примере стенки камеры образованы пластинами 2 напряжения, а между пластинами напряжения помещены измерительные фигурные пластины 8, измерительные пластины 8 размещены таким образом, чтобы расстояние между ними изменялось. За счет этого между пластинами напряжения образуются по меньшей мере две малые камеры, причем напряженность электрического поля изменяется от камеры к камере. Подлежащий проверке газ подают от ионизационной камеры за счет изменения маршрута газа с разных сторон от измерительных пластин. Измеряют ток измерительных пластин относительно земли с помощью усилителей 3. От ионизационной камеры отходят несколько измерительных каналов (на фиг. 2 показаны два канала), а пластины напряжения находятся под разными потенциалами. За счет этого имеется возможность запускать измерительные сигналы сразу после ионизации, например, в противоположных электрических полях на землю. Содержание постороннего вещества определяют и измеряют за счет направления ионизированного газа в каналы устройства, в которых имеются камеры с разными электрическими полями, а за счет измерения проходящего через измерительные камеры тока электрического поля получают измеренные величины.
Преимущество конструкции, показанной на фиг. 2, заключается в том, что измерительные точки могут выбираться, например, непосредственно на плате электрической схемы, а пластины напряжения находятся наверху изолирующих приспособлений, действующих как защитные экраны конструкции. С помощью двухканального анализатора такого типа можно измерять концентрации газов нервного действия, которые составляют меньше 0,1 мг/куб. м. , когда обычно предел сигнализации сиреной считается 0,5 мг/куб. м. Ложные сигналы, вызываемые табачным дымом, выхлопными газами, взрывными газами и дымовой завесой, могут устраняться с помощью такого многократного измерения.
Таким образом, способ определения содержания примесей в потоке газа заключается в ионизации потока газа, пропускании его через камеры с электрическими полями, ориентированными перпендикулярно направлению потока, и нахождении отношения полевых токов, причем полевые камеры могут быть расположены смежно или последовательно, а поток газа можно пропускать по извилистому пути.
Изобретение не ограничено приведенными предпочтительными режимами реализации, а может трансформироваться в пределах прилагаемой формулы изобретения. Изобретение не связано только с анализом газов нервного действия в воздухе, а может применяться для определения и анализа различных молекул и молекулярных групп вообще в газе, например, в разреженном с помощью вакуумного насоса, а также в парах или испаренных в газовую среду твердых или жидких веществах.

Claims (4)

1. СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ПРИМЕСЕЙ В ПОТОКЕ ГАЗА, заключающийся в том, что поток газа ионизируют, пропускают ионизированный поток через камеру с созданным в ней электрическим полем, измеряют полевой ток, отличающийся тем, что, с целью повышения точности, ионизированный поток пропускают через по крайней мере одну дополнительную камеру с электрическим полем, отличающимся по величине от величины электрического поля в первой камере, причем электрические поля в камерах ориентируют перпендикулярно направлению потока газа, измеряют полевой ток во второй и определяют содержание примесей по отношению полевых токов.
2. Способ по п. 1, отличающийся тем, что ионизированный поток газа пропускают через смежные камеры.
3. Способ по п. 1, отличающийся тем, что ионизированный поток газа пропускают через последовательно установленные камеры.
4. Способ по пп. 1 - 3, отличающийся тем, что ионизированный поток в камерах пропускают по извилистому пути.
SU884356941A 1986-06-03 1988-12-02 Способ определения содержания примесей в потоке газа RU2011981C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI86862349 1986-06-03
FI862349A FI75055C (fi) 1986-06-03 1986-06-03 Foerfarande foer observerande av ingredienshalter av gas.
PCT/FI1987/000075 WO1987007720A1 (en) 1986-06-03 1987-06-01 Method for detection of alien matter contents in gases

Publications (1)

Publication Number Publication Date
RU2011981C1 true RU2011981C1 (ru) 1994-04-30

Family

ID=8522745

Family Applications (1)

Application Number Title Priority Date Filing Date
SU884356941A RU2011981C1 (ru) 1986-06-03 1988-12-02 Способ определения содержания примесей в потоке газа

Country Status (10)

Country Link
US (1) US5047723A (ru)
EP (1) EP0308420B1 (ru)
AU (1) AU605770B2 (ru)
BR (1) BR8707715A (ru)
CA (1) CA1304836C (ru)
DE (1) DE3787281T2 (ru)
FI (1) FI75055C (ru)
HK (1) HK1008092A1 (ru)
RU (1) RU2011981C1 (ru)
WO (1) WO1987007720A1 (ru)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI87954C (fi) * 1990-10-11 1999-03-23 Fabretti Holdings Ltd Menetelmä kaasun vierasainepitoisuuksien määrittämiseksi
JP2671657B2 (ja) * 1991-04-22 1997-10-29 富士電機株式会社 高分子センサ
FI96903C (fi) * 1993-01-12 1996-09-10 Environics Oy Menetelmä kaasun vierasainepitoisuuden määrittämiseksi ja laitteisto sitä varten
KR960701362A (ko) * 1993-03-05 1996-02-24 알 더블유 벡크함 가스 검출 장치(Gas detection devices)
US5455417A (en) * 1994-05-05 1995-10-03 Sacristan; Emilio Ion mobility method and device for gas analysis
FR2719485B1 (fr) * 1994-05-06 1996-07-12 Lhd Lab Hygiene Dietetique Procédé et dispositif de mesure de la quantité d'un principe actif contenu dans un réservoir.
FR2720506B1 (fr) * 1994-05-24 1996-07-05 Commissariat Energie Atomique Spectromètre de particules submicroniques.
US6100698A (en) * 1997-06-17 2000-08-08 Raytheon Co Ion mobility sensors and spectrometers having a corona discharge ionization source
US6630663B2 (en) 1998-10-21 2003-10-07 Raytheon Company Miniature ion mobility spectrometer
US6815668B2 (en) * 1999-07-21 2004-11-09 The Charles Stark Draper Laboratory, Inc. Method and apparatus for chromatography-high field asymmetric waveform ion mobility spectrometry
US6806463B2 (en) 1999-07-21 2004-10-19 The Charles Stark Draper Laboratory, Inc. Micromachined field asymmetric ion mobility filter and detection system
US7098449B1 (en) 1999-07-21 2006-08-29 The Charles Stark Draper Laboratory, Inc. Spectrometer chip assembly
US6690004B2 (en) * 1999-07-21 2004-02-10 The Charles Stark Draper Laboratory, Inc. Method and apparatus for electrospray-augmented high field asymmetric ion mobility spectrometry
US6495823B1 (en) 1999-07-21 2002-12-17 The Charles Stark Draper Laboratory, Inc. Micromachined field asymmetric ion mobility filter and detection system
US6815669B1 (en) * 1999-07-21 2004-11-09 The Charles Stark Draper Laboratory, Inc. Longitudinal field driven ion mobility filter and detection system
US6593567B1 (en) * 2000-05-09 2003-07-15 Agilent Technologies, Inc. Ion mobility spectrometer having extended linear dynamic range
US6606899B1 (en) * 2000-07-07 2003-08-19 Air Products And Chemicals, Inc. Total impurity monitor for gases
WO2003005016A1 (en) * 2001-06-30 2003-01-16 Sionex Corporation System for collection of data and identification of unknown ion species in an electric field
US7274015B2 (en) * 2001-08-08 2007-09-25 Sionex Corporation Capacitive discharge plasma ion source
US6610977B2 (en) 2001-10-01 2003-08-26 Lockheed Martin Corporation Security system for NBC-safe building
US7122794B1 (en) 2002-02-21 2006-10-17 Sionex Corporation Systems and methods for ion mobility control
FI118277B (fi) 2002-03-25 2007-09-14 Environics Oy Kennorakenne, laite ja menetelmä
US7052525B2 (en) * 2002-08-13 2006-05-30 Ensco, Inc. Vehicle integrated protective system
CA2551991A1 (en) * 2004-01-13 2005-07-28 Sionex Corporation Methods and apparatus for enhanced sample identification based on combined analytical techniques
DE102005007746B4 (de) * 2005-02-18 2009-01-08 Dräger Safety AG & Co. KGaA Ionenmobilitätsspektrometer mit parallel verlaufender Driftgas- und Ionenträgergasströmung
DE102005031048A1 (de) * 2005-07-02 2007-01-04 Dräger Safety AG & Co. KGaA Ionenmobilitätsspektrometer mit parallel verlaufender Driftgas- und Ionenträgergasströmung
GB2441943A (en) 2005-07-26 2008-03-19 Sionex Corp Ultra compact ion mobility based analyzer system and method
FI119660B (fi) 2005-11-30 2009-01-30 Environics Oy Kaasun ioniliikkuvuuden mittausmenetelmä ja -laite
EP2126960B1 (en) 2007-02-01 2019-03-13 DH Technologies Development Pte. Ltd. Differential mobility spectrometer pre-filter assembly for a mass spectrometer
US7863562B2 (en) * 2007-06-22 2011-01-04 Shimadzu Corporation Method and apparatus for digital differential ion mobility separation
DE102008006208B4 (de) 2008-01-26 2016-05-04 Dräger Safety AG & Co. KGaA Vorrichtung für die Gasanalyse
US8298619B2 (en) * 2009-05-22 2012-10-30 Nike, Inc. Method and apparatus for applying a topcoat to a golf ball surface
US20120235033A1 (en) 2009-11-11 2012-09-20 Emilio Ramiro Arcas Differential mobility analyzer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2028805C3 (de) * 1970-06-11 1974-05-22 Franklin Gno Corp., West Palm Beach, Fla. (V.St.A.) Verfahren und Einrichtung zum Feststellen eines Gasbestandteils
US3679973A (en) * 1970-10-20 1972-07-25 Us Interior Electrogasdynamic dust monitor
DE2261792C2 (de) * 1972-12-16 1974-10-03 Berckheim, Constantin Graf Von, 6940 Weinheim Vorrichtung zur Messung der Luftverschmutzung
JPS5538607B2 (ru) * 1973-11-06 1980-10-06
US4114088A (en) * 1977-02-28 1978-09-12 Cecil Alfred Laws Atmospheric ion density measurement
US4119851A (en) * 1977-06-23 1978-10-10 Honeywell Inc. Apparatus and a method for detecting and measuring trace gases in air or other gas backgrounds
US4271357A (en) * 1978-05-26 1981-06-02 Pye (Electronic Products) Limited Trace vapor detection
GB2052750B (en) * 1979-06-21 1983-03-16 Pye Ltd Trace material detector
US4724394A (en) * 1985-10-11 1988-02-09 Brunswick Corporation Gas detection by ion mobility segregation

Also Published As

Publication number Publication date
DE3787281D1 (de) 1993-10-07
CA1304836C (en) 1992-07-07
BR8707715A (pt) 1989-08-15
FI75055B (fi) 1987-12-31
AU605770B2 (en) 1991-01-24
WO1987007720A1 (en) 1987-12-17
HK1008092A1 (en) 1999-04-30
EP0308420B1 (en) 1993-09-01
EP0308420A1 (en) 1989-03-29
US5047723A (en) 1991-09-10
FI75055C (fi) 1988-04-11
AU7517787A (en) 1988-01-11
FI862349A0 (fi) 1986-06-03
DE3787281T2 (de) 1994-01-05

Similar Documents

Publication Publication Date Title
RU2011981C1 (ru) Способ определения содержания примесей в потоке газа
KR101110358B1 (ko) 유해물질 검출 방법 및 테스트 시스템
US6459079B1 (en) Shipboard chemical agent monitor-portable (SCAMP)
US5394092A (en) System for identifying and quantifying selected constituents of gas samples using selective photoionization
FI89413C (fi) Foerfarande och anordning foer att upptaecka smao gas- eller aongmaengder i gasblandningar
US5281915A (en) Sensor for detecting a high molecular weight substance using ionization effects
GB2423414A (en) Ion mobility spectrometer with parallel-running drift gas and ion carrier gas flow
US4797554A (en) Ion mobility spectrometer
Eisele Direct tropospheric ion sampling and mass identification
US5612534A (en) Atmospheric pressure ionization mass spectrometer
FI96903B (fi) Menetelmä kaasun vierasainepitoisuuden määrittämiseksi ja laitteisto sitä varten
US4119851A (en) Apparatus and a method for detecting and measuring trace gases in air or other gas backgrounds
US6100698A (en) Ion mobility sensors and spectrometers having a corona discharge ionization source
US3974380A (en) Mass spectrometer
US5543331A (en) Method of detection of alien matter contents in gases
US7372020B2 (en) Ion counter
US5223712A (en) Closed loop ionization apparatus for detecting trace gases
RU2265832C1 (ru) Аналитическая головка для обнаружения микропримесей веществ в газах
US4374090A (en) Chemical bias agent detection
RU2289810C2 (ru) Источник ионизации коронного разряда для устройств обнаружения микропримесей веществ в газах
US3697749A (en) Apparatus and methods for enhancing the detection of small-source plumes from moving aircraft
SU972395A1 (ru) Способ анализа примесей в газах
US6956206B2 (en) Negative ion atmospheric pressure ionization and selected ion mass spectrometry using a 63NI electron source
RU2056631C1 (ru) Способ идентификации примеси
US20240118212A1 (en) System for analyzing a sample