RU120236U1 - Зонд для определения коэффициента теплопроводности - Google Patents

Зонд для определения коэффициента теплопроводности Download PDF

Info

Publication number
RU120236U1
RU120236U1 RU2012115153/28U RU2012115153U RU120236U1 RU 120236 U1 RU120236 U1 RU 120236U1 RU 2012115153/28 U RU2012115153/28 U RU 2012115153/28U RU 2012115153 U RU2012115153 U RU 2012115153U RU 120236 U1 RU120236 U1 RU 120236U1
Authority
RU
Russia
Prior art keywords
probe
thermal conductivity
determining
wire
copper
Prior art date
Application number
RU2012115153/28U
Other languages
English (en)
Inventor
Владислав Алексеевич Краснов
Наталья Александровна Подледнева
Юрий Александрович Максименко
Вера Николаевна Лысова
Антон Викторович Плёнкин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханский государственный технический университет" (ФГБОУ ВПО "АГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханский государственный технический университет" (ФГБОУ ВПО "АГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханский государственный технический университет" (ФГБОУ ВПО "АГТУ")
Priority to RU2012115153/28U priority Critical patent/RU120236U1/ru
Application granted granted Critical
Publication of RU120236U1 publication Critical patent/RU120236U1/ru

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Зонд для определения коэффициента теплопроводности, содержащий линейный источник теплоты постоянной мощности в виде проволоки, термопару, источник регулируемого стабилизированного напряжения и регистратор зависимости изменения температуры зонда во времени, отличающийся тем, что зонд выполнен в виде прямоугольной рамки из фольгированного медью стеклотекстолита, внутри которой по оси размещен нагреватель, выполненный из проволоки из высокоомного материала, к которому сверху прикреплена медь - константановая измерительная термопара, при этом один конец рамки служит ответной частью электроразъема.

Description

Полезная модель относится к области измерительной техники, в частности, к устройствам для определения коэффициентов теплопроводности сыпучих материалов.
Известен зонд, который предназначен для строительных материалов и изделий теплопроводностью от 0,01 до 2 Вт/(м·К), содержащий корпус (трубка диаметром 3 (5) мм из нержавеющей стали), рукоятку, электронагреватель в виде сложенного пополам эмалированного провода из сплава сопротивления и проволочной термопары (эмалированных медных и константановых проволок диаметром 0,35 мм) (см. ГОСТ 30256-94. Метод определения теплопроводности цилиндрическим зондом).
Недостатком его является невозможность применения для определения коэффициента теплопроводности малых образцов дисперсных материалов.
Наиболее близким по совокупности признаков к заявленному устройству является линейный или цилиндрический зонд для измерения теплопроводности в условиях изменения порозности порошковых материалов от свободной засыпки до спрессовывания. Зонд, линейный источник теплоты постоянной мощности, выполнен в виде П-образной рамки с проволокой по оси, к которой прикреплена термопара, источник регулируемого стабилизированного напряжения для задания необходимого тока и регистратор зависимости изменения температуры зонда во времени (см. Краснов В.А., Савченков Г.А. Устройство для определения коэффициента теплопроводности дисперсных материалов методом цилиндрического зонда постоянной мощности. // Тезисы докладов Всесоюзной научно-технической конференции «Методы и средства теплофизических измерений», 17-19 сентября 1987 г., Севастополь с.42-43).
Недостатком его является погрешность конструкции, приводящая к невысокой производительности по определению коэффициента теплопроводности.
Техническая задача - создание устройства, позволяющего повысить производительность определения коэффициента теплопроводности образца за счет изменения конструкции.
Технический результат - усовершенствование конструкции устройства. Он достигается тем, что зонд выполнен в виде прямоугольной рамки из фольгированного медью стеклотекстолита, внутри которой по оси размещен нагреватель, выполненный из проволоки из высокоомного материала, к которому сверху прикреплена медь - константановая измерительная термопара, при этом один конец рамки служит ответной частью электроразъема. Медный провод термопары соединен с одним из контактов разъема на конце рамки, а другой конец термопары, константановый провод, припаян к медной фольге рамки. Измерительный сигнал термопары регистрируется самописцем. «Холодный» спай находится в тепловом контакте с печью-термостатом, которая задает температуру образца. Таким образом, фактически измеряется изменение температуры зонда относительно температуры холодного спая, являющееся источником информации для вычисления коэффициента теплопроводности. Материал рамки позволяет осуществить необходимое натяжение нагревателя, а также коммутацию всех элементов.
Пример конкретного осуществления устройства. Предполагаемое устройство изображено на чертеже (общий вид). Устройство имеет термостат 1, в который помещен контейнер 2 с исследуемым образцом 3. Снаружи к термостату 1 подведены две электрические цепи: первая - с источником регулируемого стабилизированного напряжения 4, ключом 5, вольтметром 6 и амперметром 7, вторая - измерительная с прецизионным высокочувствительным самопишущим прибором 8 высокого быстродействия - время пробега шкалы кареткой - 1 с - для регистрации кривой зависимости изменения температуры зонда во времени. В контейнер 2 помещен зонд 9, выполненный в виде прямоугольной рамки из фольгированного медью стеклотекстолита, внутри которой по оси размещен нагреватель 10, выполненный в виде проволоки из высокоомного материала, к середине которой прикреплена медь - константановая измерительная термопара 11, константановый термоэлектрод 12 которой в точке «холодного» спая 13 припаян к рамки. «Холодный» спай расположен напротив «горячего» спая 14, расположенного посередине нагревателя. Один конец зонда 9 одновременно является ответной частью электроразъема 15, соединяющего его с силовой и измерительной цепями. Фольгированный медью стеклотекстолит рамки зонда контактирует с корпусом печки-термостата (на чертеже не показано). Печка-термостат обеспечивает постоянную температуру холодного спая 13. Согласно теории метода линейного источника теплоты постоянной мощности время опыта составляет 2-10 секунд для небольших образцов диаметром 20 мм. За это время холодный спай «не успевает» почувствовать изменение температуры зонда, не превышающее, как правило, 2-2,5К.
Зонд работает следующим образом.
В основу определения коэффициента теплопроводности положена теория метода линейного источника теплоты постоянной мощности. В термостат 1 помещают контейнер 2 с зондом 9 и засыпают исследуемый образец 3. К концу рамки зонда 9, где расположен разъем 15, подключают две электрические цепи, содержащие источник регулируемого стабилизированного напряжения 4, ключ 5, вольтметр 6, амперметр 7, и самопишущий прибор 8. Замыканием ключа 5 ток проходит через нагреватель 10, температура которого увеличивается и теплота распространяется радиально от нагревателя 10 к контейнеру 2 и «холодному» спаю 13 термопары. Самопишущий прибор 8 регистрирует изменение температуры зонда 9, позволяющее определить коэффициент теплопроводности по известной формуле:
где t2-t1 - изменение температуры зонда соответствующий моментам времени τ2 и τ1, °C;
q - мощность, выделяемая единицей длины зонда, Вт/м;
τ - время, с.
Предлагаемое устройство позволяет повысить производительность определения коэффициента теплопроводности за счет конструкции зонда, который совмещает в себе функции держателя проволоки - линейного источника теплоты - с прикрепленным горячим спаем и ответной части разъема для коммуникации между цепями питания и измерения.
Положительный эффект - усовершенствованная конструкция устройства позволяет осуществить быструю замену исследуемых образцов и повысить производительность зонда.
Источники информации
1. ГОСТ 30256-94. Метод определения теплопроводности цилиндрическим зондом.
2. Краснов В.А. Установка для определения коэффициента теплопроводности жидкостей. Научные труды АстраханьНИПИГАЗ, Астрахань 2001.
3. Краснов В.А., Савченков Г.А. Устройство для определения коэффициента теплопроводности дисперсных материалов методом цилиндрического зонда постоянной мощности. // Тезисы докладов Всесоюзной научно-технической конференции «Методы и средства теплофизических измерений», 17-19 сентября 1987 г., Севастополь. с.42-43.

Claims (1)

  1. Зонд для определения коэффициента теплопроводности, содержащий линейный источник теплоты постоянной мощности в виде проволоки, термопару, источник регулируемого стабилизированного напряжения и регистратор зависимости изменения температуры зонда во времени, отличающийся тем, что зонд выполнен в виде прямоугольной рамки из фольгированного медью стеклотекстолита, внутри которой по оси размещен нагреватель, выполненный из проволоки из высокоомного материала, к которому сверху прикреплена медь - константановая измерительная термопара, при этом один конец рамки служит ответной частью электроразъема.
    Figure 00000001
RU2012115153/28U 2012-04-16 2012-04-16 Зонд для определения коэффициента теплопроводности RU120236U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012115153/28U RU120236U1 (ru) 2012-04-16 2012-04-16 Зонд для определения коэффициента теплопроводности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012115153/28U RU120236U1 (ru) 2012-04-16 2012-04-16 Зонд для определения коэффициента теплопроводности

Publications (1)

Publication Number Publication Date
RU120236U1 true RU120236U1 (ru) 2012-09-10

Family

ID=46939351

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012115153/28U RU120236U1 (ru) 2012-04-16 2012-04-16 Зонд для определения коэффициента теплопроводности

Country Status (1)

Country Link
RU (1) RU120236U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616982C2 (ru) * 2015-10-06 2017-04-19 Акционерное общество "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова" (АО "ОКБМ Африкантов") Малоинерционный термопреобразователь

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616982C2 (ru) * 2015-10-06 2017-04-19 Акционерное общество "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова" (АО "ОКБМ Африкантов") Малоинерционный термопреобразователь

Similar Documents

Publication Publication Date Title
KR102630649B1 (ko) 비-침습적 열 조사를 위한 장치, 시스템들 및 방법들
Hammerschmidt et al. Transient hot wire (THW) method: uncertainty assessment
Buist Methodology for testing thermoelectric materials and devices
CN101320007A (zh) 探针法材料导热系数测量装置
CN103293184A (zh) 一种基于准、非稳态法测试建筑材料导热系数的实验装置
CN101788513A (zh) 一种材料导热系数的测量装置以及测量方法
Gifford et al. Durable heat flux sensor for extreme temperature and heat flux environments
JPH02234032A (ja) 流体の状態を知るための計測用センサー及びそのセンサーを用いる測定方法
CN101021502A (zh) 低温电阻温度系数测试装置
KR101135151B1 (ko) 열전도도 측정 장치
RU2577389C1 (ru) Способ калибровки термоэлектрических датчиков тепловых потоков
RU120236U1 (ru) Зонд для определения коэффициента теплопроводности
CN204514832U (zh) 配电变压器绕组材质检测系统
CN104020188A (zh) 一种不良导体导热系数测量装置及其测量方法
CN109282911A (zh) 高精度测温探头及高精度测温仪
KR102024679B1 (ko) 석영관으로 구성된 제백계수 및 전기전도도 측정 장치 및 그 방법
JP4982766B2 (ja) 熱電特性計測用センサ
CN109725183B (zh) 一种便携式热电势检测仪器用探头
CN203502367U (zh) 一种瞬态平面热源法测试材料导热系数的装置
CN201222042Y (zh) 材料导热系数测量装置
Daw et al. Hot wire needle probe for in-reactor thermal conductivity measurement
Martin Computational Seebeck coefficient measurement simulations
CN206038730U (zh) 一种用于薄膜热电参数测试新型样品台
RU2633405C1 (ru) Устройство для измерений теплопроводности
CN105571747A (zh) 一种热流检测装置

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20150417