RU2472673C2 - Активатор для управления потоком плазмы и способ управления потоком плазмы - Google Patents

Активатор для управления потоком плазмы и способ управления потоком плазмы Download PDF

Info

Publication number
RU2472673C2
RU2472673C2 RU2008120781/11A RU2008120781A RU2472673C2 RU 2472673 C2 RU2472673 C2 RU 2472673C2 RU 2008120781/11 A RU2008120781/11 A RU 2008120781/11A RU 2008120781 A RU2008120781 A RU 2008120781A RU 2472673 C2 RU2472673 C2 RU 2472673C2
Authority
RU
Russia
Prior art keywords
electrodes
activator
boundary layer
flow
voltage
Prior art date
Application number
RU2008120781/11A
Other languages
English (en)
Other versions
RU2008120781A (ru
Inventor
Скот Л. ШВИМЛИ
Джозеф С. СИЛКИ
Original Assignee
Зе Боинг Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зе Боинг Компани filed Critical Зе Боинг Компани
Publication of RU2008120781A publication Critical patent/RU2008120781A/ru
Application granted granted Critical
Publication of RU2472673C2 publication Critical patent/RU2472673C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/005Influencing air flow over aircraft surfaces, not otherwise provided for by other means not covered by groups B64C23/02 - B64C23/08, e.g. by electric charges, magnetic panels, piezoelectric elements, static charges or ultrasounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/10Influencing flow of fluids around bodies of solid material
    • F15D1/12Influencing flow of fluids around bodies of solid material by influencing the boundary layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/12Boundary layer controls by using electromagnetic tiles, fluid ionizers, static charges or plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Paper (AREA)
  • Traffic Control Systems (AREA)

Abstract

Группа изобретений относится к области авиации. Плазменный активатор и способ управления предназначены для использования на авиационных подвижных носителях, например самолетах, для управления по курсу и/или пространственным положением. Система включает плазменный активатор, который содержит первый и второй электроды, установленные на поверхности самолета. Первый и второй электроды ориентированы параллельно пути потока в пограничном слое вдоль поверхности. Третий электрод установлен между первым и вторым электродами и смещен в сторону от первого и второго электродов. На первый и третий электроды подают высоковольтный сигнал напряжения переменного тока для создания потока текучей среды между электродами, на которые подано питание, препятствующий отрыву пограничного слоя от поверхности. Подача напряжения переменного тока на второй и третий электроды вызывает вынужденный поток текучей среды, который воздействует на поток в пограничном слое, наоборот, отрывая его от поверхности. Несколько активаторов могут быть выборочно размещены в различных местах самолета и выборочно приведены в действие для обеспечения управления по курсу и/или пространственным положением самолета. Группа изобретений направлена на улучшение аэродинамики. 2 н. и 14 з.п. ф-лы, 3 ил.

Description

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
Настоящая заявка связана общей тематикой с заявками на патент США №11/753857 (реестр Boeing 07-0456; реестр HDP 7784-001059) и №11/753869 (реестр Boeing 07-0455; реестр HDP №7784-001060), поданными 25 мая 2007.
Настоящее изобретение также связано общей тематикой с заявкой на патент США №11/403252, поданной 12 апреля 2006 года и уступленной компании Boeing.
Указание каждой из этих ссылок подразумевает включение содержания соответствующей заявки в настоящее описание.
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к системам управления потоком и более конкретно к системе управления потоком плазмы и способу, которые обеспечивают выборочную управляемость, чтобы препятствовать отрыву потока в пограничном слое от поверхности подвижного носителя или объекта или вызывать отрыв потока в пограничном слое от поверхности.
УРОВЕНЬ ТЕХНИКИ
Положения, изложенные в этом разделе, представляют только предпосылки создания настоящего изобретения и могут не раскрывать уровня техники.
Эффективность авиационных подвижных носителей, таких как самолеты, достигается благодаря высокоинтегрированной конструкции, обеспечивающей сочетание летных качеств и грузоподъемности с хорошими показателями устойчивости и управления. Для этого конструкция подвижного носителя должна иметь комплект эффективных и надежных исполнительных органов управления. Устранение обычных управляющих плоскостей обеспечивает улучшенную аэродинамику и упрощенную конструкцию, но может ухудшить устойчивость и управляемость подвижного носителя.
При разработке летательных аппаратов типа «летающее крыло» и/или бесшарнирных летательных аппаратов особенно сложно оказалось обеспечить управление летательным аппаратом, особенно управление по курсу. Так, трудно управлять по курсу летательным аппаратом типа «летающее крыло» или бесшарнирным летательным аппаратом при углах атаки от малого до умеренного, значения которых обычно лежат в диапазоне около 0-4 градусов. В настоящее время большинство используемых аэродинамических способов управления по курсу летательного аппарата при углах атаки от малого до умеренного включают использование вертикального хвостового оперения или отклонение управляющей плоскости. Таким образом, трудность или даже невозможность обеспечения управления по курсу при углах атаки от малого до умеренного до настоящего времени служило фактором, ограничивающим использование вертикального хвостового оперения.
Масса также является важным фактором для многих типов подвижных носителей и особенно для авиационных подвижных носителей, например самолетов. Современные аэродинамические управляющие системы обычно используют шарнирные панели, которые отклоняют, чтобы изменить поток в пограничном слое, обтекающий поверхность подвижного носителя, например заднюю кромку крыла. Следует отметить, что шарниры и сопутствующие соединения, а также гидравлические или электромеханические приводы, которые необходимо использовать, могут существенно увеличить массу самолета и тем самым увеличить количество топлива, необходимого для конкретного полета или задания, или уменьшить общий полезный груз самолета.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к системе плазменного активатора и способу использования этой системы на подвижных носителях и особенно на высокоскоростных авиационных подвижных носителях, таких как реактивный самолет. Система плазменного активатора формирует устройство для управления потоком, которое применимо для управления потоком в пограничном слое, обтекающим поверхность подвижного носителя.
В одном из вариантов реализации настоящего изобретения предложен способ управления полетом подвижного носителя. Способ включает размещение плазменного активатора на поверхности подвижного носителя таким образом, чтобы он был расположен на пути потока в пограничном слое, обтекающего эту поверхность. Плазменным активатором управляют, чтобы задать первую рабочую конфигурацию, в которой плазменный активатор воздействует на поток в пограничном слое таким образом, что притягивает пограничный слой к поверхности и удерживает поток в пограничном слое на поверхности. Активатором также можно управлять, чтобы задать вторую рабочую конфигурацию, в которой плазменный активатор воздействует на поток в пограничном слое таким образом, что вызывает отрыв потока в пограничном слое от поверхности.
В одном из вариантов реализации размещение плазменного активатора включает размещение плазменного активатора, содержащего первый и третий электроды, разнесенные вдоль направления потока в пограничном слое. Третий электрод расположен между первым и вторым электродами и в плоскости, которая смещена в сторону от плоскости, в которой расположены первый и второй электроды. Между третьим электродом и первым и вторым электродами установлен диэлектрический материал.
В одном из вариантов реализации настоящего изобретения раскрыта система управления полетом авиационного подвижного носителя. Система включает плазменный активатор, расположенный на поверхности подвижного носителя, и источник напряжения переменного тока для подачи электрического питания на плазменный активатор. Плазменный активатор содержит первый электрод, расположенный на поверхности подвижного носителя таким образом, что он размещен на пути потока в пограничном слое вдоль поверхности, и второй электрод, расположенный на поверхности так, что исходя из направления потока в пограничном слое он размещен за первым электродом. Третий электрод отделен от первого и второго электродов диэлектрическим слоем и расположен между первым и вторым электродами в плоскости, которая смещена в сторону от плоскости, в которой расположены первый и второй электроды. Управляющее устройство управляет подачей напряжения переменного тока от источника напряжения переменного тока на электроды для получения по меньшей мере одного из следующих режимов:
подача напряжения переменного тока на первый и третий электроды, чтобы вызывать ионизацию воздуха между первым и третьим электродами, которая препятствует отрыву потока в пограничном слое от поверхности; и
подача напряжения переменного тока на второй и третий электроды, чтобы вызывать ионизацию воздуха между вторым и третьим электродами, которая вызывает отрыв потока в пограничном слое от поверхности.
В одном из вариантов реализации система и способ определяют плазменный активатор, который выполнен с возможностью выборочного предотвращения отрыва потока в пограничном слое от поверхности объекта, а также вызывания отрыва потока в пограничном слое.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Описываемые чертежи служат исключительно цели иллюстрации и не преследуют цели ограничения объема настоящего изобретения любым образом.
Фиг.1 изображает вид сверху подвижного носителя, включающего несколько плазменных активаторов в соответствии с одним из вариантов реализации настоящего изобретения, причем плазменные активаторы установлены вдоль передней кромки крыльев самолета;
фиг.2 изображает увеличенный вид сбоку в сечении одного из плазменных активаторов, изображенных на фиг.1, по линии сечения 2-2 на фиг.1, изображающий активатор, который приведен в действие для препятствования отрыву потока в пограничном слое от поверхности крыла, а также источник напряжения переменного тока в упрощенной форме и управляющее устройство, используемое для управления активатором; и
фиг.3 изображает вид плазменного активатора, изображенного на фиг.2 и управляемого таким образом, чтобы вызвать отрыв потока в пограничном слое от поверхности крыла.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Нижеследующее описание носит исключительно иллюстративный характер и не ограничивает настоящее изобретение, его применение или использование.
На фиг.1 изображен подвижный носитель, в данном примере представляющий собой самолет 12, содержащий несколько плазменных активаторов 10. В данном примере активаторы 10 расположены рядом с передними кромками 16а и 16b крыльев 14а и 14b соответственно самолета 12. Однако следует отметить, что активаторы 10 могут быть использованы на подвижном носителе фактически любого вида, на котором необходимо осуществлять управление по курсу или пространственным положением подвижного носителя без необходимости использования откидных или подвижных панелей. Возможно также применение изобретения в таких устройствах как беспилотные самолеты, ракеты, винтокрылы, высокоскоростные наземные транспортные средства и, возможно, даже высокоскоростные морские суда. Кроме того, хотя активаторы 10 изображены на крыльях 14а, 14b самолета 12, они могут быть установлены вдоль фюзеляжа, на горизонтальных стабилизаторах, вертикальном хвостовом оперении, сужающейся хвостовой части или в любом другом месте, где может существовать необходимость воздействия на поток в пограничном слое вдоль самолета.
На практике часто возникает необходимость расположения нескольких активаторов 10 вдоль поверхности, на которой требуется управлять пограничным слоем, как показано на фиг.1. Расстояние между соседними активаторами 10, размеры активатора и конкретное количество активаторов обусловлены требованиями данной области применения.
На фиг.2 изображен вид сбоку в сечении одного из активаторов 10. Каждый активатор 10 включает первый электрод 18, второй электрод 20 и третий электрод 22. Второй электрод 20 отделен промежутком от первого электрода 18. Предпочтительно электроды 18 и 20 установлены в углублении в поверхности 24 крыла 14а таким образом, что верхние поверхности 18а и 20а соответствующих электродов 18 и 20 расположены заподлицо с поверхностью 24 в одной плоскости друг с другом. Электроды 18 и 20 могут быть также установлены на поверхности 24. Однако установка электродов 18 и 20 в углублении обеспечивает сохранение первоначального аэродинамического профиля крыла 14а или другой поверхности, на которой установлен активатор 10, и уменьшение аэродинамического сопротивления.
Третий электрод 22 установлен между первым электродом 18 и вторым электродом 20, так что его длинная сторона параллельна длинным сторонам электродов 18 и 20, но со смещением в сторону от электродов 18 и 20, то есть ниже их по высоте. Третий электрод 22 окружен диэлектрическим слоем из материала 25, который отделяет электрод 22 от электродов 18 и 20 соответственно. Каждый из электродов 18, 20 и 22 может быть выполнен по существу прямоугольной формы с ориентацией главной оси, то есть оси, соответствующей длинной стороне, перпендикулярно направлению потока в пограничном слое. Другие ориентации также возможны согласно требованиям в данной области применения.
На практике электроды 18, 20, 22 могут быть выполнены из любого проводящего материала. Больше всего подходит медь. Электроды 18, 20, 22 могут быть выполнены в форме тонких полос, например полос фольги, и могут иметь типичную толщину порядка примерно 0,001-0,005 дюйма (0,0254-0,127 мм). Длина и ширина каждого электрода 18, 20, 22 могут быть изменены в каждом конкретном случае, но предположительно во многих случаях при использовании в самолетах размеры каждого электрода обычно могут быть порядка 1-20 дюймов (2,54 см - 50,08 см) длиной и 0,12-0,20 дюйма (3-5 мм) шириной для каждого из электродов 18 и 20. Ширина утопленного электрода 22 обычно больше, чем ширина электрода 20, и обычно может быть порядка 1,0-2,0 дюймов (2,54 см - 5,08 см) в зависимости от рабочего напряжения, подаваемого источником 26 напряжения переменного тока. Слой материала 25 может включать любой пригодный диэлектрический материал, например кварц или диэлектрические материалы KAPTON® и TEFLON®. Другие диэлектрические материалы, например керамика, также могут быть пригодными для использования, а конкретный используемый диэлектрик может быть определен согласно требованиям в данной области применения. Часть слоя из материала 25 также может быть использована для заполнения промежутка между электродами 18 и 20. Расстояние по высоте между электродом 22 и электродами 18 и 20 обычно составляет около 0,003-0,50 дюйма (0,076-12,7 мм), хотя его также можно значительно изменять согласно требованиям в данной области применения.
Кроме того, на фиг.2 источник 26 напряжения переменного тока соединен с электродом 22 и через два выключателя 28 и 30 с электродами соответственно 18 и 22. Источник 26 вырабатывает слаботочный высоковольтный сигнал переменного тока предпочтительно в диапазоне примерно от 3000 вольт до 20000 вольт. Частота источника 26 обычно составляет примерно от 1 кГц до 20 кГц, но может быть изменена согласно требованиям в данной области применения. Предпочтительно обеспечена возможность изменения конкретного значения выходного сигнала источника 26, чтобы активатор 10 мог обеспечивать изменяемую степень управления потоком текучей среды.
С выключателями 28 и 30 соединено управляющее устройство 32. Выключатели 28, 30 могут быть полупроводниковыми переключающими устройствами, пригодными для работы с напряжением, вырабатываемым источником 26, или могут включать любые другие переключающие устройства подходящего вида. Как описано более подробно в нижеследующем описании, компоненты 18, 20, 22, 25, 26, 28, 30 и 32 фактически формируют "двухрежимный" плазменный активатор, который выполнен с возможностью выборочно вызывать или прекращать отрыв пограничного слоя от поверхности 24. Чтобы управлять конкретным значением выходного сигнала источника 26 также может быть использовано устройство 32. В одном из вариантов реализации устройство 32 может быть использовано для управления выключателями 28 и 30, чтобы вырабатывать импульсы напряжения переменного тока, подаваемые на пары электродов 18, 22 и 20, 22 с коэффициентом заполнения импульса около 10%-100%. Подача импульсного сигнала переменного тока на пары электродов 18, 22 и 20, 22 может привести к увеличению кпд и общей эффективности активатора 10.
Работа активатора 10 описана со ссылками на фиг.2 и 3. На фиг.2 проиллюстрировано, что когда необходимо предотвратить отрыв потока в пограничном слое от поверхности 24, устройство 32 приводит в действие переключатель 28, то есть замыкает его, и размыкает выключатель 30. В результате высокое напряжение переменного тока от источника 26 поступает на электроды 18 и 22. Это высокое напряжение ионизирует воздух вблизи промежутка между электродами 18 и 22. Ионизация обычно происходит, когда на электроды 18 и 22 подают напряжение переменного тока около 3000 вольт. Созданное электрическое поле воздействует на ионизированный воздух и ускоряет заряженные частицы, которые сталкиваются с нейтральными молекулами воздуха в пограничном слое, создавая "пристенную струю". Напряженность электрического поля прямо пропорциональна величине поданного напряжения переменного тока. Более конкретно, электрическое поле создает в ионизированном воздухе импульс объемной силы, который способствует созданию потока текучей среды, то есть пристенного потока, в непосредственной близости от поверхности 24. Вынужденный поток текучей среды обозначен стрелкой 34. Поток 34 вызывает увеличение момента количества движения текучей среды пограничного слоя вблизи поверхности 24. Полученный в результате вынужденный поток текучей среды направлен от электрода 18 к электроду 22. Поток 34 действует таким образом, что предотвращает или по меньшей мере значительно препятствует отрыву пограничного слоя от поверхности 24. Соответственно фиг.2 иллюстрирует ситуацию, которую можно рассматривать как "режим присоединения потока" или "первую рабочую конфигурацию" для активатора 10.
Фиг.3 иллюстрирует, что когда необходимо вызвать отрыв пограничного слоя от поверхности 24, устройство 32 приводит в действие переключатель 30, то есть замыкает его, и размыкает выключатель 28. Это также вызывает ионизацию воздуха в области между электродом 20 и электродом 22, но вынужденный поток текучей среды, обозначенный стрелкой 36, направлен по существу в направлении, противоположном направлению потока 34. Поток 36 способствует отрыву пограничного слоя от поверхности 24. Таким образом, простым выбором пары электродов 18, 22 или 20, 22 каждого активатора 10, на которую подано напряжение переменного тока, воздействуют, как необходимо, на поток в пограничном слое. При подаче изменяемого напряжения переменного тока можно менять напряженность электрического поля, а значит, и степень, с которой электроды 18 и 22 воздействуют на поток в пограничном слое. Фиг.3 иллюстрирует ситуацию, которую можно рассматривать как "режим отрыва потока" или "вторую рабочую конфигурацию" активатора 10.
Активаторы 10 могут быть использованы в целях управления по курсу, например при малых углах атаки, путем разноименного управления активаторами 10 на крыльях 14а и 14b. Например, активаторами 10 на крыле 14а управляют таким образом, чтобы был достигнут один эффект, например предотвращение отрыва потока, в то время как активаторами 10 на крыле 14b управляют таким образом, чтобы создавать отрыв потока, в результате чего обеспечивают управление самолетом 12 по курсу. Управление по курсу обеспечено разницей аэродинамических сопротивлений, созданной совместным действием активаторов 10 на крыльях 14а и 14b и плечом момента, создаваемого на конце каждого крыла 14а и 14b вокруг его осевой линии.
Очевидно, что приведенное выше описание представляет собой только один пример того, как активаторы 10 могут быть реализованы на самолете 12. Однако активаторы 10 могут быть также использованы для создания разности боковых сил, действующих на фюзеляж самолета или ракету, и создания таким образом путевого момента. Кроме того, на крыльях 14а и 14b может быть создана разность подъемных сил для создания момента крена.
Устранение или сокращение числа традиционных механических и/или гидравлических исполнительных органов управления приводом могут значительно уменьшить массу самолета и таким образом увеличить время полета для выполнения задания или дальность полета для данного самолета. Активаторы 10 и связанные с ними система и способ, описанные здесь, могут быть использованы вместо традиционных исполнительных органов управления, например отклоняемых носков крыла или закрылков, элеронов, подвижных поверхностей хвостового оперения и турбулизаторов, что обеспечивает уменьшение массы и аэродинамического сопротивления, создаваемых этими компонентами.
Выше описаны различные варианты реализации изобретения, однако для специалиста очевидно, что могут быть проведены модификации или внесены изменения без выхода за пределы объема настоящего изобретения. Приведенные примеры иллюстрируют различные варианты реализации и не направлены на ограничение настоящего изобретения. Поэтому описание и формулу изобретения следует толковать свободно, с единственным ограничением, касающимся соответствующего уровня техники.

Claims (16)

1. Способ управления ориентацией авиационного подвижного носителя в полете, включающий:
размещение плазменного активатора на поверхности упомянутого подвижного носителя на пути потока в пограничном слое, обтекающего эту поверхность;
управление плазменным активатором для установления первой рабочей конфигурации, при которой плазменный активатор воздействует на поток в пограничном слое таким образом, что препятствует отрыву потока в пограничном слое от упомянутой поверхности; и
управление плазменным активатором для установления второй рабочей конфигурации, при которой плазменный активатор вызывает отрыв потока в пограничном слое от упомянутой поверхности.
2. Способ по п.1, в котором размещение плазменного активатора включает:
размещение плазменного активатора, содержащего первый и второй электроды, разнесенные вдоль направления потока в пограничном слое;
размещение третьего электрода между первым и вторым электродами в плоскости, которая смещена в сторону от плоскости, в которой расположены первый и второй электроды; и
размещение диэлектрического материала между третьим электродом и первым и вторым электродами.
3. Способ по п.1, в котором управление плазменным активатором для установления первой рабочей конфигурации включает использование источника сигнала переменного тока для подачи напряжения переменного тока на первый и третий электроды, причем упомянутое напряжение переменного тока вызывает ионизацию воздуха вблизи первого и третьего электродов, которая создает импульс, действующий на поток в пограничном слое, так чтобы препятствовать отрыву потока в пограничном слое от упомянутой поверхности вблизи первого и третьего электродов.
4. Способ по п.1, в котором управление плазменным активатором для установления второй рабочей конфигурации включает использование источника сигнала переменного тока для подачи напряжения переменного тока на второй и третий электроды, причем упомянутое напряжение переменного тока вызывает ионизацию воздуха вблизи второго и третьего электродов, которая создает импульс, действующий на поток в пограничном слое, так чтобы вызвать отрыв потока в пограничном слое от упомянутой поверхности вблизи второго и третьего электродов.
5. Способ по п.3, в котором использование источника сигнала переменного тока включает использование источника сигнала переменного тока, обеспечивающего напряжение по меньшей мере около 3000 В.
6. Способ по п.4, в котором использование источника сигнала переменного тока включает использование источника сигнала переменного тока, обеспечивающего напряжение приблизительно от 3000 В до 20000 В.
7. Способ по п.1, в котором размещение плазменного активатора на поверхности подвижного носителя включает размещение плазменного активатора на передней кромке крыла самолета.
8. Плазменный активатор для воздействия на поток в пограничном слое, обтекающем поверхность объекта, включающий:
первый электрод, расположенный на упомянутой поверхности;
второй электрод, расположенный на упомянутой поверхности так, что, исходя из направления потока в пограничном слое, он размещен за первым электродом;
третий электрод, расположенный между первым и вторым электродами и смещенный в сторону от первого и второго электродов; и
источник напряжения переменного тока для разновременной подачи напряжения переменного тока на первый и третий электроды для создания ионизации воздуха между первым и третьим электродами, которая препятствует отрыву потока в пограничном слое от упомянутой поверхности; и
на второй и третий электроды для создания ионизации воздуха между вторым и третьим электродами, которая вызывает отрыв потока в пограничном слое от упомянутой поверхности.
9. Активатор по п.8, в котором длинные стороны первого и второго электродов расположены на одной линии друг с другом вдоль направления потока в пограничном слое.
10. Активатор по п.9, в котором первый и второй электроды расположены в одной плоскости.
11. Активатор по п.10, в котором третий электрод отделен от первого и второго электродов слоем диэлектрического материала.
12. Активатор по п.8, в котором первый и второй электроды расположены таким образом, что верхняя поверхность каждого электрода лежит приблизительно в одной плоскости с поверхностью упомянутого объекта.
13. Активатор по п.8, в котором источник напряжения переменного тока вырабатывает напряжение переменного тока приблизительно от 3000 В до 20000 В.
14. Активатор по п.8, в котором источник напряжения переменного тока работает на частоте приблизительно от 1 кГц до 20 кГц.
15. Активатор по п.8, в котором все электроды имеют прямоугольную форму, а их длинная сторона ориентирована параллельно направлению потока в пограничном слое.
16. Активатор по п.8, дополнительно включающий по меньшей мере один выключатель, установленный между источником напряжения переменного тока и одним из электродов и управляемый управляющим устройством для управления подачей напряжения переменного тока на электроды.
RU2008120781/11A 2007-05-25 2008-05-23 Активатор для управления потоком плазмы и способ управления потоком плазмы RU2472673C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/753,876 2007-05-25
US11/753,876 US8016247B2 (en) 2007-05-25 2007-05-25 Plasma flow control actuator system and method

Publications (2)

Publication Number Publication Date
RU2008120781A RU2008120781A (ru) 2009-11-27
RU2472673C2 true RU2472673C2 (ru) 2013-01-20

Family

ID=39739788

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008120781/11A RU2472673C2 (ru) 2007-05-25 2008-05-23 Активатор для управления потоком плазмы и способ управления потоком плазмы

Country Status (8)

Country Link
US (1) US8016247B2 (ru)
EP (1) EP1995173B1 (ru)
JP (1) JP5255903B2 (ru)
CN (1) CN101318554B (ru)
AT (1) ATE485217T1 (ru)
DE (1) DE602008003052D1 (ru)
ES (1) ES2350809T3 (ru)
RU (1) RU2472673C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU194347U1 (ru) * 2019-06-19 2019-12-06 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Управляемый снаряд
RU2788738C1 (ru) * 2022-04-05 2023-01-24 Максим Александрович Иванов Способ маневрирования гиперзвуковым летательным аппаратом

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005895A2 (en) * 2007-05-08 2009-01-08 University Of Florida Research Foundation, Inc. Method and apparatus for multibarrier plasma actuated high performance flow control
US20110272531A1 (en) * 2007-12-19 2011-11-10 Minick Alan B Drag reduction through ion field flow control
US8220753B2 (en) * 2008-01-04 2012-07-17 The Boeing Company Systems and methods for controlling flows with pulsed discharges
US9446840B2 (en) * 2008-07-01 2016-09-20 The Boeing Company Systems and methods for alleviating aircraft loads with plasma actuators
CN101784155B (zh) * 2009-01-21 2012-05-02 郝江南 一种等离子体双极性激励电极
US8226047B2 (en) 2009-01-23 2012-07-24 General Electric Company Reduction of tip vortex and wake interaction effects in energy and propulsion systems
EP2458188B1 (en) 2009-08-26 2014-06-04 Daihatsu Motor Co., Ltd. Plasma actuator
US10011344B1 (en) * 2009-12-31 2018-07-03 Orbital Research Inc. Plasma control and power system
US9975625B2 (en) * 2010-04-19 2018-05-22 The Boeing Company Laminated plasma actuator
WO2011133807A2 (en) * 2010-04-21 2011-10-27 University Of Florida Research Foundation Inc. System, method, and apparatus for microscale plasma actuation
WO2012036602A1 (en) * 2010-09-15 2012-03-22 Saab Ab Plasma-enhanced active laminar flow actuator system
US8636254B2 (en) * 2010-09-29 2014-01-28 Lockheed Martin Corporation Dynamically controlled cross flow instability inhibiting assembly
US9090326B2 (en) * 2010-10-13 2015-07-28 The Boeing Company Active flow control on a vertical stabilizer and rudder
CN102595758A (zh) * 2011-01-12 2012-07-18 中国科学院工程热物理研究所 介质阻挡放电等离子体尾缘射流装置及方法
US8523115B2 (en) 2011-01-28 2013-09-03 Lockheed Martin Corporation System, apparatus, program product, and related methods for providing boundary layer flow control
WO2012122045A2 (en) * 2011-03-04 2012-09-13 The Board Of Regents For Oklahoma State University Plasma apparatus for biological decontamination and sterilization and method for use
US8916795B2 (en) * 2011-03-28 2014-12-23 Lockheed Martin Corporation Plasma actuated vortex generators
US20120312923A1 (en) * 2011-06-08 2012-12-13 Lockheed Martin Corporation Mitigating transonic shock wave with plasma heating elements
WO2012178147A2 (en) * 2011-06-24 2012-12-27 University Of Florida Resarch Foundation, Inc. Solid state heating source and plasma actuators including extreme materials
RU2492367C2 (ru) * 2011-08-24 2013-09-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ ламинаризации пограничного слоя на аэродинамической поверхности
RU2488522C2 (ru) * 2011-09-07 2013-07-27 Леонид Васильевич Носачев Способ управления обтеканием летательного аппарата
FR2964357B1 (fr) * 2011-11-29 2013-10-18 Pierre Magnier Controle actif d'un ecoulement d'air sur un aileron par un actionneur electroarodynamique
US8944370B2 (en) 2012-01-09 2015-02-03 The Boeing Company Plasma actuating propulsion system for aerial vehicles
CN102602541A (zh) * 2012-03-20 2012-07-25 南京航空航天大学 采用等离子体激励器进行飞行器姿态控制的方法
AT512885A1 (de) * 2012-05-14 2013-11-15 Gerhardter Verfahren und Vorrichtungen zur Beeinflussung der Stromlinien
CN102756803B (zh) * 2012-07-04 2015-06-17 北京航空航天大学 基于等离子体壁面射流的气动式格尼襟翼
KR101372903B1 (ko) 2012-08-31 2014-03-12 한국철도기술연구원 박막 대면적 플라즈마 공기저항 저감 시스템
US9849202B2 (en) 2012-09-14 2017-12-26 The Board Of Regents For Oklahoma State University Plasma pouch
KR101381872B1 (ko) 2012-10-19 2014-04-07 한국철도기술연구원 공기 유동 제어를 위한 표면부착용 플라즈마 발생 필름
WO2014084925A1 (en) * 2012-11-27 2014-06-05 The Board Of Regents Of The University Of Texas System Rail plasma actuator for high-authority flow control
WO2014131055A1 (en) * 2013-02-25 2014-08-28 University Of Florida Research Foundation, Incorporated Method and apparatus for providing high control authority atmospheric plasma
JP6029068B2 (ja) * 2013-04-30 2016-11-24 国立研究開発法人宇宙航空研究開発機構 表面流制御システムおよび表面流制御方法
US20150232172A1 (en) * 2014-02-20 2015-08-20 Donald Steve Morris Airfoil assembly and method
US9637224B2 (en) * 2014-02-21 2017-05-02 The Boeing Company Plasma-assisted synthetic jets for active air flow control
US9746010B2 (en) * 2014-04-09 2017-08-29 University Of Florida Research Foundation, Incorporated Noise control of cavity flows using active and/or passive receptive channels
CN104202898B (zh) * 2014-07-09 2016-05-11 中国人民解放军国防科学技术大学 基于高超声速流能量利用的零能耗零质量合成射流装置
US9757776B2 (en) 2014-10-16 2017-09-12 The Boeing Company Clearing of apertures by plasma jets
US9955564B2 (en) * 2016-06-13 2018-04-24 Elmer Griebeler Dielectric barrier discharge device
US10543907B2 (en) * 2015-07-06 2020-01-28 California Institute Of Technology Flow control technique by dielectric materials
US9771146B2 (en) * 2015-09-24 2017-09-26 The Boeing Company Embedded dielectric structures for active flow control plasma sources
NL2015633B1 (en) * 2015-10-19 2017-05-09 Univ Delft Tech Dielectric barrier discharge DBD plasma actuator for an air-foil of a wind turbine or an airplane.
US9725159B2 (en) * 2015-11-10 2017-08-08 The Boeing Company Mitigating shock using plasma
US10527074B2 (en) * 2016-07-27 2020-01-07 University Of Notre Dame Du Lac Method and apparatus of plasma flow control for drag reduction
EP3544391B1 (en) * 2016-09-29 2023-07-05 Universidade Da Beira Interior Ice detection/protection and flow control system
JP7158140B2 (ja) * 2017-11-07 2022-10-21 昂大 神山 推進装置及び航空機
US10495121B2 (en) * 2017-11-10 2019-12-03 X Development Llc Method and apparatus for combined anemometer and plasma actuator
CN107972891A (zh) * 2017-11-28 2018-05-01 北京航空航天大学 一种利用等离子体流动控制技术的飞行器姿态控制方法和实现装置
JP6609302B2 (ja) * 2017-12-26 2019-11-20 株式会社Subaru 流れ制御装置、流れ制御方法及び航空機
US10912182B2 (en) * 2018-04-30 2021-02-02 GM Global Technology Operations LLC Sensor cleaning apparatus
US20200023942A1 (en) * 2018-07-19 2020-01-23 General Electric Company Control system for an aircraft
JP7335765B2 (ja) * 2019-09-30 2023-08-30 株式会社Subaru 整流装置
JP7335767B2 (ja) * 2019-09-30 2023-08-30 株式会社Subaru 整流装置
GB2588830A (en) * 2019-11-11 2021-05-12 Airbus Operations Ltd Active drag control system for an aircraft
US11415118B1 (en) * 2019-12-02 2022-08-16 David A. Colasante Apparatus, system and method for generating ionosonic lift
CN110805495B (zh) * 2019-12-05 2021-10-01 江西洪都航空工业集团有限责任公司 一种定几何宽速域超音速进气道及其工作方法和飞行器
CN111142565B (zh) * 2019-12-31 2021-06-08 浙江大学 一种基于电空气动力学可自适应环境的无桨叶飞行器及其控制方法
US11905983B2 (en) * 2020-01-23 2024-02-20 Deep Science, Llc Systems and methods for active control of surface drag using electrodes
US20230137457A1 (en) * 2020-04-03 2023-05-04 University Of Florida Research Foundation, Inc. Blade tip vortex control
ES2949800T3 (es) * 2020-04-29 2023-10-03 Airbus Operations Sl Sección del extremo trasero de una aeronave
JP7410793B2 (ja) * 2020-05-12 2024-01-10 株式会社Subaru 整流装置
WO2022177960A1 (en) 2021-02-17 2022-08-25 Deep Science, Llc In-plane transverse momentum injection to disrupt large-scale eddies in a turbulent boundary layer
CN113511329B (zh) * 2021-05-12 2022-12-13 上海机电工程研究所 一种外形渐变式横向整体分离整流罩及飞行器
CN113316301B (zh) * 2021-06-08 2022-02-18 西安理工大学 一种可用于机翼减阻的单向导通等离子体吸气装置
EP4332386A1 (en) * 2022-09-01 2024-03-06 Karlsruher Institut für Technologie Device and method for flow forcing of a fluid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570333B1 (en) * 2002-01-31 2003-05-27 Sandia Corporation Method for generating surface plasma
RU2271307C2 (ru) * 2004-05-17 2006-03-10 Владимир Александрович Иванов Способ управления аэродинамическим обтеканием летательного аппарата и генератор плазмы

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320309A (en) * 1992-06-26 1994-06-14 British Technology Group Usa, Inc. Electromagnetic device and method for boundary layer control
DE10014034C2 (de) * 2000-03-22 2002-01-24 Thomson Tubes Electroniques Gm Plasma-Beschleuniger-Anordnung
GB0108740D0 (en) 2001-04-06 2001-05-30 Bae Systems Plc Turbulent flow drag reduction
DE10130464B4 (de) * 2001-06-23 2010-09-16 Thales Electron Devices Gmbh Plasmabeschleuniger-Anordnung
US7413149B2 (en) 2004-07-21 2008-08-19 United Technologies Corporation Wing enhancement through ion entrainment of media
EP1937552B1 (en) 2005-10-17 2011-06-15 Bell Helicopter Textron Inc. Plasma actuators for drag reduction on wings, nacelles and/or fuselage of vertical take-off and landing aircraft
US7703479B2 (en) * 2005-10-17 2010-04-27 The University Of Kentucky Research Foundation Plasma actuator
JP5060163B2 (ja) * 2006-04-28 2012-10-31 株式会社東芝
US8006939B2 (en) 2006-11-22 2011-08-30 Lockheed Martin Corporation Over-wing traveling-wave axial flow plasma accelerator
US7736123B2 (en) 2006-12-15 2010-06-15 General Electric Company Plasma induced virtual turbine airfoil trailing edge extension

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570333B1 (en) * 2002-01-31 2003-05-27 Sandia Corporation Method for generating surface plasma
RU2271307C2 (ru) * 2004-05-17 2006-03-10 Владимир Александрович Иванов Способ управления аэродинамическим обтеканием летательного аппарата и генератор плазмы

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AIAA-2003-1025, 20031201 USA. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU194347U1 (ru) * 2019-06-19 2019-12-06 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Управляемый снаряд
RU2788738C1 (ru) * 2022-04-05 2023-01-24 Максим Александрович Иванов Способ маневрирования гиперзвуковым летательным аппаратом

Also Published As

Publication number Publication date
ATE485217T1 (de) 2010-11-15
US8016247B2 (en) 2011-09-13
RU2008120781A (ru) 2009-11-27
EP1995173B1 (en) 2010-10-20
JP2008290709A (ja) 2008-12-04
DE602008003052D1 (de) 2010-12-02
CN101318554A (zh) 2008-12-10
EP1995173A1 (en) 2008-11-26
CN101318554B (zh) 2013-05-22
JP5255903B2 (ja) 2013-08-07
ES2350809T3 (es) 2011-01-27
US20100133386A1 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
RU2472673C2 (ru) Активатор для управления потоком плазмы и способ управления потоком плазмы
RU2474513C2 (ru) Устройство и способ управления потоком плазмы на задней кромке аэродинамического профиля
RU2489315C2 (ru) Система управления потоком с использованием плазменного актуатора и способ ее использования для управления потоком, обтекающим оружейный отсек высокоскоростного подвижного носителя
EP2913266B1 (en) Plasma-assisted synthetic jets for active air flow control
EP2321084B1 (en) System and method for aerodynamic flow control
US8006939B2 (en) Over-wing traveling-wave axial flow plasma accelerator
EP2307273B1 (en) Systems and methods for alleviating aircraft loads with plasma actuators
CN106553754B (zh) 用于主动流控制等离子体源的嵌入式电介质结构
CN111942594B (zh) 飞行器、检测冰的存在的方法和改善空气动力学的方法
JP2019188953A (ja) 翼構造体、翼構造体の制御方法及び航空機
Gnapowski Review of Selected Methods for Increasing the Aerodynamic Force of the Wing
US20190329870A1 (en) Wing structure, method of controlling wing structure, and aircraft
US20240215142A1 (en) Dielectric barrier discharge plasma actuators
US20210237859A1 (en) Vortex generator apparatus for an aircraft
CN108820186A (zh) 基于流场控制的无人机控制装置及无人机
Gnapowski Selected structural elements of the wing to increase the lift force
Marqués Aerodynamics of the UCAV 1303 delta-wing configuration and flow structure modification using plasma actuators