RU2006734C1 - Безвакуумный криостат - Google Patents

Безвакуумный криостат Download PDF

Info

Publication number
RU2006734C1
RU2006734C1 SU4946753A RU2006734C1 RU 2006734 C1 RU2006734 C1 RU 2006734C1 SU 4946753 A SU4946753 A SU 4946753A RU 2006734 C1 RU2006734 C1 RU 2006734C1
Authority
RU
Russia
Prior art keywords
cryostat
temperature
heat
temperature sensor
heater
Prior art date
Application number
Other languages
English (en)
Inventor
В.С. Лысенко
А.Н. Назаров
И.Э. Куницкий
Original Assignee
Назаров Алексей Николаевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Назаров Алексей Николаевич filed Critical Назаров Алексей Николаевич
Priority to SU4946753 priority Critical patent/RU2006734C1/ru
Application granted granted Critical
Publication of RU2006734C1 publication Critical patent/RU2006734C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Сущность изобретения: криостат содержит кожух с крышкой, нагреватель, рабочий стакан из теплоизоляционного металла, выполненный одинарным и разделенным поперечной электроизоляционной прокладкой на верхнюю и нижнюю части. Нижняя часть является сосудом для криожидкости. Нагреватель и датчик температуры вмонтированы в держатель образца, расположенный на электроизоляционной прокладке, в котором содержатся теплопроводы для связи с криожидкостью. Теплопроводы выполнены с переменным сечением. Криостат позволяет контролируемо изменять температуру со скоростями нагрева от 0,01 до 5,00 К/с в диапазоне от 77 до 673 К. Температурный диапазон определяется материалом электроизоляционной прокладки и типом датчика температуры. В криостате реализуются высокие регулируемые скорости изменения температуры образца ввиду хорошего контакта с нагревательным элементом и плавно меняющейся тепловой связью с хладагентом. 1 з. п. ф-лы. 2 ил.

Description

Изобретение относится к экспериментальной технике физики твердого тела и технике контроля электрофизических параметров в микроэлектронике. Оно решает задачу создания малоинерционного универсального криостата, удобного в эксплуатации.
В качестве прототипа выбран криостат для оптических исследований, состоящий из теплоизоляционного кожуха с окнами и размещенными в его стенках каналами для криожидкости, соединенными с сосудом и теплопроводящей трубкой, нижний конец которой прикреплен к контейнеру, а верхний сообщен с верхней частью сосуда. Криостат позволяет стабилизировать температуру объекта, помещаемого в медный контейнер для образцов в диапазоне от 80 до 350 К. Несмотря на то, что указано на повышение точности регулирования температуры в криостате, однако она не могла быть получена достаточно высокой, так как нагреватель с датчиком температуры и нагреваемый объект располагаются на значительном расстоянии друг от друга.
Этот криостат рассчитан на термостатирование исследуемого объекта и не может обеспечить быстрый нагрев или охлаждение его по указанному закону, так как объект монтируется в массивный медный держатель и охлаждается или нагревается как за счет потока газообразного азота, так и за счет теплообмена с медным держателем, который не может быстро изменить свою температуру.
Криостат обладает сложной конструкцией; монтирование образца требует извлечение из контейнера держателя образца через заглушки, которые должны быть посажены в отверстия достаточно плотно, чтобы через них не просачивался жидкий азот. Контейнер также должен быть прикреплен к сосуду для криожидкости с высокой степенью плотности, так как азот и его пары легко просачиваются через щели в пенопласте и разрывают его, что приводит к его порче и низкой надежности. Кроме того, сложность конструкции уменьшает экспрессность измерений, так как требуется значительное время для прогрева образца и его смены.
Целью изобретения является повышение быстродействия температурных измерений с повышенной точностью регулирования температуры в расширенном температурном диапазоне при упрощении и повышении надежности конструкции.
Поставленная цель достигается тем, что в известном криостате, содержащем теплоизоляционный кожух с крышкой, рабочий стакан и нагреватель, рабочий стакан выполнен одинарным из теплоизолирующего металла и разделен электроизоляционной прокладкой на верхнюю и нижнюю части, причем нижняя часть является сосудом для криожидкости, а нагреватель и датчик температуры вмонтированы в держатель образца, расположенный на электроизоляционной прокладке, в котором содержатся теплопроводы для связи с криожидкостью. Теплопроводы выполнены с переменным сечением.
На фиг. 1 изображена конструкция криостата, где 1 - внешняя несущая коробка, заполненная теплоизолирующим материалом, 2 - теплоизолирующий материал, 3 - стакан из тепоизолирующего металла, являющийся сосудом для криожидкости, 4 - электроизолирующая пластина, 5 - электрические контакты, 6 - медный держатель образца, 7 - нагреватели, 8 - датчик температуры, 9 - теплопроводы переменного сечения, обеспечивающие плавный нагрев и охлаждение держателя образца, 10 - образец, 11 - турель, 12 - зондодержатели, позволяющие проводить измерения на тесовых структурах с контактными площадками 100х100 мкм2, 13 - крышка, заполненная теплоизолирующим материалом, 14 - несущая металлическая коробка, 15 - трубка для заливки криожидкости в сосуд, имеется датчики для определения уровня криожидкости.
Размеры и профиль теплопроводов выбираются в зависимости от необходимых параметров скорости нагрева и времени термостатирования образца. На фиг. 2 представлен внешний вид теплопровода. Все электрические разъемы смонтированы на внешней несущей коробке 1, что позволяет легко и быстро сменять исследуемые образцы.
Изобретение иллюстрируется следующим примером.
Рассмотрим криостат, изготовленный для работы с пластиной диаметром 100 мм. Корпус криостата изготовлен из дюралюминия, который заполнен теплоизолятором из пенопласта. Внутрь пенопласта помещен тонкостенный стакан. Стакан выполнен преимущественно из нержавеющей стали; он может быть также выполнен из нейзильбера или мельхиора. К стакану прикреплена электроизолирующая прокладка из фторопласта.
Исследуемый образец помещается на держатель, изготовленный из меди, в тело которого вмонтирован нагреватель из нихромовой проволоки и измерительный преобразователь температуры, в качестве которого использовался кремниевый диод типа КДС 523, отградуированный на образцовом средстве измерения (свидетельство N 691 ВНИИФТРИ Госстандрата СССР). Крышка криостата с пенопластовым теплоизолятором крепится к корпусу винтами для обеспечения электрического контакта. В крышку криостата вмонтирован азотопровод, в который вставляется воронка для заливки жидкого азота.
Данная конструкция позволяет измерять температуру объекта в диапазоне от 77 до 450 oС с точностью измерения температуры 0,05К; скорость изменения температуры может изменяться в диапазоне от 0,01 до 5 К/с с относительной погрешностью поддержания скорости не более 2% , что принципиально невозможно достичь у криостата-прототипа, так как он обладает массивным держателем образца и разнесенным в пространстве расположением измерительным преобразователем температуры и объекта регулирования температуры. Криостат позволяет проводить измерения на образцах размерами от 1×1 до 100×100 мм. Смена образца занимает от 2 до 3 мин. Габариты криостата составляют 200×200×230 мм. (56) Авторское свидетельство СССР N 1247619, кл. F 13 C 3/10, 1986.

Claims (2)

  1. БЕЗВАКУУМНЫЙ КРИОСТАТ, содержащий теплоизолированные корпус с крышкой, внутренний рабочий стакан для криожидкости и размещенный в нем держатель образца, нагреватель и теплопровод для связи с криожидкостью, отличающийся тем, что, с целью повышения быстродействия температурных изменений с повышенной точностью регулирования температуры в расширенном температурном диапазоне при упрощении и повышении надежности конструкции, рабочий стакан выполнен из теплоизолирующего материала и снабжен поперечной электроизоляционной прокладкой и датчиком температуры, при этом прокладка расположена на уровне или над уровнем зеркала жидкости, на ней размещен держатель образца, в который введены нагреватель, датчик температуры и теплопровод, выполненный в виде нескольких стержней.
  2. 2. Криостат по п. 1, отличающийся тем, что стержни выполнены с переменным сечением.
SU4946753 1991-06-17 1991-06-17 Безвакуумный криостат RU2006734C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4946753 RU2006734C1 (ru) 1991-06-17 1991-06-17 Безвакуумный криостат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4946753 RU2006734C1 (ru) 1991-06-17 1991-06-17 Безвакуумный криостат

Publications (1)

Publication Number Publication Date
RU2006734C1 true RU2006734C1 (ru) 1994-01-30

Family

ID=21579943

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4946753 RU2006734C1 (ru) 1991-06-17 1991-06-17 Безвакуумный криостат

Country Status (1)

Country Link
RU (1) RU2006734C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486480C1 (ru) * 2011-12-07 2013-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новгородский государственный университет имени Ярослава Мудрого" Оптический криостат

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486480C1 (ru) * 2011-12-07 2013-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новгородский государственный университет имени Ярослава Мудрого" Оптический криостат

Similar Documents

Publication Publication Date Title
Ahlers Effect of the Gravitational Field on the Superfluid Transition in He 4
US3499310A (en) Self-calibrating temperature sensing probe and probe - indicator combination
US2999121A (en) Fast acting totally expendable immersion thermocouple
US3365944A (en) Adiabatic calorimeter
US2025534A (en) Electromotive thermometry
US4654623A (en) Thermometer probe for measuring the temperature in low-convection media
US3417617A (en) Fluid stream temperature sensor system
JPH0569635U (ja) 液面センサ
RU2006734C1 (ru) Безвакуумный криостат
US2475138A (en) Device for measuring thermal conductivity
JPH06129918A (ja) 熱交換器効率のモニタ装置
Kemp et al. The boiling points and Triple points of Oxygen and Argon
US4415534A (en) Apparatus for analyzing biological liquids
WO1994006000A1 (en) Differential scanning calorimeter
US3504525A (en) Apparatus for measuring thermic characteristics of extremely small amounts of test material
US2947163A (en) Material testing apparatus and method
JP4852740B2 (ja) 高圧測定可能な示差走査型熱量計及びそれを用いた示差走査型熱流計装置
JP3612413B2 (ja) 変動量測定方法
SU1120185A1 (ru) Устройство дл градуировки термопреобразовател
SU1068740A1 (ru) Дифференциальный сканирующий микрокалориметр
SU736747A1 (ru) Устройство дл измерени коэффициентаТЕплОпРОВОдНОСТи СублиМиРующиХ ВЕщЕСТВ
Edwards et al. Low temperature adiabatic calorimeter, and the heat capacity of α-alumina
SU1518752A1 (ru) Устройство дл теплофизических измерений
SU1597707A1 (ru) Устройство дл измерени теплопроводности твердых материалов
SU1032431A1 (ru) Устройство дл термостатировани