RU2002122762A - SYSTEM AND METHOD FOR OPTIMIZING A FLOW OF A FLUID IN A GAS-LIFT OIL WELL - Google Patents

SYSTEM AND METHOD FOR OPTIMIZING A FLOW OF A FLUID IN A GAS-LIFT OIL WELL

Info

Publication number
RU2002122762A
RU2002122762A RU2002122762/03A RU2002122762A RU2002122762A RU 2002122762 A RU2002122762 A RU 2002122762A RU 2002122762/03 A RU2002122762/03 A RU 2002122762/03A RU 2002122762 A RU2002122762 A RU 2002122762A RU 2002122762 A RU2002122762 A RU 2002122762A
Authority
RU
Russia
Prior art keywords
fluid
production pipe
flow regime
downhole
flow
Prior art date
Application number
RU2002122762/03A
Other languages
Russian (ru)
Other versions
RU2256067C2 (en
Inventor
Роберт Рекс БЕРНЕТТ (US)
Роберт Рекс БЕРНЕТТ
Фредерик Гордон мл. КАРЛ (US)
Фредерик Гордон Мл. КАРЛ
Вилль м Маунтджой СЕВЕДЖ (US)
Вилльям Маунтджой Севедж
Харолд Дж. ВАЙНГАР (US)
Харолд Дж. Вайнгар
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL)
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL), Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL)
Publication of RU2002122762A publication Critical patent/RU2002122762A/en
Application granted granted Critical
Publication of RU2256067C2 publication Critical patent/RU2256067C2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/003Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings with electrically conducting or insulating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/066Valve arrangements for boreholes or wells in wells electrically actuated
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/08Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/16Control means therefor being outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift
    • E21B43/123Gas lift valves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/107Locating fluid leaks, intrusions or movements using acoustic means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/22Fuzzy logic, artificial intelligence, neural networks or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Pipeline Systems (AREA)
  • Earth Drilling (AREA)
  • Flow Control (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Measuring Volume Flow (AREA)

Abstract

A controllable gas-lift well having controllable gas-lift valves and sensors for detecting flow regime is provided. The well uses the tubing and casing to communicate with and power the controllable valve from the surface. Ferromagnetic chokes at the surface and downhole electrically isolate the tubing from the casing. A high band-width, adaptable spread spectrum communication system is used to communicate between the controllable valve and the surface. Sensors, such as pressure, temperature, and acoustic sensors, may be provided downhole to more accurately assess downhole conditions and in particular, flow regime. Operating conditions, such as gas injection rate, back pressure on tubing and position of downhole controllable valves are varied depending on flow regime, downhole conditions, oil production, gas usage and availability, to optimize production. An Artificial Neural Network (ANN) is trained to detect Taylor flow regime using downhole acoustic sensors, plus other sensors as desired. The detection and control system and method thereof is useful in many applications involving multi-phase flow in a conduit.

Claims (18)

1. Способ эксплуатации газлифтовой нефтяной скважины, содержащий следующие стадии: установка одного или нескольких датчиков непосредственно на производственной трубе (26) в нефтяной скважине; определение характеристики потока текучей среды в производственной трубе (26); передача указанной характеристики в поверхностный контроллер (34), применяя производственную трубу (26), отличающийся тем, что в качестве датчиков используют акустические датчики (51, 113) для определения акустической характеристики потока двухфазной текучей среды, режим течения двухфазной текучей среды определяют с применением поверхностного контроллера (34); и рабочие параметры нефтяной скважины (10) регулируют на основе определения указанного режима течения потока посредством поверхностного контроллера (34).1. A method of operating a gas-lift oil well, comprising the following steps: installing one or more sensors directly on a production pipe (26) in an oil well; determination of the characteristics of the fluid flow in the production pipe (26); transferring this characteristic to a surface controller (34) using a production pipe (26), characterized in that acoustic sensors (51, 113) are used as sensors to determine the acoustic characteristic of the two-phase fluid flow, the flow regime of the two-phase fluid is determined using the surface controller (34); and the operating parameters of the oil well (10) are adjusted based on the determination of the specified flow pattern by the surface controller (34). 2. Способ по п.1, в котором стадия управления содержит регулирование количества сжатого подъемного газа, нагнетаемого в нефтяную скважину (10).2. The method according to claim 1, in which the control stage comprises controlling the amount of compressed lifting gas injected into the oil well (10). 3. Способ по п.1, в котором стадия управления содержит регулирование количества сжатого газа, нагнетаемого в производственную трубу (26) через управляемый клапан (52) нисходящей скважины.3. The method according to claim 1, in which the control stage comprises controlling the amount of compressed gas injected into the production pipe (26) through a controlled valve (52) of the downhole. 4. Способ по п.1, в котором стадия определения характеристики потока содержит введение акустической характеристики в Искусственную Нейтральную Сеть.4. The method according to claim 1, wherein the step of determining the flow characteristics comprises introducing an acoustic characteristic into the Artificial Neutral Network. 5. Способ по п.1, в котором стадия управления содержит регулирование рабочих параметров для установления тэйлоровского режима потока.5. The method according to claim 1, in which the control stage comprises adjusting the operating parameters to establish a Taylor flow mode. 6. Способ по п.1, включающий определение дополнительных физических характеристик текучей среды.6. The method according to claim 1, comprising determining additional physical characteristics of the fluid. 7. Способ по п.6, включающий определение давления и температуры текучей среды в производственной трубе (26).7. The method according to claim 6, including determining the pressure and temperature of the fluid in the production pipe (26). 8. Способ по п.1, в котором используют производственную трубу, включающую ответвление трубы, проходящее от основной вертикальной нефтяной скважины.8. The method according to claim 1, in which a production pipe is used comprising a pipe branch extending from a main vertical oil well. 9. Способ по п.1, включающий стадию энергоснабжения акустического датчика, используя производственную трубу (26).9. The method according to claim 1, including the stage of power supply of the acoustic sensor using the production pipe (26). 10. Газлифтовая нефтяная скважина, содержащая производственную трубу (26) для транспортирования двухфазной текучей среды, содержащей нефть и подъемный газ, к поверхности, один или несколько датчиков (51, 113) нисходящей скважины, установленных непосредственно на производственной трубе (26) и предназначенных для определения физических параметров текучей среды, модем, оперативно связанный с производственной трубой (26) для получения данных от датчика и передачи данных по производственной трубе (26) на поверхность, поверхностный контроллер для получения указанных данных и определения режима потока текучей среды в производственной трубе (26) и дроссель (30) и/или управляемый клапан (52) нисходящей скважины для управления количеством подъемного газа, нагнетаемого в производственную трубу (26), отличающаяся тем, что дроссель (30) и/или клапан нисходящей скважины (52) управляются поверхностным контроллером (34) на основе определенного режима потока двухфазной текучей среды.10. A gas-lift oil well containing a production pipe (26) for transporting a two-phase fluid containing oil and lifting gas to the surface, one or more downstream sensors (51, 113) installed directly on the production pipe (26) and intended for determining the physical parameters of the fluid, a modem operatively connected to the production pipe (26) for receiving data from the sensor and transmitting data through the production pipe (26) to the surface, a surface controller for the floor the data and determine the flow regime of the fluid in the production pipe (26) and the throttle (30) and / or controlled valve (52) of the downhole to control the amount of lifting gas injected into the production pipe (26), characterized in that the throttle ( 30) and / or a downhole valve (52) are controlled by a surface controller (34) based on a specific two-phase fluid flow regime. 11. Скважина по п.10, в которой датчик содержит акустический датчик (51, 113).11. The well of claim 10, wherein the sensor comprises an acoustic sensor (51, 113). 12. Скважина по п.11, в которой компьютер, включающий модем, содержит Искусственную Нейтральную Сеть для определения режима потока текучей, среды на основе измерений акустического датчика (51, 113).12. The well of claim 11, in which the computer including the modem contains an Artificial Neutral Network for determining the flow regime of a fluid medium based on measurements of an acoustic sensor (51, 113). 13. Скважина по п.10, включающая в себя источник (34) энергии, соединенный с производственной трубой (26) для подачи энергии к датчику (51, 113).13. The well of claim 10, including a source of energy (34) connected to the production pipe (26) for supplying energy to the sensor (51, 113). 14. Способ управления потоком многофазной текучей среды в трубопроводе, содержащий следующие стадии: определение акустической характеристики потока текучей среды вдоль участка трубопровода; передача указанной характеристики в контроллер через трубопровод; определение режима потока текучей среды на указанном участке трубопровода на основе указанной характеристики, отличающийся тем, что указанная характеристика является акустической характеристикой многофазового потока текучей среды и количество, по меньшей мере, одной из текучих сред в трубопроводе регулируют на основе определенного режима потока текучей среды для установления требуемого режима потока.14. A method for controlling the flow of a multiphase fluid in a pipeline, comprising the steps of: determining the acoustic characteristics of a fluid flow along a portion of a pipeline; transferring the specified characteristic to the controller through the pipeline; determining a fluid flow regime in said pipeline section based on said characteristic, characterized in that said characteristic is an acoustic characteristic of a multiphase fluid flow, and the amount of at least one of the fluid in the pipeline is controlled based on a certain fluid flow regime to establish desired flow mode. 15. Способ по п.14, в котором трубопровод включает нефтяную скважину и многофазовую текучую среду, содержащую подъемный газ, нагнетаемый в скважину, и нефть.15. The method according to 14, in which the pipeline includes an oil well and a multiphase fluid containing lifting gas injected into the well, and oil. 16. Способ по п.14, в котором используют контроллер, включающий компьютер, имеющий Искусственную Нейтральную Сеть, предназначенную для определения режима потока текучей среды на основе характеристики.16. The method of claim 14, wherein a controller is used that includes a computer having an Artificial Neutral Network for determining a fluid flow mode based on a characteristic. 17. Способ по п.14, в котором требуемый режим потока текучей среды содержит тэйлоровский режим потока.17. The method of claim 14, wherein the desired fluid flow regime comprises a Taylor flow regime. 18. Способ по п.15, в котором требуемый режим потока содержит минимизацию количества подъемного газа и максимизацию количества добытой нефти.18. The method according to clause 15, in which the desired flow regime comprises minimizing the amount of lifting gas and maximizing the amount of oil produced.
RU2002122762/03A 2000-01-24 2001-01-22 Method for operating gas-lifting oil well, gas-lifting oil well and method for controlling flow of multi-phase flowing substance in gas-lift oil well RU2256067C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17799700P 2000-01-24 2000-01-24
US60/177,997 2000-01-24

Publications (2)

Publication Number Publication Date
RU2002122762A true RU2002122762A (en) 2004-01-27
RU2256067C2 RU2256067C2 (en) 2005-07-10

Family

ID=22650763

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002122762/03A RU2256067C2 (en) 2000-01-24 2001-01-22 Method for operating gas-lifting oil well, gas-lifting oil well and method for controlling flow of multi-phase flowing substance in gas-lift oil well

Country Status (10)

Country Link
EP (1) EP1250513B1 (en)
AT (1) ATE292742T1 (en)
AU (1) AU767417B2 (en)
BR (1) BR0107821B1 (en)
DE (1) DE60109894T2 (en)
MX (1) MXPA02007176A (en)
NO (1) NO330977B1 (en)
OA (1) OA12141A (en)
RU (1) RU2256067C2 (en)
WO (1) WO2001055553A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396011A (en) * 2002-12-02 2004-06-09 Abb Offshore Systems Ltd Analysing noise generated by fluid flow inside production tubing of a well
US20050199391A1 (en) * 2004-02-03 2005-09-15 Cudmore Julian R. System and method for optimizing production in an artificially lifted well
US7814936B2 (en) 2005-11-16 2010-10-19 Fisher Controls International Llc Sound pressure level feedback control
GB0611527D0 (en) * 2006-06-10 2006-07-19 Intelisys Ltd In-borehole gas monitoring apparatus and method
US8898018B2 (en) 2007-03-06 2014-11-25 Schlumberger Technology Corporation Methods and systems for hydrocarbon production
EP2199755A1 (en) * 2008-12-16 2010-06-23 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO An apparatus, a method and a computer program for recognition of flow regimes in a multiphase fluid flowing in a conduit
US8579035B2 (en) 2009-07-31 2013-11-12 Baker Hughes Incorporated Method for recovering oil from an oil well
RU2465442C1 (en) * 2011-04-13 2012-10-27 Виталий Семенович Гриб Method of lifting water from wells
US8689904B2 (en) * 2011-05-26 2014-04-08 Schlumberger Technology Corporation Detection of gas influx into a wellbore
US10138724B2 (en) * 2012-07-31 2018-11-27 Landmark Graphics Corporation Monitoring, diagnosing and optimizing gas lift operations by presenting one or more actions recommended to achieve a GL system performance
CN103334739B (en) * 2013-06-28 2016-05-11 山东科技大学 A kind of method and device of measuring coal-bed gas pressure
CN103470222B (en) * 2013-09-22 2016-04-06 中国石油集团西部钻探工程有限公司 Under insufficient balance well completion, oil pipe and gaslift are gone into operation the method joining and do
CN103510943A (en) * 2013-10-29 2014-01-15 华北科技学院 Instrument for measuring initial velocity of gas discharged from deep drill hole for coal mine outburst prediction
FR3017766B1 (en) * 2014-02-18 2016-03-04 Tronico TRANSMISSION LINE IMPLEMENTED WITHIN A LINE OF THE TYPE COMPRISING A TUBE OF TANK AND A PRODUCTION TUBE, WITH USE OF AN ELECTRICALLY CONDUCTIVE ENVELOPE.
US20150377667A1 (en) * 2014-06-30 2015-12-31 Saudi Arabian Oil Company Virtual multiphase flow metering and sand detection
AU2015289838B2 (en) * 2014-07-15 2019-05-16 Q.E.D. Environmental Systems, Inc. System and method for distributed control of multiple wellheads
CN104453796B (en) * 2014-12-01 2017-01-18 中国石油天然气股份有限公司 Intelligent water drainage and gas production device for gas well
US20210389486A1 (en) * 2018-11-29 2021-12-16 Bp Exploration Operating Company Limited DAS Data Processing to Identify Fluid Inflow Locations and Fluid Type
CN109356573A (en) * 2018-12-12 2019-02-19 中法渤海地质服务有限公司 A kind of Test extraction method of stratum interval transit time
US11634980B2 (en) 2019-06-19 2023-04-25 OspreyData, Inc. Downhole and near wellbore reservoir state inference through automated inverse wellbore flow modeling
US20230144034A1 (en) * 2021-11-11 2023-05-11 NanoSeis, LLC Oil and gas well multi-phase fluid flow monitoring with multiple transducers and machine learning
US20240102835A1 (en) * 2022-09-28 2024-03-28 Halliburton Energy Services, Inc. Machine learning-based wellbore fluid flow rate prediction

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739325A (en) 1982-09-30 1988-04-19 Macleod Laboratories, Inc. Apparatus and method for down-hole EM telemetry while drilling
US4648471A (en) 1983-11-02 1987-03-10 Schlumberger Technology Corporation Control system for borehole tools
US4839644A (en) 1987-06-10 1989-06-13 Schlumberger Technology Corp. System and method for communicating signals in a cased borehole having tubing
US5130706A (en) 1991-04-22 1992-07-14 Scientific Drilling International Direct switching modulation for electromagnetic borehole telemetry
US5574374A (en) 1991-04-29 1996-11-12 Baker Hughes Incorporated Method and apparatus for interrogating a borehole and surrounding formation utilizing digitally controlled oscillators
US5493288A (en) 1991-06-28 1996-02-20 Elf Aquitaine Production System for multidirectional information transmission between at least two units of a drilling assembly
US5267469A (en) 1992-03-30 1993-12-07 Lagoven, S.A. Method and apparatus for testing the physical integrity of production tubing and production casing in gas-lift wells systems
EP0737322A4 (en) 1993-06-04 1997-03-19 Gas Res Inst Inc Method and apparatus for communicating signals from encased borehole
US5353627A (en) * 1993-08-19 1994-10-11 Texaco Inc. Passive acoustic detection of flow regime in a multi-phase fluid flow
US5467083A (en) 1993-08-26 1995-11-14 Electric Power Research Institute Wireless downhole electromagnetic data transmission system and method
US5425425A (en) 1994-04-29 1995-06-20 Cardinal Services, Inc. Method and apparatus for removing gas lift valves from side pocket mandrels
EP0721053A1 (en) * 1995-01-03 1996-07-10 Shell Internationale Researchmaatschappij B.V. Downhole electricity transmission system
US5887657A (en) 1995-02-09 1999-03-30 Baker Hughes Incorporated Pressure test method for permanent downhole wells and apparatus therefore
US5706896A (en) * 1995-02-09 1998-01-13 Baker Hughes Incorporated Method and apparatus for the remote control and monitoring of production wells
US6012015A (en) * 1995-02-09 2000-01-04 Baker Hughes Incorporated Control model for production wells
US5896924A (en) * 1997-03-06 1999-04-27 Baker Hughes Incorporated Computer controlled gas lift system
US5561245A (en) * 1995-04-17 1996-10-01 Western Atlas International, Inc. Method for determining flow regime in multiphase fluid flow in a wellbore
US5782261A (en) 1995-09-25 1998-07-21 Becker; Billy G. Coiled tubing sidepocket gas lift mandrel system

Also Published As

Publication number Publication date
BR0107821B1 (en) 2010-09-08
NO20023501L (en) 2002-09-13
OA12141A (en) 2006-05-05
NO20023501D0 (en) 2002-07-23
WO2001055553A1 (en) 2001-08-02
NO330977B1 (en) 2011-08-29
EP1250513A1 (en) 2002-10-23
BR0107821A (en) 2004-07-06
RU2256067C2 (en) 2005-07-10
DE60109894D1 (en) 2005-05-12
AU3733701A (en) 2001-08-07
AU767417B2 (en) 2003-11-06
ATE292742T1 (en) 2005-04-15
DE60109894T2 (en) 2006-03-23
MXPA02007176A (en) 2003-01-28
EP1250513B1 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
RU2002122762A (en) SYSTEM AND METHOD FOR OPTIMIZING A FLOW OF A FLUID IN A GAS-LIFT OIL WELL
CN110388189B (en) Intelligent throttling well-killing method and device for overflow of high-temperature high-pressure deep well drilling
CA2401705C (en) Wireless downhole measurement and control for optimizing gas lift well and field performance
RU2258799C2 (en) Oil well, method for oil extraction from the well and method for controllable fluid injection into formation through the well
NO325380B1 (en) Controlled downhole chemical injection
US20070107907A1 (en) System and Method for Controlling Subsea Wells
CA2589555A1 (en) Method and apparatus for preventing slug flow in pipelines
RU2002126209A (en) USE OF A HIGH PRESSURE BOREHOLE GAS IN A GAS LIFT DRILLING WELL
AU2001245434A1 (en) Use of downhole high pressure gas in a gas-lift well
US20110180267A1 (en) Battery-Powered and Logic-Controlled Gas Lift Valve for Use in Wells and Methods of Using and Making Same
AU2001250795A1 (en) Wireless downhole well interval inflow and injection control
WO2000000716A3 (en) System and method for controlling fluid flows in oil or gas wells
CN101421485A (en) Method and system for controlling a downhole flow control device
NZ571239A (en) Method for determining the contributions of individual wells to the production of a cluster of wells
CN111364941B (en) Shale gas well wellhead pressure control method and control system thereof
RU2002126210A (en) Managed Production Well Packer
RU2309246C1 (en) Downhole machine
CN210768665U (en) Intelligent throttling well killing device for high-temperature high-pressure deep well drilling overflow
ATE356919T1 (en) UNDERGROUND VALVE DEVICE
EP0756065A1 (en) System for controlling production from a gas-lifted oil well
CA2424137A1 (en) Method and device to stabilise the production of oil wells
CA2463175A1 (en) Gas turbine for oil lifting
RU2273727C2 (en) Oil well and oil well bore operational method
CN114000870B (en) Negative pressure pulse generating device based on data real-time acquisition and control instruction downloading
RU2318988C2 (en) Method and device for oil well operation optimization along with oil well productivity change

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130123