RU122983U1 - Стартовая система предупреждения критических режимов одновинтового вертолета - Google Patents

Стартовая система предупреждения критических режимов одновинтового вертолета Download PDF

Info

Publication number
RU122983U1
RU122983U1 RU2012112156/11U RU2012112156U RU122983U1 RU 122983 U1 RU122983 U1 RU 122983U1 RU 2012112156/11 U RU2012112156/11 U RU 2012112156/11U RU 2012112156 U RU2012112156 U RU 2012112156U RU 122983 U1 RU122983 U1 RU 122983U1
Authority
RU
Russia
Prior art keywords
channel
helicopter
wind speed
modes
determining
Prior art date
Application number
RU2012112156/11U
Other languages
English (en)
Inventor
Андрей Алексанрович Углов
Алексей Владимирович Архипов
Владимир Алексеевич Архипов
Виталий Алексеевич Олаев
Владимир Михайлович Солдаткин
Александр Владимирович Никитин
Анатолий Андреевич Потапов
Вячеслав Владимирович Солдаткин
Николай Николаевич Макаров
Валерий Петрович Деревянкин
Олег Игоревич Кузнецов
Константин Юрьевич Моисеев
Original Assignee
Открытое акционерное общество "Научно-производственный комплекс "ЭЛАРА" имени Г.А. Ильенко" (ОАО "ЭЛАРА")
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет имени А.Н. Туполева-КАИ" (КНИТУ-КАИ)
Открытое акционерное общество "Ульяновское конструкторское бюро приборостроения" (ОАО "УКБП")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственный комплекс "ЭЛАРА" имени Г.А. Ильенко" (ОАО "ЭЛАРА"), Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет имени А.Н. Туполева-КАИ" (КНИТУ-КАИ), Открытое акционерное общество "Ульяновское конструкторское бюро приборостроения" (ОАО "УКБП") filed Critical Открытое акционерное общество "Научно-производственный комплекс "ЭЛАРА" имени Г.А. Ильенко" (ОАО "ЭЛАРА")
Priority to RU2012112156/11U priority Critical patent/RU122983U1/ru
Application granted granted Critical
Publication of RU122983U1 publication Critical patent/RU122983U1/ru

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

Стартовая система предупреждения критических режимов одновинтового вертолета, содержащая канал измерения, канал формирования эксплуатационных ограничений, канал индикации, канал сигнализации, отличающаяся тем, что канал измерения включает аэрометрический канал определения величины, направления и составляющих вектора скорости ветра, спутниковый канал позиционирования и канал определения пространственного углового положения вертолета, при этом канал формирования эксплуатационных ограничений включает каналы определения допустимых значений углов крена и тангажа, скорости и направления ветра, продольной и боковой составляющих вектора скорости ветра на стоянке, на стартовых и взлетно-посадочных режимах, а каналы индикации и сигнализации включают соответственно каналы отображения текущих и допустимых значений критических параметров эксплуатационных ограничений на стартовых и взлетно-посадочных режимах.

Description

Полезная модель относится к устройствам обеспечения безопасности и предупреждения летных происшествий одновинтовых вертолетов на стартовых и взлетно-посадочных режимах.
Известны системы предупреждения критических режимов самолета и других летательных аппаратов, в которых реализуется принцип ограничения характерных для конкретного режима критических параметров полета - угол атаки, число Маха-Маевского, приборная и вертикальная воздушные скорости, вертикальное ускорение (перегрузка) и др. (Солдаткин В.М., «Методы и средства построения бортовых информационно-управляющих систем обеспечения безопасности полета», Казань, Изд-во Казан. гос. техн. ун-та, 2004, стр.82-84 - Приложение 1; патенты США №№6917860, G01C 23/00, опубл. 12. 07.2005, №6650972, G01C 23/00, опубл. 18. 11. 2003).
С помощью каналов измерения (датчиков) определяются текущие значения характерных критических параметров полета летательного аппарата, которые сравниваются с допустимыми значениями указанных параметров, определяемых в канале формирования эксплуатационных ограничений. Текущие и допустимые значения характерных критических параметров на каждом этапе полета отображаются в канале индикации с помощью автономных индикаторов или на экране системы электронной индикации, формируя экипажу визуальную информацию о приближении к опасным режимам полета летательного аппарата.
При приближении текущих значений характерных критических параметров полета к границам эксплуатационных ограничений включается в работу канал сигнализации, формируя световые, звуковые или тактильные предупреждающие сигналы экипажу о приближении к границам опасного режима полета. В соответствии с предупреждающими сигналами канала сигнализации экипаж через соответствующие органы управления изменяет параметры движения летательного аппарата, предотвращая опасные и критические режимы полета и возникновение летных происшествий (см., например, заявку Германии №4140943, G01P 1/10, опубл. 17.06.1993, патент США №6608568, B64D 43/02; опубл. 19.08.2003).
В известной системе предупреждения критических режимов вертолета типа СОС-В 1-800, взятой за прототип (Макаров Н.Н., «Системы обеспечения безопасности функционирования бортового эргатического комплекса: теория, проектирование, применение // Под ред. доктора техн. наук В.М.Солдаткина. М.: Машиностроение / Машиностроение-Полет, 2009,. стр.295-298 - Приложение 2), использован принцип ограничения на отдельные критические параметры полета - приборная воздушная скорость, вертикальная скорость, нормальная перегрузка. Влияние других параметров на уровень безопасности полета вертолета, в частности, боковой скорости, углов атаки и скольжения при пространственных маневрах косвенно учитывается в ограничениях, накладываемых на максимальные значения приборной и вертикальной скоростей и нормальную перегрузку.
Аналогично системе предупреждения критических режимов самолета система ограничительных сигналов СОС-В1-800 содержит каналы измерения характерных критических параметров - приборной воздушной скорости, вертикальной скорости и нормальной перегрузки, канал формирования допустимых значений критических параметров (эксплуатационных ограничений), канал индикации текущих и допустимых значений критических параметров и канал сигнализации, предупреждающий экипаж о приближении к опасным режимам полета.
Система ограничительных сигналов СОС-В1-800 обеспечивает формирование экипажу вертолета предупреждающих сигналов о превышении максимально допустимой вертикальной перегрузки, об опасном сочетании вертикальной скорости, боковой и продольной составляющих вектора воздушной скорости и об опасности попадания в режим «вихревого кольца», о превышении максимально допустимой приборной скорости. При этом информация о приближении к границам допустимых эксплуатационных режимов выдается как по каналу предупреждающей сигнализации, так и через средства канала индикации.
Использование системы предупреждения критических режимов вертолета типа СОС-В1-800 позволяет предотвратить такие опасные режимы полета вертолета как «подхват вертолета», возникающий вследствие срыва потока на лопастях несущего винта при больших вертикальных (нормальных) ускорениях, режим «вихревого кольца» при снижении вертолета по вертикальной траектории при неблагоприятных сочетаниях вертикальной скорости, боковой и продольной составляющих вектора воздушной скорости, на предельных режимах по максимальной приборной воздушной скорости, когда также возможны срывы потока с лопасти или потеря аэродинамической устойчивости несущего винта (см. также патент РФ №2352914, G01M 17/00, опубл. 20.04.2009).
Однако такая система предупреждения критических режимов не обеспечивает безопасную эксплуатацию одновинтовых вертолетов и предотвращение летных происшествий на стоянке, при рулении и маневрировании по земной поверхности, на взлете и при посадке, на режимах снижения и висения, т.е. на стартовых и взлетно-посадочных режимах.
По данным Межгосударственного авиационного комитета (МАК), около 20…25% летных происшествий одновинтовых вертолетов, например, Ми-8 и его модификаций связаны с опрокидыванием вертолета на бок, соударением несущего винта с земной поверхностью и с хвостовой балкой, соударением рулевого винта с поверхностью стартовой или взлетно-посадочной площадки при превышении установленных Руководством по летной эксплуатации (РЛЭ) ограничений по скорости и направлению ветра, по продольной и боковой составляющим вектора скорости ветра, по углам крена и тангажа. Это происходит вследствие отсутствия информации о пространственной ориентации вертолета на стоянке, при рулении и маневрировании по земной поверхности, на взлете и при посадке, на режимах снижения и висения.
Это определяет необходимость применения на одновинтовых вертолетах стартовой системы предупреждения критических режимов, обеспечивающей информационную поддержку экипажа для безопасности эксплуатирования вертолета на стоянке, стартовых и взлетно-посадочных режимах при воздействии различных неблагоприятных факторов: опасные значения скорости и направления ветра, опасные значения продольной и боковой составляющих вектора скорости ветра, опасные углы наклона стояночной и взлетно-посадочной площадок, опасные углы крена и тангажа вертолета, неопределенность фактической траектории взлета, снижения и посадки, с последующим определением допустимых по критерию безопасности эксплуатационных ограничений на указанные критические параметры движения вертолета и формированием предупреждающей сигнализации экипажу о приближении к границам эксплуатационных режимов вертолета.
Основными задачами стартовой системы предупреждения критических режимов одновинтового вертолета являются:
1) На стоянке вертолета до запуска силовой установки и раскрутки трансмиссии:
- измерение следующих аэрометрических параметров: скорости и направления ветра относительно продольной оси вертолета; боковой и продольной составляющей вектора скорости ветра; температуры наружного воздуха и атмосферного давления на уровне стоянки или вертолетной взлетно-посадочной площадки (ВВПП), по которым определяется барометрическая высота площадки;
- измерение следующих параметров пространственной угловой ориентации: начальные (стояночные) углы крена и тангажа вертолета с учетом углов наклона ВВПП относительно плоскости горизонта, твердости грунта, просадки амортизаторов стоек шасси и давления в колесах;
- автоматическое определение допустимых сочетаний текущих значений указанных аэродинамических параметров и параметров пространственной угловой ориентации;
- выдачу предупреждающей или даже аварийной сигнализации (визуальной и звуковой) при приближении параметров стояночного режима к границам летных ограничений, указанных в РЛЭ вертолета.
2) На стоянке при запуске силовой установки и раскрутки трансмиссии обеспечивать:
- измерение текущих значений углов крена и тангажа с учетом дополнительной просадки шасси в малопрочный грунт;
- измерение скорости и направления ветра, боковой и продольной составляющих вектора скорости ветра, температуры наружного воздуха и атмосферного давления в условиях значительных искажений, вносимых воздушными потоками винта;
- определение допустимых значений углов крена и тангажа с учетом величины и направления скорости ветра;
- выработку предупреждающей и аварийной сигнальной информации при достижении характерных критических параметров летных ограничений, указанных в РЛЭ вертолета.
3) В процессе руления и маневрирования по земной поверхности обеспечивать:
- измерение боковой и продольной составляющей вектора скорости ветра;
- измерение текущей скорости руления (движения) по ВВПП;
- измерение текущих значений углов крена и тангажа;
- определение допустимых значений углов крена и тангажа в зависимости от тяги несущего винта, отклонения ручки циклического шага, скорости руления, скорости и направления ветра;
- формирование предупреждающей и аварийной сигнализации при достижении характерных критических параметров летных ограничений, установленных РЛЭ вертолета.
4) На режиме висения обеспечивать:
- измерение боковой и продольной составляющих вектора истинной воздушной скорости, определяющих величину и направление вектора скорости ветра с учетом скорости продольного и бокового смещения вертолета относительно ВВПП;
- измерение продольной и боковой скорости смещения вертолета относительно земной поверхности;
- измерение углов крена и тангажа вертолета;
- измерение угловой скорости вращения вертолета относительно вертикальной оси;
- определение допустимых значений указанных характерных критических параметров вертолета;
- Формирование предупреждающей сигнализации при достижении углов крена и тангажа в зависимости от высоты висения и угловой скорости вращения вертолета, боковой и продольной составляющих вектора скорости ветра летных ограничений, установленных РЛЭ вертолета;
- Формирование предупреждающей сигнализации о превышении темпа выбора общего шага несущего винта установленного РЛЭ ограничений.
5) На режиме снижения обеспечивать:
- Измерение углов крена и тангажа и отображение траектории снижения вертолета относительно плоскости истинного горизонта;
- Формирование предупреждающей сигнализации о превышении вертикальной скорости снижения при заходе на посадку допустимых значений, установленных РЛЭ вертолета.
Технический результат, на достижение которого направлена полезная модель, заключается в повышении уровня безопасности эксплуатации и предотвращения летных происшествий одновинтовых вертолетов на стоянке, при рулении и маневрировании по земной поверхности, на взлете и на посадке, на режимах снижения и висения за счет информационной поддержки экипажа по предупреждению критических режимов, связанных с превышением летных ограничений, установленных Руководством по летной годности вертолета на скорость и направление ветра, на углы крена и тангажа на стоянке и указанных стартовых и взлетно-посадочных режимах.
Технический результат достигается тем, что в стартовой системе предупреждения критических режимов одновинтового вертолета, содержащей канал измерения, канал формирования эксплуатационных ограничений, канал индикации, канал сигнализации канал измерения включает аэрометрический канал определения величины, направления и составляющих вектора скорости ветра, спутниковый канал позиционирования и канал определения пространственного углового положения вертолета, при этом канал формирования эксплуатационных ограничений включает каналы определения допустимых значений углов крена и тангажа, скорости и направления ветра, продольной и боковой составляющих вектора скорости ветра на стоянке, на стартовых и взлетно-посадочных режимах, а каналы индикации и сигнализации включают соответственно каналы отображения текущих и допустимых значений критических параметров эксплуатационных ограничений на стартовых и взлетно-посадочных режимах.
Сущность полезной модели поясняется чертежами.
Фиг.1 - структурно-функциональная схема стартовой системы предупреждения критических режимов одновинтового вертолета,
где I - канал определения пространственного углового положения;
II - аэрометрический канал определения величины, направления и составляющих вектора скорости ветра;
III - спутниковый канал позиционирования;
IV - канал информационной поддержки экипажа;
а
1 - блок акселерометров;
2 - блок датчиков угловой скорости;
3 - блок магнитометров;
4 - блок преобразования;
5 - процессор;
6 - датчик воздушных сигналов;
7 - блок преобразования;
8 - процессор;
9 - приемник спутниковой навигационной системы (СНС);
10 - канал индикации текущих и допустимых значений критических параметров;
11 - канал формирования эксплуатационных ограничений;
12 - канал сигнализации;
Канал I определения пространственного углового положения включает блок 1 акселерометров, блок 2 датчиков угловой скорости и блок 3 магнитометров, которые измеряют составляющие а x, а у, а z вектора линейного ускорения вертолета, составляющие ωx, ωy, ωz вектора угловой скорости вращения вертолета относительно осей связанной системы координат и составляющие Tx, Ty, Тz вектора напряженности магнитного поля в месте установки блока магнитометров. В блоке 4 преобразования выходные сигналы указанных датчиков первичной информации преобразуются в цифровые сигналы Nxi, которые поступают в процессор 5, на выходе которого формируются выходные сигналы канала определения пространственного углового положения по стартовым углам крена γc и тангажа ϑc, текущим значениям угла крена γ(t) и тангажа ϑ(t), по магнитному курсу ΨM и угловой скорости ωу вращения вертолета относительно вертикальной оси.
Аэрометрический канал II определения величины, направления и составляющих вектора скорости ветра включает датчик воздушных сигналов 6, выходные сигналы которого поступают в блок 7 преобразования и далее в процессор 8, на выходе которого формируются выходные сигналы по величине W и углу Ψ направления ветра, продольной Wx и боковой Wz составляющих вектора скорости ветра, по абсолютной Н и относительной НOT барометрической высоте и вертикальной скорости Vy.
Для повышения точности и расширения нижней границы измерения параметров вектора скорости ветра датчик воздушных сигналов 6 аэрометрического канала может быть выполнен на основе неподвижного комбинированного аэрометрического приемника (например, см. патент РФ №2427844, G01P 5/14, опубл. 27.08.2011).
Спутниковый канал III позиционирования включает приемник 9 СНС, регистрирующий местоположение вертолета и составляющие скорости перемещения вертолета относительно земной поверхности. Выходные сигналы спутникового канала в виде скорости руления (маневрирования) VP и скорости продольного VCX и бокового VCZ смещений вертолета относительно земной поверхности используются также в аэрометрическом канале II при определении параметров вектора скорости ветра при рулении, маневрировании по земной поверхности, на взлете и при посадке, а также на режимах снижения и висения.
Выходные сигналы канала определения пространственного углового положения, аэрометрического и спутникового каналов измерения подаются в канал IV информационной поддержки экипажа, который включает канал 10 индикации текущих и допустимых значений критических параметров, канал 11 формирования эксплуатационных ограничений и канал 12 сигнализации.
Стартовая система работает следующим образом.
Выходные сигналы канала IV информационной поддержки экипажа через средства индикации, световой и звуковой сигнализации предупреждают экипаж о приближении к границам эксплуатационных режимов полета вертолета на стоянке, стартовых и взлетно-посадочных режимах, установленных Руководством по летной эксплуатации вертолета.
В частности, Руководство по летной эксплуатации вертолета класса Ми-8 накладывает следующие ограничения на параметры стоянки, стартовых и взлетно-посадочных режимов:
1) На стоянке угол наклона вертолетной взлетно-посадочной площадки в направлении взлета и посадки не должен превышать допустимого значения ϑ0доп=5 угл. град., угол наклона в поперечном направлении - значения γ0доп=3 угл. град.
Боковая составляющая Wz вектора скорости ветра, действующая под углом 90 угл. град. к продольной оси вертолета, не должна превышать допустимого значения , продольная .
В процессе запуска силовой установки и раскрутки трансмиссии углы крена γ и тангажа ϑ вертолета также не должны превышать значений γ0доп и ϑ0доп, установленных РЛЭ вертолета.
2) При рулении и маневрировании вертолета по земной поверхности углы крена γ и тангажа ϑ не должны превышать предельно-допустимых значений γПР и ϑПР, которые зависят от скорости руления Vр углов γ0, ϑ0 наклона ВВПП, величины W и угла Ψ направления вектора скорости ветра, тяги РНВ и РРВ несущего и рулевого винтов, положения xЦШ ручки циклического шага, т.е.
В процессе руления и маневрирования вертолета по земной поверхности боковая Wz и продольная Wx составляющие вектора скорости ветра не должны превышать стояночных ограничений, установленных РЛЭ, т.е.
3) При взлете и посадке вертолета ограничения вида (1) и (2) дополняются ограничениями на допустимую взлетную массу mдоп, зависящую от величины W и направления Ψ вектора скорости ветра (или от Wx и Wz) и способа взлета (посадки) - по вертолетному (без разбега) или по самолетному (с разбегом).
4) На режиме снижения вертикальная скорость снижения Vусн вертолета не должна превышать допустимого значения Vусндоп, которое зависит от относительной высоты полета HOT, т.е.
5) На режиме висения текущие значения угла крена γ(t) и угла тангажа ϑ(t) вертолета не должны превышать допустимых летных ограничений по крену γл огр и тангажу ϑл огр, которые зависят от высоты висения Н и угловой скорости ωy вращения вертолета относительно вертикальной оси, т.е.
При работе стартовой системы предупреждения критических режимов одновинтового вертолета канал I пространственной угловой ориентации, аэрометрический канал II определения величины, направления и составляющих вектора скорости ветра и спутниковый канал III позиционирования измеряют текущие значения характерных критических параметров вертолета на стоянке, при рулении и маневрировании по земной поверхности, на взлете и при посадке, на режимах снижения и висения.
При этом канал I с помощью блоков акселерометров 1, блока датчиков угловой скорости 2 и блока магнитометров 3 измеряет составляющие а х, а y, аz вектора линейного ускорения, составляющие ωx, ωу, ωz, вектора угловой скорости вращения вертолета относительно осей связанной системы координат и составляющие Tx, Тy, Тz вектора напряженности магнитного поля в месте установки блока магнитометров. Выходные сигналы указанных датчиков первичной информации преобразуются в блоке 4 преобразования в цифровые сигналы Nxi, которые подаются на вход процессора 5. В процессоре 5 в соответствии с определенными алгоритмами вычисления определяются параметры пространственной угловой ориентации вертолета на стоянке γc, ϑc, при рулении и маневрировании по земной поверхности, на взлете и при посадке, на режимах снижения и висения - γ(t), ϑ(t).
Датчик 6 воздушных сигналов аэрометрического канала II воспринимает параметры вектора скорости результирующего воздушного потока вихревой колонны несущего винта, параметры вектора скорости , обусловленной движением вертолета относительно окружающей воздушной среды, а также абсолютную температуру TH наружного воздуха и абсолютного давления РH окружающей среды. Выходные сигналы датчика 6 воздушных сигналов в виде полного РП∑ и статического РСТ∑. давлений результирующего воздушного потока вихревой колонны, давлений Р1∑ и Р2∑, Р3∑ и Р4∑, определяющих угловые положения вектора скорости результирующего воздушного вихревой колонны, температуру TТ∑ результирующего воздушного потока вихревой колонны, а также в виде давлений P1,…,P8 и статического дросселированного давления РСТ.Д поступают в блок преобразования 7, где преобразуются в цифровые сигналы , которые поступают на вход процессора 8. В процессоре 8 по определенным алгоритмам вычисления определяются величина W, направление Ψ и составляющие Wх, Wz вектора скорости ветра, абсолютная Н и относительная HOT барометрические высоты, вертикальная скорость Vy.
Спутниковый канал III позиционирования с помощью приемника 9 СНС определяет скорость руления VP и скорости VCX, VCY продольного и бокового смещения вертолета относительно вертолетной взлетно-посадочной полосы, которые также подаются в аэрометрический канал.
Выходные сигналы каналов пространственного углового положения, аэрометрического и спутникового каналов измерения подаются в канал IV информационной поддержки экипажа, где в канале индикации отображаются текущие и допустимые значения характерных критических параметров на старте, стартовых и взлетно-посадочных режимах. При этом допустимые значения критических параметров вычисляются в канале 11 формирования эксплуатационных ограничений и также подаются в канал 10 индикации и в канал 12 сигнализации. По каналам 10 и 12 (индикации и сигнализации) экипажу выдается визуальная, световая и звуковая предупреждающая информация о приближении к границам эксплуатационных режимов, установленных Руководством по летной эксплуатации вертолета.
В соответствии с поступившей информацией экипаж принимает решение по управлению вертолета на данном режиме для уменьшения значения параметра движения, приближающегося к эксплуатационным ограничениям, установленным Руководством по летной эксплуатации вертолета, предотвращая возникновение авиационного происшествия и обеспечивая регламентируемый уровень безопасности на текущем режиме.
На стоянке до запуска силовой установки и раскрутки трансмиссии многоканальный проточный аэрометрический приемник 13 воспринимает параметры вектора скорости ветра. В соответствии с алгоритмом обработки массива давлений Pi, приведенным в ранее (см. патент РФ №2427844, G01P 5/14, опубл. 27.08.2011) по выходным сигналам неподвижного многоканального проточного приемника в процессоре 5 вычисляются величина W и направление Ψ вектора скорости ветра. Для получения информации о параметрах вектора скорости ветра при запуске силовой установки и раскрутки трансмиссии, при рулении и маневрировании по земной поверхности, на взлете и при посадке, на режимах снижения и висения, используется дополнительный осесимметричный, например сферический аэрометрический приемник.
Давления РП∑, РСТ∑, Р1∑ и Р2∑, Р3∑ и Р4∑ преобразуются в блоке 7 преобразования (Фиг.1) в цифровые сигналы, которые поступают на вход процессора 8.
В процессоре в соответствии с алгоритмами, раскрытыми в патенте РФ №2427844, G01P 5/14, опубл. 27.08.2011, вычисляются продольная Wх и боковая Wz составляющие вектора скорости ветра при работающей силовой установке и раскрутке трансмиссии несущего винта, при рулении и маневрировании по земной поверхности, на взлете и при посадке, на режимах снижения и висения. При этом выполнение датчика 6 воздушных сигналов на основе неподвижного комбинированного аэрометрического приемника за счет использования информации аэродинамического поля вихревой колонны несущего винта позволяет повысить точность и расширить нижнюю границу измерения параметров вектора скорости ветра при работающей силовой установке в условиях возмущений, вносимых вихревой колонной несущего винта вертолета.
Предложенная стартовая система предупреждения критических режимов одновинтового вертолета повышает уровень безопасности при его эксплуатации на стоянке, при рулении и маневрировании по земной поверхности, на взлете и на посадке, на режимах снижения и висения за счет информационной поддержки экипажа.

Claims (1)

  1. Стартовая система предупреждения критических режимов одновинтового вертолета, содержащая канал измерения, канал формирования эксплуатационных ограничений, канал индикации, канал сигнализации, отличающаяся тем, что канал измерения включает аэрометрический канал определения величины, направления и составляющих вектора скорости ветра, спутниковый канал позиционирования и канал определения пространственного углового положения вертолета, при этом канал формирования эксплуатационных ограничений включает каналы определения допустимых значений углов крена и тангажа, скорости и направления ветра, продольной и боковой составляющих вектора скорости ветра на стоянке, на стартовых и взлетно-посадочных режимах, а каналы индикации и сигнализации включают соответственно каналы отображения текущих и допустимых значений критических параметров эксплуатационных ограничений на стартовых и взлетно-посадочных режимах.
    Figure 00000001
RU2012112156/11U 2012-03-30 2012-03-30 Стартовая система предупреждения критических режимов одновинтового вертолета RU122983U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012112156/11U RU122983U1 (ru) 2012-03-30 2012-03-30 Стартовая система предупреждения критических режимов одновинтового вертолета

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012112156/11U RU122983U1 (ru) 2012-03-30 2012-03-30 Стартовая система предупреждения критических режимов одновинтового вертолета

Publications (1)

Publication Number Publication Date
RU122983U1 true RU122983U1 (ru) 2012-12-20

Family

ID=49256847

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012112156/11U RU122983U1 (ru) 2012-03-30 2012-03-30 Стартовая система предупреждения критических режимов одновинтового вертолета

Country Status (1)

Country Link
RU (1) RU122983U1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653417C1 (ru) * 2017-03-03 2018-05-08 Сергей Николаевич Низов Система предупреждения летательного аппарата
RU2729891C1 (ru) * 2019-02-15 2020-08-13 Валерий Николаевич Егоров Интеллектуальный человеко-машинный интерфейс экипажа вертолета по высотно-скоростным параметрам и параметрам воздушной среды, окружающей вертолет
RU2818823C1 (ru) * 2023-11-29 2024-05-06 Акционерное общество "Национальный центр вертолетостроения им. М.Л. Миля и Н.И. Камова" (АО "НЦВ Миль и Камов") Способ предотвращения попадания винтокрылого летательного аппарата в зону режима "вихревого кольца" на предпосадочных маневрах в режиме висения

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653417C1 (ru) * 2017-03-03 2018-05-08 Сергей Николаевич Низов Система предупреждения летательного аппарата
RU2729891C1 (ru) * 2019-02-15 2020-08-13 Валерий Николаевич Егоров Интеллектуальный человеко-машинный интерфейс экипажа вертолета по высотно-скоростным параметрам и параметрам воздушной среды, окружающей вертолет
RU2818823C1 (ru) * 2023-11-29 2024-05-06 Акционерное общество "Национальный центр вертолетостроения им. М.Л. Миля и Н.И. Камова" (АО "НЦВ Миль и Камов") Способ предотвращения попадания винтокрылого летательного аппарата в зону режима "вихревого кольца" на предпосадочных маневрах в режиме висения

Similar Documents

Publication Publication Date Title
RU2550887C2 (ru) Бортовая интегрированная система информационной поддержки экипажа и когнитивный формат представления полетной информации на этапе "взлет" многодвигательного воздушного судна
ES2632175T3 (es) Cálculo y visualización de la velocidad de aviso para control con asimetría de empuje
US10358232B2 (en) Detecting that a rotorcraft is approaching a vortex domain, and signaling that detection
RU2730814C2 (ru) Способ интеллектуальной информационной поддержки экипажа вертолета по высотно-скоростным параметрам и параметрам воздушной среды, окружающей вертолет, и устройство для его осуществления
US6970107B2 (en) Flight situation presentation system and method
RU2497175C1 (ru) Система визуализации полета и когнитивный пилотажный индикатор одновинтового вертолета
US20110040431A1 (en) Automated take off control system and method
US20090089006A1 (en) Method and a device for detecting and signaling that a rotorcraft is approaching the vortex domain
JP3201100U (ja) マルチローター可変ピッチヘリコプター
US20100305784A1 (en) Embedded Ground Proximity Warning System for Helicopters
JPS63503093A (ja) ウインドシャー検出ヘッド・アップ・ディスプレイ方式
EP3477261A1 (en) Flight instrument warning display
RU122983U1 (ru) Стартовая система предупреждения критических режимов одновинтового вертолета
RU2497718C1 (ru) Стартовая система предупреждения критических режимов одновинтового вертолета
US20160363459A1 (en) Electronic device and method for aiding the piloting of an aircraft, with calculation and display of at least a roll margin, related computer program product
FI74251C (fi) System foer varning aot piloten foer en farlig flygprofil under manoevrering pao laog hoejd.
RU168214U1 (ru) Бесплатформенная интегрированная инерциальная курсовертикаль
RU155825U1 (ru) Бортовая система измерения параметров вектора скорости ветра на стоянке, стартовых и взлетно-посадочных режимах
Lundström et al. Testing of atmospheric turbulence effects on the performance of micro air vehicles
Ragheb et al. Stall/Spin Mitigation Flight Testing with a Subscale Aerobatic Aircraft
RU2587389C1 (ru) Бортовая система измерения параметров вектора скорости ветра на стоянке, стартовых и взлетно-посадочных режимах вертолета
Soldatkin et al. A starting system of warning the critical conditions for a single-rotor helicopter
CN111204469A (zh) 一种飞行能量变化显示系统及显示位置确定方法
RU2397549C1 (ru) Способ предупреждения угрозы столкновения вертолета с наземными препятствиями
RU2439584C1 (ru) Бортовая система информационной поддержки экипажа вертолета

Legal Events

Date Code Title Description
MZ1K Utility model is void

Effective date: 20140317