RU143347U1 - Оптоэлектронный датчик давления на основе периодической интерференционной структуры - Google Patents

Оптоэлектронный датчик давления на основе периодической интерференционной структуры Download PDF

Info

Publication number
RU143347U1
RU143347U1 RU2014107161/28U RU2014107161U RU143347U1 RU 143347 U1 RU143347 U1 RU 143347U1 RU 2014107161/28 U RU2014107161/28 U RU 2014107161/28U RU 2014107161 U RU2014107161 U RU 2014107161U RU 143347 U1 RU143347 U1 RU 143347U1
Authority
RU
Russia
Prior art keywords
periodic structure
membrane
radiation
gap
pressure sensor
Prior art date
Application number
RU2014107161/28U
Other languages
English (en)
Inventor
Евгений Александрович Макарецкий
Александр Викторович Овчинников
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тульский государственный университет" (ТулГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тульский государственный университет" (ТулГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тульский государственный университет" (ТулГУ)
Priority to RU2014107161/28U priority Critical patent/RU143347U1/ru
Application granted granted Critical
Publication of RU143347U1 publication Critical patent/RU143347U1/ru

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

Оптоэлектронный датчик давления, содержащий подвижную мембрану с отражающим покрытием, источник излучения, модулируемый генератором переменного тока, синхронный детектор, схему обработки, первый и второй фотоприёмники, телескопическую оптическую систему, делитель пучка, отличающийся тем, что по ходу луча установлена периодическая структура, образованная элементарными треугольными равнобедренными призмами, диагональные грани которых расположены в одной плоскости и отделены от подвижной мембраны зазором, толщина которого dвыбрана из условия:где λ- длина волны излучения, м;n- показатель преломления периодической структуры;n- показатель преломления среды, заполняющей зазор между мембраной и периодической структурой;α- угол падения излучения на периодическую структуру, рад.

Description

Полезная модель относится к технической физике, а именно к измерению физических параметров газов и жидкостей, таких как давление, амплитуда и частота акустических колебания.
Известен оптоэлектронный датчик давления (патент РФ №2006016 от 15.01.94 G01L 11/00), содержащий подвижную мембрану, источник излучения, модулируемый генератором переменного тока, и два фотоприемника, связанные между собой с помощью оптического канала, включающего в себя конденсор, растр, объектив и два зеркала, при этом фотоприемники включены навстречу друг другу и подключены к синхронному детектору.
Недостатком известного устройства является то что, его работа основана на расфокусировке излучения и перераспределении части излучения, поступающего на фотоприемник и поглощающегося на растре. Эффект модуляции интенсивности пучка на фотоприемнике полностью определяется относительным смещением Δx/f, где Δx - смещение зеркальной мембраны, f - фокусное расстояние линзы, отражающей мембраны из фокальной плоскости линзы. Следствием этого является необходимость использования линз с малым фокусным расстоянием (и, соответственно, - малым диаметром), что существенно снижает часть оптической мощности, используемой для получения измерительной информации, уменьшает отношение сигнал-шум на входе фотоприемника и чувствительность датчика давления. Кроме того, становится практически невозможным проведение дистанционных (при значительном удалении от источника излучения и фотоприемника) измерений.
Наиболее близким к предлагаемому по технической сущности является известный оптоэлектронный датчик давления (патент РФ №2231762 от 27.06.2004 G01L 11/00), содержащий подвижную мембрану, источник излучения, модулируемый генератором переменного тока, синхронный детектор, первый и второй фотоприемники, установленные по ходу луча телескопическую оптическую систему, делитель пучка, трапецеидальную призму, грань которой отделена от подвижной мембраны зазором, при этом делитель пучка направляет световой поток от источника излучения на первый фотоприемник и трапецеидальную призму, а от призмы - на второй фотоприемник, а выходы фотоприемников подключены к синхронному детектору.
Телескопическая система формирует оптический пучок с малой угловой расходимостью, форма трапецеидальной призмы обеспечивает определенный угол падения излучения на зазор и возвращение его на делитель пучка, а подвижная мембрана совместно с призмой образуют высокодобротную резонансную многослойную оптическую структуру. Такое сочетание элементов обеспечивает получение высокой чувствительности и обеспечивает дистанционность измерений. Амплитуда разностного сигнала фотоприемников пропорциональна давлению или его изменению.
Недостатком устройства является то что, в качестве первичного преобразователя физический параметр - оптический сигнал выступает мембрана и трапецеидальная призма, диагональная грань которой с мембраной образуют резонансный угловой фильтр с единственным резонансом, характеризующийся сильной зависимостью коэффициента отражения от угла падения излучения на фильтр. Обеспечение заданного хода оптических лучей возможно только при значительных габаритах и массе трапецеидальной призмы. Так, например, при апертуре пучка 4 мм габариты первичного преобразователя должны быть не менее 8,5×6×4,3 мм, а при апертуре 10 мм - 17×12×8,6 мм. Это накладывает ограничения на области использования оптоэлектронного датчика давления.
Задачей настоящей полезной модели является снижение массогабаритных параметров, повышение технологичности и расширение областей применения оптоэлектронного датчика давления.
Поставленная задача достигается тем, что в оптоэлектронном датчике давления, содержащем подвижную мембрану с отражающим покрытием, источник излучения, модулируемый генератором переменного тока, синхронный детектор, схему обработки, первый и второй фотоприемники, телескопическую оптическую систему, делитель пучка, по ходу луча установлена периодическая структура образованная элементарными треугольными равнобедренными призмами, диагональные грани которых расположены в одной плоскости и отделены от подвижной мембраны зазором, толщина которого d2 выбрана из условия:
где: λ0 - длина волны излучения (м);
n1 - показатель преломления периодической структуры;
n2 - показатель преломления среды, заполняющей зазор между мембраной и периодической структурой;
αp - угол падения излучения на периодическую структуру (рад).
Форма и покрытие граней элементов периодической структуры обеспечивает требуемый угол падения излучения на зазор и возвращение его на делитель пучка, а подвижная мембрана совместно с периодической структурой образуют высокодобротную резонансную интерференционную оптическую структуру. Такая конструкция обеспечивает снижение массогабаритных параметров, повышение технологичности и расширение областей применения оптоэлектронного датчика давления при сохранении высокой чувствительности и возможности дистанционных измерений.
На фиг. 1 дана схема предлагаемого оптоэлектронного датчика давлений: 1 - источник когерентного излучения, 2 - телескопическая система, 3 - делитель пучка, 4 - приемник излучения, 5 - периодическая структура, 6 - подвижная мембрана с отражающим покрытием, 7 - подвес мембраны; 8 - приемник излучения, 9 - синхронный детектор, 10 - схема обработки, 11 - генератор переменного тока.
Схема оптоэлектронного датчика состоит из источника когерентного излучения 1 расположенного перед телескопической оптической системой 2. За ними расположен делитель пучка 3, направляющий световой поток от источника излучения на фотоприемник 4 и периодическую структуру 5 образованную элементарными треугольными равнобедренными призмами, диагональные грани которых расположены в одной плоскости, которая разделена с подвижной мембраной 6 через подвес 7 зазором, а от периодической структуры - на фотоприемник 8. Выходы фотоприемников подключены к синхронному детектору 9, выход которого объединен с входом схемы обработки 10. Генератор переменного тока 11 подключен к источнику излучения и обеспечивает модуляцию оптического излучения.
Устройство работает следующим образом. Световой поток от источника излучения 1 через телескопическую систему 2, делитель пучка 3, направляется на периодическую структуру образованную элементарными треугольными равнобедренными призмами, диагональные грани которых расположены в одной плоскости 5, на которой с зазором установлена мембрана с отражающим покрытием 6 на подвесе 7. Мембрана и периодическая структура образуют интерференционную структуру, являющуюся резонансным угловым фильтром с единственным резонансом, характеризующийся сильной зависимостью коэффициента отражения от угла падения излучения на фильтр. Резонансный угол падения определяется выражением:
где: n1 - показатель преломления периодической структуры призмы;
n2 - показатель преломления среды, заполняющей зазор между мембраной и периодической структурой;
d2 - величина зазора между мембраной и периодической структурой (м).
При воздействии давления на мембрану она прогибается, как следствие изменяется зазор d2 и коэффициент отражения от системы, определяемый выражением:
где:
Kx - продольное волновое число в зазоре (1/м);
L0 - постоянная длины резонансной системы (м);
Δαp - изменение резонансного угла падения (рад).
Величина изменения резонансного угла падения Δαp зависит от величины изменения зазора Δd2 при прогибе мембраны и определяется выражением:
В результате появления угловой расстройки возникает амплитудная модуляция пучка.
Пройдя через призму, пучок возвращается на делитель пучка 3, и направляется им на фотоприемник 8. Изменение светового потока и, соответственно, развиваемого фотоприемником сигнала пропорционально изменению действующего на мембрану давления.
Для повышения стабильности и помехозащищенности схема снабжена вторым фотоприемником светового потока 4, а источник излучения модулируется переменным током от генератора 11. На фотоприемник 4 пучок направляется делителем пучка 3.
Развиваемый фотоприемником 4 электрический сигнал является опорным и служит для стабилизации работы всего устройства.
Электрические сигналы с обоих фотоприемников поступают на синхронный детектор 9, где сигнал от фотоприемника 8 детектируется, и поступает на схему обработки 10.
На фиг. 2 дана схема предлагаемой периодической структуры оптоэлектронного датчика давления: 1 - треугольная равнобедренная призма, 2 - покрытие с высоким коэффициентом отражения, 3 - подвижная мембрана, 4 - отражающее покрытие мембраны; 5 - резонансный зазор, 6 - световой поток (ход лучей), 7 - световой поток в резонансном слое (ход лучей).
Периодическая структура включает в свой состав треугольные равнобедренные призмы 1, диагональные грани которых лежат в одной плоскости. Неперпендикулярная падающему оптическому излучению боковая грань каждой треугольной призмы имеет покрытие 2 с высоким коэффициентом отражения. Форма треугольных призм выбирается такой, чтобы боковые и диагональная грани образовывали углы, равные резонансному углу падения αp, определяемому по выражению (2). Периодическая структура и подвижная мембрана 3 с отражательным покрытием 4, разделенные зазором 5, образуют интерференционную структуру, являющуюся однорезонансным высокодобротным фильтром. Резонансный угол падения светового потока на диагональную грань призмы αp определяется выражением (2). При резонансном угле падения форма призмы обеспечивает прохождение падающего и отраженного световых потоков 6 через фронтальную грань призмы с минимальными отражениями и падение светового потока на зеркальное покрытие 2 под прямым углом, что обеспечивает возврат отраженного светового потока параллельно падающему. Материалы призмы 1, мембраны 3 и среды находящейся в зазоре 5 выбираются такими, чтобы обеспечить длину зигзага l0 волны 7 в зазоре превышающую длину диагональной грани призмы и резонансный угол падения максимально близкий к 45°. Размер боковых граней призм a и количество призм N выбирается таким, чтобы обеспечивалось условие:
где: Aвх - апертура входного светового потока;
N - количество призм в периодической структуре.
Оценка конструктивных параметров первичного преобразователя и материалов, используемых в микроэлектронной промышленности, показала, что предложенная периодическая структура может быть выполнена по технологиям изготовления микроэлектромеханических систем (МЭМС или MEMS - microelectromechanical systems). Это обеспечит возможность создания миниатюрных оптоэлектронных датчиков давления и их производство на существующих производственных линиях, что повышает технологичность производства. Меньшие, по сравнению с известными датчиками, размеры первичного преобразователя позволяют использовать его для измерения давления в системах небольшого объема или системах, где невозможно использование известных датчиков в связи с массогабаритными ограничениями и тем самым расширить области применения оптоэлектронного датчика давления.
Пример. Для оптоэлектронного датчика давления с длинной волны оптического излучения λ0=0,63 мкм, показателем преломления периодической структуры n1=1.51, размером боковой грани призм периодической структуры а=0.1 мм, зазором между мембраной и периодической структурой призмы d2=10 мкм и воздушным заполнением зазора (n2=1) резонансный угол падения, определяемый выражением (2), составляет αp=41,446°. Оптимальная апертура входного сигнала, определенная с учетом (6) составляет Aвх=1.4 см, а количество призм в периодической структуре N=139.
При смещении мембраны на величину Δd2=0.1 мкм резонансный угол αp изменяется на величину определяемую выражением (5) и составляет Δαp=8.7709·10-6 рад.
Для нашего случая Kx=1051/см, L0=1 см, и обобщенная расстройка, вычисленная по (4), равна y=0.87709.
Коэффициент отражения от системы определяемый выражением (3) равен R(0.87709)=0.18945.
Для системы при отсутствии давления на мембрану y=0, R(0)=0. Отсюда видно, что незначительному смещению мембраны соответствует большое изменение коэффициента отражения от системы и, как следствие, выходного сигнала.
При этом размер первичного преобразователя на основе предлагаемой периодической структуры будет составлять примерно 22×16×0,2 мм, а размер известного преобразователя на основе трапецеидальной призмы - 22×16×12 мм. Таким образом, высота первичного преобразователя на основе периодической структуры меньше в 60 раз.

Claims (1)

  1. Оптоэлектронный датчик давления, содержащий подвижную мембрану с отражающим покрытием, источник излучения, модулируемый генератором переменного тока, синхронный детектор, схему обработки, первый и второй фотоприёмники, телескопическую оптическую систему, делитель пучка, отличающийся тем, что по ходу луча установлена периодическая структура, образованная элементарными треугольными равнобедренными призмами, диагональные грани которых расположены в одной плоскости и отделены от подвижной мембраны зазором, толщина которого d2 выбрана из условия:
    d 2 = λ 0 2 n 2 2 n 1 2 sin 2 α p ,           (1)
    Figure 00000001
    где λ0 - длина волны излучения, м;
    n1 - показатель преломления периодической структуры;
    n2- показатель преломления среды, заполняющей зазор между мембраной и периодической структурой;
    αp - угол падения излучения на периодическую структуру, рад.
    Figure 00000002
RU2014107161/28U 2014-02-25 2014-02-25 Оптоэлектронный датчик давления на основе периодической интерференционной структуры RU143347U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014107161/28U RU143347U1 (ru) 2014-02-25 2014-02-25 Оптоэлектронный датчик давления на основе периодической интерференционной структуры

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014107161/28U RU143347U1 (ru) 2014-02-25 2014-02-25 Оптоэлектронный датчик давления на основе периодической интерференционной структуры

Publications (1)

Publication Number Publication Date
RU143347U1 true RU143347U1 (ru) 2014-07-20

Family

ID=51220232

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014107161/28U RU143347U1 (ru) 2014-02-25 2014-02-25 Оптоэлектронный датчик давления на основе периодической интерференционной структуры

Country Status (1)

Country Link
RU (1) RU143347U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU215540U1 (ru) * 2022-07-18 2022-12-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" Оптический датчик измерения показателя преломления газов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU215540U1 (ru) * 2022-07-18 2022-12-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" Оптический датчик измерения показателя преломления газов

Similar Documents

Publication Publication Date Title
US9285385B2 (en) Vector velocimeter
US4966459A (en) Broadband optical detection of transient motion from a scattering surface
CN103308142A (zh) 一种测量超声行波在液体中的速度与频率的方法及装置
US8813571B2 (en) Optical microphone
JP3144143B2 (ja) 光学式変位測定装置
US20060139653A1 (en) Sensor for optically sensing air borne acoustic waves
JP2015025901A (ja) レーザ走査装置
CN104296676A (zh) 基于低频差声光移频器移相的外差点衍射干涉仪
RU2171482C1 (ru) Гравитационно-волновой детектор
US5909279A (en) Ultrasonic sensor using short coherence length optical source, and operating method
JP2006194855A (ja) 変位検出装置及び変位計測装置並びに定点検出装置
CN106813681B (zh) 一种基于计算摄像法检测叠加态涡旋光Sagnac效应的装置
RU143347U1 (ru) Оптоэлектронный датчик давления на основе периодической интерференционной структуры
US7933023B2 (en) Displacement detection apparatus, displacement measurement apparatus and fixed point detection apparatus
US20230236125A1 (en) Dynamic phase-shift interferometer utilizing a synchronous optical frequency-shift
JPH08265262A (ja) 光マイクロホン
CN112904040B (zh) 激光多普勒测速装置
US6542244B1 (en) Variable sensitivity acoustic transducer
RU2231762C2 (ru) Оптоэлектронный датчик давления
JP2016024106A (ja) 音波検出装置並びに音波検出装置を用いた音場可視化装置及びセンサ
CN210894094U (zh) 一种和频振动光谱相位测量装置
KR100757017B1 (ko) 보상기판을 사용하지 않으면서 단면 코팅된 빔분리기를 사용한 퓨리에 변환 적외선 분광기
CA1153578A (en) Device for birefringence measurements using three selected sheets of scattered light (isodyne selector, isodyne collector, isodyne collimator)
WO2015112042A1 (ru) Способ повышения чувствительности волоконно-оптического гироскопа
RU2367984C1 (ru) Гравитационно-волновой детектор

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20160226