RU111598U1 - HYDRO DAMPER WITH THE SYSTEM "IMPRESSIBLE LIQUID - NANOPOROUS BODY" - Google Patents

HYDRO DAMPER WITH THE SYSTEM "IMPRESSIBLE LIQUID - NANOPOROUS BODY" Download PDF

Info

Publication number
RU111598U1
RU111598U1 RU2011124185/11U RU2011124185U RU111598U1 RU 111598 U1 RU111598 U1 RU 111598U1 RU 2011124185/11 U RU2011124185/11 U RU 2011124185/11U RU 2011124185 U RU2011124185 U RU 2011124185U RU 111598 U1 RU111598 U1 RU 111598U1
Authority
RU
Russia
Prior art keywords
liquid
nanoporous
bodies
cylinder
cartridge
Prior art date
Application number
RU2011124185/11U
Other languages
Russian (ru)
Inventor
Сергей Васильевич Репин
Виктор Николаевич Добромиров
Вадим Николаевич Махомет
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный архитектурно-строительный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный архитектурно-строительный университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный архитектурно-строительный университет"
Priority to RU2011124185/11U priority Critical patent/RU111598U1/en
Application granted granted Critical
Publication of RU111598U1 publication Critical patent/RU111598U1/en

Links

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

Гидродемпфер с системой «несмачивающая жидкость - нанопористое тело», содержащий полый цилиндр, разделительный поршень, делящий внутреннюю полость цилиндра на две части - жидкостесодержащюю и газонаполенную, шток с рабочим поршнем, снабженным двумя клапанами - сжатия и отбоя, перемещающимся в жидкостесодержащей полости цилиндра, отличающийся тем, что разделительный поршень дополнительно снабжен двумя или более кассетами с нанопористыми телами с различными размерами нанопор, причем нанопористое тело кассеты, непосредственно контактирующее с жидкостью, имеет поры большего размера, чем тела кассет, расположенных за первой кассетой, а жидкость, заполняющая цилиндр, является несмачивающей по отношению к нанопористым телам. A hydraulic damper with a non-wetting liquid-nanoporous body system containing a hollow cylinder, a separation piston dividing the internal cylinder cavity into two parts - a liquid-containing and gas-filled, a rod with a working piston equipped with two valves - compression and rebound, moving in a liquid-containing cylinder cavity the fact that the separation piston is additionally equipped with two or more cassettes with nanoporous bodies with different sizes of nanopores, the nanoporous body of the cartridge being directly contacted fluid, it has pores larger than the bodies of the cartridges located behind the first cartridge, and the fluid filling the cylinder is non-wetting with respect to nanoporous bodies.

Description

Полезная модель относится к области транспортного машиностроения, а точнее к способу обеспечения различных требуемых сил сопротивления демпфирующих устройств (ДУ), устанавливаемых в подвеске транспортных средств.The utility model relates to the field of transport engineering, and more specifically to a method of providing various required resistance forces of damping devices (DU) installed in the suspension of vehicles.

Известны конструкции ДУ, выполненные в виде однотрубных или двухтрубных амортизаторов, содержащих разделенные полости, одна из которых заполнена жидкостью, а другая газом. Демпфирование ударной сжимающей нагрузки основано на гидравлическом сопротивлении движения поршня в жидкости, а также на сжатии газа (Амортизаторы. Конструкция, расчет, испытания. В.Н Добромиров, Е.П.Гусев, М.А.Карунин, В.П.Хавсанов; Под общ. ред. В.Н.Добромирова. - М.: МГТУ «МАМИ».2006. - 184 с.).The known design of the remote control, made in the form of single-tube or double-tube shock absorbers containing divided cavities, one of which is filled with liquid and the other with gas. Damping of the shock compressive load is based on the hydraulic resistance of the piston in the liquid, as well as on gas compression (Shock absorbers. Design, calculation, testing. V.N Dobromirov, E.P. Gusev, M.A. Karunin, V.P. Khavsanov; Under the general editorship of VN Dobromirov. - M.: MSTU MAMI. 2006. - 184 p.).

Недостатком указанных устройств является недостаточная демпфирующая способность.The disadvantage of these devices is insufficient damping ability.

Наиболее близким по конструктивному исполнению является ДУ, выполненное в виде однотрубного гидропневматического амортизатора, содержащего цилиндр, разделительный поршень, делящий внутренний объем цилиндра на две части - жидкостесодержащуюю и газонаполенную, шток с рабочим поршнем, снабженным двумя клапанами - сжатия и отбоя, перемещающимся в жидкостесодержащей полости цилиндра (Раймпель И. Шасси автомобиля. Амортизаторы, шины и колеса. - Машиностроение, 1986. - 320 с.). Достоинством ДУ является пропорциональная зависимость силы демпфирования от величины ударной нагрузки. Однако, при значительной динамической нагрузке, возникающей, например, при наезде на скорости более 50 км/час на препятствие высотой более 100 мм, демпфирование ударной нагрузки становится недостаточным, что приводит к деформации, а впоследствии, и к преждевременному разрушению элементов подвески транспортного средства.The closest in design is the remote control made in the form of a single-tube hydropneumatic shock absorber containing a cylinder, a dividing piston, dividing the internal volume of the cylinder into two parts - a liquid-containing and gas-filled, a rod with a working piston equipped with two valves - compression and rebound, moving in a liquid-containing cavity cylinder (Raimpel I. Car chassis. Shock absorbers, tires and wheels. - Engineering, 1986. - 320 p.). The advantage of remote control is the proportional dependence of the damping force on the magnitude of the shock load. However, with a significant dynamic load arising, for example, when hitting an obstacle with a height of more than 100 mm at a speed of more than 50 km / h, shock damping becomes insufficient, which leads to deformation and, subsequently, to premature destruction of the vehicle’s suspension elements.

Известен способ поглощения энергии ударного воздействия с использованием гетерогенной системы, заключающийся в том, что процессе сжатия размещенной в замкнутом объеме гетерогенной системы, состоящей из пористого вещества (нанопористого тела) и несмачивающей его жидкости, происходит заполнение жидкостью в нанопористого тела, сопровождающееся поглощением энергии (патент RU №2309307, F16F 5/00, 24.07.2006). После снятия сжимающей нагрузки происходит отдача жидкости нанопористым телом, сопровождающаяся частичным возвратом (диссипацией) энергии. В гидропневматическом амортизаторе, реализующем указанный способ, компенсационные возможности ДУ увеличиваются за счет уменьшения объема циркулирующей жидкости вследствие поглощения ее нанопористым телом.A known method of absorbing impact energy using a heterogeneous system, which consists in the fact that the process of compressing a heterogeneous system located in a closed volume consisting of a porous substance (nanoporous body) and non-wetting liquid, the liquid is filled in the nanoporous body, accompanied by energy absorption (patent RU No. 2309307, F16F 5/00, 07.24.2006). After removal of the compressive load, the fluid is released by the nanoporous body, accompanied by a partial return (dissipation) of energy. In a hydropneumatic shock absorber that implements the specified method, the compensatory capabilities of the remote control are increased by reducing the volume of the circulating fluid due to its absorption by the nanoporous body.

Недостатком ДУ, основанного на данном способе поглощения энергии, является узкий диапазон демпфируемых нагрузок, т.к. имеет место зависимость демпфирующих свойств от критического давление перколяционного порога (КДПП), при котором начинается процесс поглощения жидкости нанопористым телом. КДПП соответствует определенному значению динамической сжимающей нагрузки и зависит от величины нанопор (пор нанопористого тела).The disadvantage of the remote control based on this method of energy absorption is a narrow range of damped loads, because there is a dependence of the damping properties on the critical pressure of the percolation threshold (KDPP), at which the process of liquid absorption by the nanoporous body begins. KDPP corresponds to a certain value of dynamic compressive load and depends on the size of nanopores (pores of a nanoporous body).

Задачей, на решение которой направлена полезная модель, является устранение указанных недостатков посредством того, что гидродемпфер, выполненный в виде однотрубного гидропневматического амортизатора, содержащий полый цилиндр, разделительный поршень, делящий внутреннюю полость цилиндра на две части - жидкостесодержащуюю и газонаполенную, шток с рабочим поршнем, снабженным двумя клапанами - сжатия и отбоя, перемещающимся в жидкостесодержащей полости цилиндра, дополнительно снабжен двумя или более кассетами с нанопористыми телами с различными размерами нанопор, помещенными в разделительный поршень, причем нанопористое тело кассеты, непосредственно контактирующее с жидкостью, имеет поры большего размера, чем тела кассет расположенных за первой кассетой, а жидкость, заполняющая цилиндр, является несмачивающей по отношению к нанопористым телам. Размеры нанопор подбираются таким образом, чтобы обеспечить требуемый закон изменения демпфирования нагрузок.The problem the utility model is aimed at eliminating these drawbacks by means of a hydraulic damper made in the form of a single-tube hydropneumatic shock absorber, comprising a hollow cylinder, a dividing piston, dividing the internal cylinder cavity into two parts - a liquid-containing and a gas-filled, rod with a working piston, equipped with two valves - compression and rebound, moving in the fluid-containing cavity of the cylinder, is additionally equipped with two or more cassettes with nanoporous bodies with different sizes of nanopores placed in the separation piston, the nanoporous cassette body in direct contact with the liquid has pores larger than the bodies of the cassettes located behind the first cassette, and the liquid filling the cylinder is non-wetting with respect to nanoporous bodies. The sizes of nanopores are selected in such a way as to provide the required law of change in damping loads.

Сущность полезной модели заключается в том, что:The essence of the utility model is that:

- разделительный поршень снабжен двумя или более кассетами с нанопористыми телами с различными размерами нанопор, причем нанопористое тело кассеты, непосредственно контактирующее с жидкостью, имеет поры большего размера, чем тела кассет расположенных за первой кассетой;- the separation piston is equipped with two or more cassettes with nanoporous bodies with different sizes of nanopores, and the nanoporous body of the cartridge directly in contact with the liquid has larger pores than the bodies of the cassettes located behind the first cartridge;

- жидкость, заполняющая цилиндр, является несмачивающей по отношению к нанопористым телам.- the fluid filling the cylinder is non-wetting with respect to nanoporous bodies.

Конструкция полезной модели поясняется чертежом, где на фиг.1 представлена общая конструктивная схема выполнения гидродемпфера в системе «несмачивающая жидкость-нанопористое тело».The design of the utility model is illustrated by the drawing, where Fig. 1 shows the general structural diagram of the hydraulic damper in the system "non-wetting fluid-nanoporous body".

Гидродемпфер содержит полый цилиндр 1, разделительный поршень 2, делящий внутренний объем цилиндра на две части - жидкостесодержащуюю (полости а и b) и газонаполенную (полость с), шток 3 с рабочим поршнем 4, снабженным двумя клапанами - сжатия 5 и отбоя 6, перемещающимся в жидкостесодержащей части цилиндра. Разделительный поршень 2 содержит кассеты 7 и 8 с нанопористыми телами, имеющими различные размеры нанопор, причем нанопористое тело кассеты 7, непосредственно контактирующее с жидкостью, имеет поры большего размера, чем тело кассеты 8, а жидкость, заполняющая цилиндр 1, является несмачивающей по отношению к нанопористым телам.The hydraulic damper contains a hollow cylinder 1, a dividing piston 2, dividing the internal volume of the cylinder into two parts - liquid-containing (cavities a and b) and gas-filled (cavity c), stem 3 with a working piston 4, equipped with two valves - compression 5 and rebound 6, moving in the fluid-containing part of the cylinder. The separation piston 2 contains cassettes 7 and 8 with nanoporous bodies having different nanopore sizes, the nanoporous body of the cartridge 7 in direct contact with the liquid having pores larger than the body of the cartridge 8, and the liquid filling the cylinder 1 is non-wetting with respect to nanoporous bodies.

Принцип работы гидродемпфера в системе «несмачивающая жидкость-нанопористое тело» следующий.The principle of operation of the hydraulic damper in the system "non-wetting fluid-nanoporous body" is as follows.

Под воздействием внешней ударной нагрузки величиной Р происходит движение штока 1 с поршнем 4 направо (ход сжатия), давление в полостях b и с повышается.Under the influence of an external shock load of magnitude P, the rod 1 moves with the piston 4 to the right (compression stroke), the pressure in the cavities b and c increases.

Дальнейшую работу полезной модели можно разделить на этапы.The further work of the utility model can be divided into stages.

На первом этапе происходит демпфирования внешней нагрузки посредством гидравлического сопротивления клапана 5 сжатия, который открывается, перепуская жидкость из полости b в полость а.At the first stage, the external load is damped by means of the hydraulic resistance of the compression valve 5, which opens by passing the fluid from the cavity b to the cavity a.

Второй этап. Повышение давления в полости b приводит к перемещению разделительного поршня 2 вправо и сжатию газа в полости с.За счет затраты энергии на сжатие газа происходит поглощение энергии ударного воздействия.Second phase. An increase in pressure in the cavity b leads to the displacement of the separation piston 2 to the right and compression of the gas in the cavity C. Due to the energy consumption for gas compression, shock energy is absorbed.

Третий этап. В конце второго этапа давление в полости b достигает значения критического давления перколяционного порога (КДПП), при котором начинается процесс поглощения жидкости нанопористым телом, находящимся в кассете 7. На этом этапе поглощения энергии ударного воздействия сглаживается пиковая нагрузка, наиболее опасная для конструкции транспортного средства.The third stage. At the end of the second stage, the pressure in the cavity b reaches the critical pressure of the percolation threshold (KDPP), at which the process of absorption of the liquid by the nanoporous body located in the cassette 7 begins. At this stage, the absorption of shock energy smoothes out the peak load, the most dangerous for the vehicle design.

Четвертый этап. Если величина внешней нагрузки такова, что давление в полости b продолжает расти после заполнения пор нанопористого тела в кассете 7, начинается процесс поглощения жидкости нанопористым телом, находящимся в кассете 8, при большем значении КДПП.The fourth stage. If the magnitude of the external load is such that the pressure in the cavity b continues to increase after filling the pores of the nanoporous body in the cassette 7, the process of absorption of the liquid by the nanoporous body located in the cassette 8 begins, with a higher value of KDPP.

Количество кассет, их толщина, характеристики нанопористых тел подбираются в соответствии с законом изменения внешней нагрузки. Граничное условие таково - жидкость не должна заполнить весь объем нанопористого тела последней кассеты, чтобы не попасть в полость с.The number of cassettes, their thickness, the characteristics of nanoporous bodies are selected in accordance with the law of change in external load. The boundary condition is that the liquid should not fill the entire volume of the nanoporous body of the last cartridge, so as not to get into the cavity with.

После снятия внешней нагрузки происходит снижение давления в полости b, нанопористые тела отдают жидкость обратно в полость b, поршень 2 перемещается налево под действием давления газа в полости с, в полости b давление ставится выше давления в полости а, поршень 4 со штоком 3 перемещается влево при открытом клапане 6 отбоя (ход расширения).After removing the external load, the pressure in cavity b decreases, nanoporous bodies return fluid back to cavity b, piston 2 moves to the left under the influence of gas pressure in cavity c, pressure in cavity b is higher than pressure in cavity a, piston 4 with rod 3 moves to the left with the open rebound valve 6 (expansion stroke).

Цикл работы гидродемпфера закончен.The hydraulic damper operation cycle is completed.

Техническим результатом является улучшение демпфирующей способности устройства и обеспечение требуемых сил сопротивления динамической нагрузке конкретной подвески транспортного средства.The technical result is to improve the damping ability of the device and providing the required resistance forces to the dynamic load of a particular vehicle suspension.

Claims (1)

Гидродемпфер с системой «несмачивающая жидкость - нанопористое тело», содержащий полый цилиндр, разделительный поршень, делящий внутреннюю полость цилиндра на две части - жидкостесодержащюю и газонаполенную, шток с рабочим поршнем, снабженным двумя клапанами - сжатия и отбоя, перемещающимся в жидкостесодержащей полости цилиндра, отличающийся тем, что разделительный поршень дополнительно снабжен двумя или более кассетами с нанопористыми телами с различными размерами нанопор, причем нанопористое тело кассеты, непосредственно контактирующее с жидкостью, имеет поры большего размера, чем тела кассет, расположенных за первой кассетой, а жидкость, заполняющая цилиндр, является несмачивающей по отношению к нанопористым телам.
Figure 00000001
A hydraulic damper with a non-wetting liquid-nanoporous body system containing a hollow cylinder, a separation piston dividing the internal cylinder cavity into two parts - a liquid-containing and gas-filled, a rod with a working piston equipped with two valves - compression and rebound, moving in a liquid-containing cylinder cavity the fact that the separation piston is additionally equipped with two or more cassettes with nanoporous bodies with different sizes of nanopores, the nanoporous body of the cartridge being directly contacted fluid, it has pores larger than the bodies of the cartridges located behind the first cartridge, and the fluid filling the cylinder is non-wetting with respect to nanoporous bodies.
Figure 00000001
RU2011124185/11U 2011-06-15 2011-06-15 HYDRO DAMPER WITH THE SYSTEM "IMPRESSIBLE LIQUID - NANOPOROUS BODY" RU111598U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011124185/11U RU111598U1 (en) 2011-06-15 2011-06-15 HYDRO DAMPER WITH THE SYSTEM "IMPRESSIBLE LIQUID - NANOPOROUS BODY"

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011124185/11U RU111598U1 (en) 2011-06-15 2011-06-15 HYDRO DAMPER WITH THE SYSTEM "IMPRESSIBLE LIQUID - NANOPOROUS BODY"

Publications (1)

Publication Number Publication Date
RU111598U1 true RU111598U1 (en) 2011-12-20

Family

ID=45404732

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011124185/11U RU111598U1 (en) 2011-06-15 2011-06-15 HYDRO DAMPER WITH THE SYSTEM "IMPRESSIBLE LIQUID - NANOPOROUS BODY"

Country Status (1)

Country Link
RU (1) RU111598U1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565868A (en) * 2017-04-12 2019-02-27 Ford Global Tech Llc Energy-absorbing knee bolster
RU208894U1 (en) * 2021-04-16 2022-01-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный архитектурно-строительный университет" Pneumohydraulic shock absorber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565868A (en) * 2017-04-12 2019-02-27 Ford Global Tech Llc Energy-absorbing knee bolster
US10442384B2 (en) 2017-04-12 2019-10-15 Ford Global Technologies, Llc Energy-absorbing knee bolster
RU208894U1 (en) * 2021-04-16 2022-01-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный архитектурно-строительный университет" Pneumohydraulic shock absorber

Similar Documents

Publication Publication Date Title
JP5936271B2 (en) Suspension device
CN104455177A (en) Automobile active self-adaption type shock absorber
CN106704445B (en) Damper
CN106246792B (en) Self-adjustable vehicle vibration damping device and shock-dampening method
CN203248591U (en) Vibration damper for heavy-loaded truck
CN103821868A (en) Damper with two-way throttle valves and air spring
CN107740836B (en) Gas-liquid vibration damper
CN103982586A (en) Amplitude sensitive shock absorber
RU111598U1 (en) HYDRO DAMPER WITH THE SYSTEM "IMPRESSIBLE LIQUID - NANOPOROUS BODY"
CN203743286U (en) Shock absorber provided with double-pass throttle valves and air spring
CN203308997U (en) Hydraulic balancing shock absorber
CN102996696A (en) Rear suspension oil cylinder for heavy-duty industrial mining vehicle
CN202955172U (en) Shock absorber
CN203979253U (en) A kind of automobile-used damping device
RU146310U1 (en) SHOCK ABSORBER
CN108488297A (en) A kind of hydro-pneumatic spring
CN206072203U (en) Self-adjustable vehicle vibration damping device
CN203847619U (en) Absorber sensitive to amplitude
CN106704444A (en) Aircraft taking off and landing suspension method
CN204344781U (en) A kind of automobile absorber
CN219242524U (en) Damping-adjustable air spring shock absorber
CN203035836U (en) Front suspension oil cylinder used for industrial vehicle
CN207080548U (en) A kind of economic benefits and social benefits damper for automobile
CN203926581U (en) A kind of improved type automobile absorber
CN206802173U (en) A kind of hydra-shock absorber for automobile

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20140616