RU2011864C1 - Способ химической регенерации тепла отработавших газов энергетической установки - Google Patents

Способ химической регенерации тепла отработавших газов энергетической установки Download PDF

Info

Publication number
RU2011864C1
RU2011864C1 SU914938018A SU4938018A RU2011864C1 RU 2011864 C1 RU2011864 C1 RU 2011864C1 SU 914938018 A SU914938018 A SU 914938018A SU 4938018 A SU4938018 A SU 4938018A RU 2011864 C1 RU2011864 C1 RU 2011864C1
Authority
RU
Russia
Prior art keywords
fuel
exhaust gases
heat
heat exchanger
work
Prior art date
Application number
SU914938018A
Other languages
English (en)
Inventor
В.И. Аникеев
В.М. Ханаев
А.С. Бобрин
В.А. Кириллов
Original Assignee
Институт катализа им.Г.К.Борескова СО РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт катализа им.Г.К.Борескова СО РАН filed Critical Институт катализа им.Г.К.Борескова СО РАН
Priority to SU914938018A priority Critical patent/RU2011864C1/ru
Application granted granted Critical
Publication of RU2011864C1 publication Critical patent/RU2011864C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Сущность изобретения: отходящие газы из камеры сгорания 6 после совершения работы на турбине 7 подаются в регенеративные теплообменники 4 и 5, в которых подогреваются топливо и окислитель непосредственно перед камерой сгорания 6, а затем подаются в теплообменник, который нагревает химический реактор. В последнем происходит испарение и каталитическое разложение топлива. Совмещение теплообменника и химического реактора (КРТ2), которое можно осуществить, например, нанесением катализатора на внутреннюю поверхность обычного регенеративного теплообменника со стороны подачи углеводородного топлива, обеспечивает уменьшение теплового сопротивления, сокращение теплопотерь по сравнению с разделенной схемой, а также отбор тепла от всего объема отходящих газов. Разложение топлива в КРТ2 проводится под давлением выше атмосферного, так как при этом увеличивается время пребывания горючего в КРТ и резко сокращается работа сжатия образующихся продуктов реакции компрессором 3. При этом работой жидкостного насоса 1 для подъема давления можно пренебречь по сравнению с работой сжатия парогаза с помощью компрессора 3. 4 з. п. ф-лы, 1 ил.

Description

Изобретение относится к области энергетики, а более конкретно к технологии регенерации тепла отходящих газов газотурбинных установок и двигателей внутреннего сгорания. Изобретение может использоваться как для стационарных установок так и для транспортных. Перспективно использования изобретения и для автомобильного транспорта.
Известен способ утилизации тепла отходящих газов печей, который включает подачу топлива и части отходящих газов на каталитическую конверсию и подачу конвертированной смеси на сжигание. Смесь топлива с 20-50% общего количества отходящих газов перед подачей на каталитическую конверсию подогревают до температуры выше температуры начала конверсии теплом отходящих газов. При каталитической конверсии поглощенное тепло преобразуется в химическую энергию конвертированного топлива. Этот способ принят за прототип.
К недостаткам прототипа можно отнести следующее.
Высокие температуры проведения конверсии топлива (более 700оС для метана) не позволяют химически рекуперировать тепло отходящих газов с более низкой по сравнению с этой температурой.
Сильное разбавление топлива балластными (т. е. практически не принимающими участие в реакциях) газами, входящими в состав отходящих газов: N2, NOx и др. , в результате чего понижается производительность установки и скорость каталитического превращения топлива.
Происходит поглощение тепла отходящих газов только за счет теплоемкости топлива при его нагревании в теплообменнике, так как химический реактор разделен с теплообменником. Ввиду того, что температура топлива и части отходящих газов, подаваемых на каталитическую конверсию, превышает всего на 50-100оС температуру начала конверсии, изменение теплосодержания газов, которое используется для проведения конверсии, весьма мало по сравнению с теплопоглощением при конверсии, что вынуждает проводить многократный подогрев и подачу смеси на конверсию. Это требует многочисленных теплообменников и больших объемов катализатора.
Целью изобретения является повышение экономичности и улучшение экологических характеристик энергетических и силовых установок. Это возможно для определенного вида топлив при замене реакции конверсии топлива на реакцию каталитического разложения топлива. Необходимым условием для топлива является осуществимость для него низкотемпературного каталитического разложения с поглощением тепла.
На чертеже представлена схема осуществления химической регенерации тепла отходящих газов энергосиловых установок на основе каталитического разложения топлива.
Отходящие газы из камеры сгорания 6 после совершения работы на турбине 7 подаются в регенеративные теплообменники 4 и 5, в которых подогреваются топливо и окислитель непосредственно перед камерой сгорания 6, а затем подаются в теплообменник, который нагревает химический реактор. В последнем происходит испарение и каталитическое разложение топлива. Совмещение теплообменника и химического реактора (КРТ 2), которое можно осуществить, например, нанесением катализатора на внутреннюю поверхность обычного регенеративного теплообменника со стороны подачи углеводородного топлива, обеспечивает уменьшение теплового сопротивления, сокращение теплопотерь по сравнению с разделенной схемой, а также отбор тепла от всего объема отходящих газов. Разложение топлива в КРТ 2 проводится под давлением выше атмосферного, так как при этом увеличивается время пребывания горючего в КРТ и резко сокращается работа сжатия образующихся продуктов реакции компрессором 3. При этом работой жидкостного насоса 1 для подъема давления можно пренебречь по сравнению работой сжатия парогаза с помощью компрессора 3. На чертеже также обозначены привод 8, подача воздуха 9 и выброс отходящих газов 10.
Парогаз, полученный при разложении топлива, имеет более высокое теплосодержание и состоит из низкомолекулярных компонентов по сравнению с исходным топливом, что позволяет снизить расход исходного топлива, а также увеличить полноту сгорания и, следовательно, улучшить экологические характеристики выбрасываемых газов.
В качестве основного топлива могут использоваться: метанол или циклогексан, или метилциклогексан, или их композиции. Данные топлива обеспечивают хорошие энергетические и экологические характеристики установок. При проведении каталитического разложения этих топлив возможна химическая регенерация тепла отходящих газов до температур 150-200оС.
Отличительные признаки предлагаемого способа.
Химическую регенерацию тепла отходящих газов проводят в энергетических и силовых установках.
Вместо каталитической конверсии топлива с частью отходящих газов используется каталитическое разложение основного топлива установки.
В качестве основного топлива используются метанол или циклогексан, или метилциклогексан, или их композиции.
Химическую регенерацию тепла осуществляют при разложении топлива в каталитическом реакторе, совмещенном с теплообменником (КРТ).
Каталитическое разложение топлива в химическом регенеративном теплообменнике (КРТ) проводят при давлении выше атмосферного.

Claims (5)

1. СПОСОБ ХИМИЧЕСКОЙ РЕГЕНЕРАЦИИ ТЕПЛА ОТРАБОТАВШИХ ГАЗОВ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ путем подогрева топлива и окислителя отработавшими газами в теплообменниках и смешения подогретых топлива и окислителя, отличающийся тем, что, с целью повышения эффективности использования топлива, экологичности отработавших газов, топливо перед смешиванием подвергают разложению в каталитическом реакторе-теплообменнике, нагреваемом отработавшими газами, с образованием парогаза.
2. Способ по п. 1, отличающийся тем, что в качестве топлива используют метанол.
3. Способ по п. 1, отличающийся тем, что в качестве топлива используют циклогексан.
4. Способ по п. 1, отличающийся тем, что в качестве топлива используют метилциклогексан.
5. Способ по пп. 1 - 4, отличающийся тем, что разложение топлива проводят при давлении выше атмосферного.
SU914938018A 1991-05-20 1991-05-20 Способ химической регенерации тепла отработавших газов энергетической установки RU2011864C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU914938018A RU2011864C1 (ru) 1991-05-20 1991-05-20 Способ химической регенерации тепла отработавших газов энергетической установки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU914938018A RU2011864C1 (ru) 1991-05-20 1991-05-20 Способ химической регенерации тепла отработавших газов энергетической установки

Publications (1)

Publication Number Publication Date
RU2011864C1 true RU2011864C1 (ru) 1994-04-30

Family

ID=21575434

Family Applications (1)

Application Number Title Priority Date Filing Date
SU914938018A RU2011864C1 (ru) 1991-05-20 1991-05-20 Способ химической регенерации тепла отработавших газов энергетической установки

Country Status (1)

Country Link
RU (1) RU2011864C1 (ru)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025650A1 (en) * 2011-08-12 2013-02-21 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials and associated systems and methods
US8624072B2 (en) 2010-02-13 2014-01-07 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US8669014B2 (en) 2011-08-12 2014-03-11 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8671870B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US8673509B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US8771636B2 (en) 2008-01-07 2014-07-08 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8826657B2 (en) 2011-08-12 2014-09-09 Mcallister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US8771636B2 (en) 2008-01-07 2014-07-08 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US8926908B2 (en) 2010-02-13 2015-01-06 Mcalister Technologies, Llc Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8624072B2 (en) 2010-02-13 2014-01-07 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US9541284B2 (en) 2010-02-13 2017-01-10 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8673220B2 (en) 2010-02-13 2014-03-18 Mcalister Technologies, Llc Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods
US9103548B2 (en) 2010-02-13 2015-08-11 Mcalister Technologies, Llc Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods
US8673509B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8671870B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US9617983B2 (en) 2011-08-12 2017-04-11 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
WO2013025650A1 (en) * 2011-08-12 2013-02-21 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials and associated systems and methods
US8826657B2 (en) 2011-08-12 2014-09-09 Mcallister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US9222704B2 (en) 2011-08-12 2015-12-29 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US9309473B2 (en) 2011-08-12 2016-04-12 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8669014B2 (en) 2011-08-12 2014-03-11 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal

Similar Documents

Publication Publication Date Title
RU2011864C1 (ru) Способ химической регенерации тепла отработавших газов энергетической установки
RU2467187C2 (ru) Способ работы газотурбинной установки
CN110606467B (zh) 一种甲醇重整制氢工艺及系统
KR101575554B1 (ko) 가스 터빈 유닛의 작동 모드 및 디자인
CN108343978A (zh) 一种低热值燃料的催化氧化系统与方法
CN1095805C (zh) 合成气体和动力的联合生产方法
RU2442819C1 (ru) Способ работы устройства для переработки попутных нефтяных газов
CN102060267A (zh) 回热循环和低温多效蒸馏海水淡化热力循环装置及方法
CN114991945B (zh) 一种基于内燃兰金循环的氨气燃料发动机系统及其应用
RU2624690C1 (ru) Газотурбинная установка и способ функционирования газотурбинной установки
JPH08287936A (ja) 水素製造装置
RU2443764C1 (ru) Способ работы устройства подготовки попутных нефтяных газов для использования в энергоустановках
US9957888B2 (en) System for generating syngas and an associated method thereof
CN102911023A (zh) 节能型甲醛生产工艺流程
JPS61192816A (ja) 複合型発電システム
EP3081289B1 (en) A combustion process for solid, liquid or gaseous hydrocarbon (hc) raw materials in a thermal engine, thermal engine and system for producing energy from hydrocarbon (hc) materials
CN109519941A (zh) 一种乙醛吸收塔尾气综合回收方法
Juangsa et al. Dehydrogenation of ammonia for electricity production: Effect of recirculation fraction
CN115784148B (zh) 一种自供热自增压的高效氨分解制氢系统及其制氢方法
CN221053808U (zh) 一种耦合碳捕集的开式混合工质发电系统
RU43917U1 (ru) Газотурбинная установка с термохимическим реактором и с впрыском пара
RU2791380C1 (ru) Способ работы газотурбинного газоперекачивающего агрегата и устройство для его осуществления
CN218934567U (zh) 一种基于间冷循环及化学回热的氨燃料燃气轮机发电系统
RU2115065C1 (ru) Способ и устройство для получения нагретого теплоносителя
RU2052641C1 (ru) Способ питания силовой энергетической установки