RU2008120781A - Активатор для управления потоком плазмы и способ управления потоком плазмы - Google Patents

Активатор для управления потоком плазмы и способ управления потоком плазмы Download PDF

Info

Publication number
RU2008120781A
RU2008120781A RU2008120781/11A RU2008120781A RU2008120781A RU 2008120781 A RU2008120781 A RU 2008120781A RU 2008120781/11 A RU2008120781/11 A RU 2008120781/11A RU 2008120781 A RU2008120781 A RU 2008120781A RU 2008120781 A RU2008120781 A RU 2008120781A
Authority
RU
Russia
Prior art keywords
electrodes
activator
boundary layer
flow
voltage
Prior art date
Application number
RU2008120781/11A
Other languages
English (en)
Other versions
RU2472673C2 (ru
Inventor
Скот Л. ШВИМЛИ (US)
Скот Л. ШВИМЛИ
Джозеф С. СИЛКИ (US)
Джозеф С. СИЛКИ
Original Assignee
Зе Боинг Компани (US)
Зе Боинг Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зе Боинг Компани (US), Зе Боинг Компани filed Critical Зе Боинг Компани (US)
Publication of RU2008120781A publication Critical patent/RU2008120781A/ru
Application granted granted Critical
Publication of RU2472673C2 publication Critical patent/RU2472673C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/005Influencing air flow over aircraft surfaces, not otherwise provided for by other means not covered by groups B64C23/02 - B64C23/08, e.g. by electric charges, magnetic panels, piezoelectric elements, static charges or ultrasounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/10Influencing flow of fluids around bodies of solid material
    • F15D1/12Influencing flow of fluids around bodies of solid material by influencing the boundary layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/12Boundary layer controls by using electromagnetic tiles, fluid ionizers, static charges or plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Paper (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

1. Способ управления полетом авиационного подвижного носителя, включающий: ! размещение плазменного активатора на поверхности упомянутого подвижного носителя на пути потока в пограничном слое, обтекающего эту поверхность; ! управление плазменным активатором для установления первой рабочей конфигурации, при которой плазменный активатор воздействует на поток в пограничном слое таким образом, что препятствует отрыву потока в пограничном слое от упомянутой поверхности; и ! управление плазменным активатором для установления второй рабочей конфигурации, при которой плазменный активатор вызывает отрыв потока в пограничном слое от упомянутой поверхности. ! 2. Способ по п.1, в котором размещение плазменного активатора включает: ! размещение плазменного активатора, содержащего первый и второй электроды, разнесенные вдоль направления потока в пограничном слое; ! размещение третьего электрода между первым и вторым электродами в плоскости, которая смещена в сторону от плоскости, в которой расположены первый и второй электроды; и ! размещение диэлектрического материала между третьим электродом и первым и вторым электродами. ! 3. Способ по п.1, в котором управление плазменным активатором для установления первой рабочей конфигурации включает использование источника сигнала переменного тока для подачи напряжения переменного тока на первый и третий электроды, причем упомянутое напряжение переменного тока вызывает ионизацию воздуха вблизи первого и третьего электродов, которая создает импульс, действующий на поток в пограничном слое так, чтобы препятствовать отрыву потока в пограничном слое от упомянутой поверхности

Claims (16)

1. Способ управления полетом авиационного подвижного носителя, включающий:
размещение плазменного активатора на поверхности упомянутого подвижного носителя на пути потока в пограничном слое, обтекающего эту поверхность;
управление плазменным активатором для установления первой рабочей конфигурации, при которой плазменный активатор воздействует на поток в пограничном слое таким образом, что препятствует отрыву потока в пограничном слое от упомянутой поверхности; и
управление плазменным активатором для установления второй рабочей конфигурации, при которой плазменный активатор вызывает отрыв потока в пограничном слое от упомянутой поверхности.
2. Способ по п.1, в котором размещение плазменного активатора включает:
размещение плазменного активатора, содержащего первый и второй электроды, разнесенные вдоль направления потока в пограничном слое;
размещение третьего электрода между первым и вторым электродами в плоскости, которая смещена в сторону от плоскости, в которой расположены первый и второй электроды; и
размещение диэлектрического материала между третьим электродом и первым и вторым электродами.
3. Способ по п.1, в котором управление плазменным активатором для установления первой рабочей конфигурации включает использование источника сигнала переменного тока для подачи напряжения переменного тока на первый и третий электроды, причем упомянутое напряжение переменного тока вызывает ионизацию воздуха вблизи первого и третьего электродов, которая создает импульс, действующий на поток в пограничном слое так, чтобы препятствовать отрыву потока в пограничном слое от упомянутой поверхности вблизи первого и третьего электродов.
4. Способ по п.1, в котором управление плазменным активатором для установления второй рабочей конфигурации включает использование источника сигнала переменного тока для подачи напряжения переменного тока на второй и третий электроды, причем упомянутое напряжение переменного тока вызывает ионизацию воздуха вблизи второго и третьего электродов, которая создает импульс, действующий на поток в пограничном слое так, чтобы вызвать отрыв потока в пограничном слое от упомянутой поверхности вблизи второго и третьего электродов.
5. Способ по п.3, в котором использование источника сигнала переменного тока включает использование источника сигнала переменного тока, обеспечивающего напряжение по меньшей мере около 3000 В.
6. Способ по п.4, в котором использование источника сигнала переменного тока включает использование источника сигнала переменного тока, обеспечивающего напряжение приблизительно от 3000 до 20000 В.
7. Способ по п.1, в котором размещение плазменного активатора на поверхности подвижного носителя включает размещение плазменного активатора на передней кромке крыла самолета.
8. Плазменный активатор для воздействия на поток в пограничном слое, обтекающем поверхность объекта, включающий:
первый электрод, расположенный на упомянутой поверхности;
второй электрод расположенный на упомянутой поверхности так, что исходя из направления потока в пограничном слое он размещен за первым электродом;
третий электрод, расположенный между первым и вторым электродами и смещенный в сторону от первого и второго электродов; и
источник напряжения переменного тока для подачи напряжения переменного тока по меньшей мере одним из следующих способов:
на первый и третий электроды для создания ионизации воздуха между первым и третьим электродами, которая препятствует отрыву потока в пограничном слое от упомянутой поверхности; и
на второй и третий электроды для создания ионизации воздуха между вторым и третьим электродами, которая вызывает отрыв потока в пограничном слое от упомянутой поверхности.
9. Активатор по п.8, в котором длинные стороны первого и второго электродов расположены на одной линии друг с другом вдоль направления потока в пограничном слое.
10. Активатор по п.9, в котором первый и второй электроды расположены в одной плоскости.
11. Активатор по п.10, в котором третий электрод отделен от первого и второго электродов слоем диэлектрического материала.
12. Активатор по п.8, в котором первый и второй электроды расположены таким образом, что верхняя поверхность каждого электрода лежит приблизительно в одной плоскости с поверхностью упомянутого объекта.
13. Активатор по п.8, в котором источник напряжения переменного тока вырабатывает напряжение переменного тока приблизительно от 3000 до 20000 В.
14. Активатор по п.8, в котором источник напряжения переменного тока работает на частоте приблизительно от 1 до 20 кГц.
15. Активатор по п.8, в котором все электроды имеют прямоугольную форму, а их длинная сторона ориентирована параллельно направлению потока в пограничном слое.
16. Активатор по п.8, дополнительно включающий по меньшей мере один выключатель, установленный между источником напряжения переменного тока и одним из электродов и управляемый управляющим устройством для управления подачей напряжения переменного тока на электроды.
RU2008120781/11A 2007-05-25 2008-05-23 Активатор для управления потоком плазмы и способ управления потоком плазмы RU2472673C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/753,876 US8016247B2 (en) 2007-05-25 2007-05-25 Plasma flow control actuator system and method
US11/753,876 2007-05-25

Publications (2)

Publication Number Publication Date
RU2008120781A true RU2008120781A (ru) 2009-11-27
RU2472673C2 RU2472673C2 (ru) 2013-01-20

Family

ID=39739788

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008120781/11A RU2472673C2 (ru) 2007-05-25 2008-05-23 Активатор для управления потоком плазмы и способ управления потоком плазмы

Country Status (8)

Country Link
US (1) US8016247B2 (ru)
EP (1) EP1995173B1 (ru)
JP (1) JP5255903B2 (ru)
CN (1) CN101318554B (ru)
AT (1) ATE485217T1 (ru)
DE (1) DE602008003052D1 (ru)
ES (1) ES2350809T3 (ru)
RU (1) RU2472673C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488522C2 (ru) * 2011-09-07 2013-07-27 Леонид Васильевич Носачев Способ управления обтеканием летательного аппарата
RU2492367C2 (ru) * 2011-08-24 2013-09-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ ламинаризации пограничного слоя на аэродинамической поверхности

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005895A2 (en) * 2007-05-08 2009-01-08 University Of Florida Research Foundation, Inc. Method and apparatus for multibarrier plasma actuated high performance flow control
US20110272531A1 (en) * 2007-12-19 2011-11-10 Minick Alan B Drag reduction through ion field flow control
US8220753B2 (en) * 2008-01-04 2012-07-17 The Boeing Company Systems and methods for controlling flows with pulsed discharges
US9446840B2 (en) * 2008-07-01 2016-09-20 The Boeing Company Systems and methods for alleviating aircraft loads with plasma actuators
CN101784155B (zh) * 2009-01-21 2012-05-02 郝江南 一种等离子体双极性激励电极
US8226047B2 (en) 2009-01-23 2012-07-24 General Electric Company Reduction of tip vortex and wake interaction effects in energy and propulsion systems
US8941291B2 (en) 2009-08-26 2015-01-27 Daihatsu Motor Co., Ltd. Plasma actuator
US10011344B1 (en) * 2009-12-31 2018-07-03 Orbital Research Inc. Plasma control and power system
US9975625B2 (en) * 2010-04-19 2018-05-22 The Boeing Company Laminated plasma actuator
US9282623B2 (en) 2010-04-21 2016-03-08 University Of Florida Research Foundation, Inc. System, method, and apparatus for microscale plasma actuation
EP2616331A4 (en) * 2010-09-15 2014-06-11 Saab Ab PLASMA ASSISTED ACTIVE LAMINAR FLOW ACTUATOR SYSTEM
US8636254B2 (en) * 2010-09-29 2014-01-28 Lockheed Martin Corporation Dynamically controlled cross flow instability inhibiting assembly
US9090326B2 (en) * 2010-10-13 2015-07-28 The Boeing Company Active flow control on a vertical stabilizer and rudder
CN102595758A (zh) * 2011-01-12 2012-07-18 中国科学院工程热物理研究所 介质阻挡放电等离子体尾缘射流装置及方法
US8523115B2 (en) 2011-01-28 2013-09-03 Lockheed Martin Corporation System, apparatus, program product, and related methods for providing boundary layer flow control
US20130064710A1 (en) * 2011-03-04 2013-03-14 Jamey D. Jacob Plasma apparatus for biological decontamination and sterilization and method for use
US8916795B2 (en) * 2011-03-28 2014-12-23 Lockheed Martin Corporation Plasma actuated vortex generators
US20120312923A1 (en) * 2011-06-08 2012-12-13 Lockheed Martin Corporation Mitigating transonic shock wave with plasma heating elements
US9549456B2 (en) 2011-06-24 2017-01-17 University Of Florida Research Foundation, Incorporated Solid state heating source and plasma actuators including extreme materials
FR2964357B1 (fr) * 2011-11-29 2013-10-18 Pierre Magnier Controle actif d'un ecoulement d'air sur un aileron par un actionneur electroarodynamique
US8944370B2 (en) 2012-01-09 2015-02-03 The Boeing Company Plasma actuating propulsion system for aerial vehicles
CN102602541A (zh) * 2012-03-20 2012-07-25 南京航空航天大学 采用等离子体激励器进行飞行器姿态控制的方法
AT512885A1 (de) * 2012-05-14 2013-11-15 Gerhardter Verfahren und Vorrichtungen zur Beeinflussung der Stromlinien
CN102756803B (zh) * 2012-07-04 2015-06-17 北京航空航天大学 基于等离子体壁面射流的气动式格尼襟翼
KR101372903B1 (ko) 2012-08-31 2014-03-12 한국철도기술연구원 박막 대면적 플라즈마 공기저항 저감 시스템
US9849202B2 (en) 2012-09-14 2017-12-26 The Board Of Regents For Oklahoma State University Plasma pouch
KR101381872B1 (ko) 2012-10-19 2014-04-07 한국철도기술연구원 공기 유동 제어를 위한 표면부착용 플라즈마 발생 필름
WO2014084925A1 (en) * 2012-11-27 2014-06-05 The Board Of Regents Of The University Of Texas System Rail plasma actuator for high-authority flow control
US9820369B2 (en) 2013-02-25 2017-11-14 University Of Florida Research Foundation, Incorporated Method and apparatus for providing high control authority atmospheric plasma
JP6029068B2 (ja) * 2013-04-30 2016-11-24 国立研究開発法人宇宙航空研究開発機構 表面流制御システムおよび表面流制御方法
US20150232172A1 (en) * 2014-02-20 2015-08-20 Donald Steve Morris Airfoil assembly and method
US9637224B2 (en) * 2014-02-21 2017-05-02 The Boeing Company Plasma-assisted synthetic jets for active air flow control
US9746010B2 (en) * 2014-04-09 2017-08-29 University Of Florida Research Foundation, Incorporated Noise control of cavity flows using active and/or passive receptive channels
CN104202898B (zh) * 2014-07-09 2016-05-11 中国人民解放军国防科学技术大学 基于高超声速流能量利用的零能耗零质量合成射流装置
US9757776B2 (en) 2014-10-16 2017-09-12 The Boeing Company Clearing of apertures by plasma jets
US9955564B2 (en) * 2016-06-13 2018-04-24 Elmer Griebeler Dielectric barrier discharge device
US10543907B2 (en) * 2015-07-06 2020-01-28 California Institute Of Technology Flow control technique by dielectric materials
US9771146B2 (en) 2015-09-24 2017-09-26 The Boeing Company Embedded dielectric structures for active flow control plasma sources
NL2015633B1 (en) * 2015-10-19 2017-05-09 Univ Delft Tech Dielectric barrier discharge DBD plasma actuator for an air-foil of a wind turbine or an airplane.
US9725159B2 (en) * 2015-11-10 2017-08-08 The Boeing Company Mitigating shock using plasma
US10527074B2 (en) * 2016-07-27 2020-01-07 University Of Notre Dame Du Lac Method and apparatus of plasma flow control for drag reduction
US20190193863A1 (en) * 2016-09-29 2019-06-27 Universidade Da Beira Interior Ice detection/protection and flow control system based on printing of dielectric barrier discharge sliding plasma actuators
JP7158140B2 (ja) * 2017-11-07 2022-10-21 昂大 神山 推進装置及び航空機
US10495121B2 (en) * 2017-11-10 2019-12-03 X Development Llc Method and apparatus for combined anemometer and plasma actuator
CN107972891A (zh) * 2017-11-28 2018-05-01 北京航空航天大学 一种利用等离子体流动控制技术的飞行器姿态控制方法和实现装置
JP6609302B2 (ja) * 2017-12-26 2019-11-20 株式会社Subaru 流れ制御装置、流れ制御方法及び航空機
US10912182B2 (en) * 2018-04-30 2021-02-02 GM Global Technology Operations LLC Sensor cleaning apparatus
US20200023942A1 (en) * 2018-07-19 2020-01-23 General Electric Company Control system for an aircraft
RU194347U1 (ru) * 2019-06-19 2019-12-06 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Управляемый снаряд
JP7335765B2 (ja) * 2019-09-30 2023-08-30 株式会社Subaru 整流装置
JP7335767B2 (ja) * 2019-09-30 2023-08-30 株式会社Subaru 整流装置
GB2588830A (en) * 2019-11-11 2021-05-12 Airbus Operations Ltd Active drag control system for an aircraft
US11415118B1 (en) * 2019-12-02 2022-08-16 David A. Colasante Apparatus, system and method for generating ionosonic lift
CN110805495B (zh) * 2019-12-05 2021-10-01 江西洪都航空工业集团有限责任公司 一种定几何宽速域超音速进气道及其工作方法和飞行器
CN111142565B (zh) * 2019-12-31 2021-06-08 浙江大学 一种基于电空气动力学可自适应环境的无桨叶飞行器及其控制方法
US11905983B2 (en) * 2020-01-23 2024-02-20 Deep Science, Llc Systems and methods for active control of surface drag using electrodes
US12065236B2 (en) 2020-01-23 2024-08-20 Enterprise Science Fund, Llc Systems and methods for active control of surface drag using intermittent or variable actuation
US20230137457A1 (en) * 2020-04-03 2023-05-04 University Of Florida Research Foundation, Inc. Blade tip vortex control
ES2949800T3 (es) * 2020-04-29 2023-10-03 Airbus Operations Sl Sección del extremo trasero de una aeronave
JP7410793B2 (ja) * 2020-05-12 2024-01-10 株式会社Subaru 整流装置
WO2022177960A1 (en) 2021-02-17 2022-08-25 Deep Science, Llc In-plane transverse momentum injection to disrupt large-scale eddies in a turbulent boundary layer
CN113511329B (zh) * 2021-05-12 2022-12-13 上海机电工程研究所 一种外形渐变式横向整体分离整流罩及飞行器
CN113316301B (zh) * 2021-06-08 2022-02-18 西安理工大学 一种可用于机翼减阻的单向导通等离子体吸气装置
EP4332386A1 (en) * 2022-09-01 2024-03-06 Karlsruher Institut für Technologie Device and method for flow forcing of a fluid

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320309A (en) * 1992-06-26 1994-06-14 British Technology Group Usa, Inc. Electromagnetic device and method for boundary layer control
DE10014034C2 (de) * 2000-03-22 2002-01-24 Thomson Tubes Electroniques Gm Plasma-Beschleuniger-Anordnung
GB0108740D0 (en) 2001-04-06 2001-05-30 Bae Systems Plc Turbulent flow drag reduction
DE10130464B4 (de) * 2001-06-23 2010-09-16 Thales Electron Devices Gmbh Plasmabeschleuniger-Anordnung
US6570333B1 (en) * 2002-01-31 2003-05-27 Sandia Corporation Method for generating surface plasma
RU2271307C2 (ru) * 2004-05-17 2006-03-10 Владимир Александрович Иванов Способ управления аэродинамическим обтеканием летательного аппарата и генератор плазмы
US7413149B2 (en) 2004-07-21 2008-08-19 United Technologies Corporation Wing enhancement through ion entrainment of media
US7703479B2 (en) * 2005-10-17 2010-04-27 The University Of Kentucky Research Foundation Plasma actuator
CA2625520C (en) 2005-10-17 2014-11-18 Bell Helicopter Textron Inc. Plasma actuators for drag reduction on wings,nacelles and/or fuselage of vertical take-off and landing aircraft
JP5060163B2 (ja) * 2006-04-28 2012-10-31 株式会社東芝
US8006939B2 (en) 2006-11-22 2011-08-30 Lockheed Martin Corporation Over-wing traveling-wave axial flow plasma accelerator
US7736123B2 (en) 2006-12-15 2010-06-15 General Electric Company Plasma induced virtual turbine airfoil trailing edge extension

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2492367C2 (ru) * 2011-08-24 2013-09-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ ламинаризации пограничного слоя на аэродинамической поверхности
RU2488522C2 (ru) * 2011-09-07 2013-07-27 Леонид Васильевич Носачев Способ управления обтеканием летательного аппарата

Also Published As

Publication number Publication date
US20100133386A1 (en) 2010-06-03
EP1995173A1 (en) 2008-11-26
EP1995173B1 (en) 2010-10-20
CN101318554B (zh) 2013-05-22
RU2472673C2 (ru) 2013-01-20
DE602008003052D1 (de) 2010-12-02
JP2008290709A (ja) 2008-12-04
ATE485217T1 (de) 2010-11-15
CN101318554A (zh) 2008-12-10
ES2350809T3 (es) 2011-01-27
JP5255903B2 (ja) 2013-08-07
US8016247B2 (en) 2011-09-13

Similar Documents

Publication Publication Date Title
RU2008120781A (ru) Активатор для управления потоком плазмы и способ управления потоком плазмы
RU2008120780A (ru) Устройство и способ управления потоком плазмы на задней кромке аэродинамического профиля
RU2008120782A (ru) Плазменная исполнительная система и способ использования в оружейном отсеке, расположенном на высокоскоростной мобильной платформе
US8727286B2 (en) Systems and methods for controlling flows with pulsed discharges
NL2015633B1 (en) Dielectric barrier discharge DBD plasma actuator for an air-foil of a wind turbine or an airplane.
US7017863B2 (en) Turbulent flow drag reduction
RU2008119502A (ru) Плазменные устройства для снижения лобового сопротивления на крыльях, гондолах и/или фюзеляже летательного аппарата с вертикальным взлетом и посадкой
ES2422381T3 (es) Dispositivo de expulsión de fluido
ATE472372T1 (de) Handhabung von magnetischen oder magnetisierbaren objekten unter verwendung von kombinierter magnetophorese und dielektrophorese
BRPI0607213A2 (pt) aparelho para manipular gotìculas, método para atuar em uma gotìcula, método para unir duas ou mais gotìculas e método para dividir uma gotìcula em duas ou mais gotìculas
JP2007005079A (ja) 除電装置
RU2016107757A (ru) Модификация ионов
JP4126084B1 (ja) 静電チャックの表面電位制御方法
DE602004001023D1 (de) System zur automatischen Steuerung von Hochauftriebsklappen eines Flugzeugs, insbesondere Flügelvorderkanten
ATE535898T1 (de) Führungseinrichtung und verfahren zur anflugführung von luftfahrzeugen
JP2019188953A (ja) 翼構造体、翼構造体の制御方法及び航空機
US20190013228A1 (en) Noncontact conveying apparatus and noncontact conveying system
BR102018071799A8 (pt) Sistema de controle para controlar uma trajetória de uma aeronave e método para controlar uma trajetória de uma aeronave
GB201112285D0 (en) Method and apparatus for dividing thin film device into separate cells
US20190329870A1 (en) Wing structure, method of controlling wing structure, and aircraft
CN203222109U (zh) 等离子体涡流发生器
ATE458616T1 (de) Flüssigkeitsausstossgerät
Göksel et al. Active separation flow control experiments in weakly ionized air
RU2005672C1 (ru) Способ посадки летательного аппарата
KR20140093068A (ko) 에멀전의 연속상의 물질로부터 분산상의 물입자를 정전 응집으로 분리하기 위한 정전 응집 장치