RU106001U1 - Микромеханический датчик - Google Patents

Микромеханический датчик Download PDF

Info

Publication number
RU106001U1
RU106001U1 RU2011107554/28U RU2011107554U RU106001U1 RU 106001 U1 RU106001 U1 RU 106001U1 RU 2011107554/28 U RU2011107554/28 U RU 2011107554/28U RU 2011107554 U RU2011107554 U RU 2011107554U RU 106001 U1 RU106001 U1 RU 106001U1
Authority
RU
Russia
Prior art keywords
pendulum
torsion bars
outer frame
glass substrate
arm
Prior art date
Application number
RU2011107554/28U
Other languages
English (en)
Inventor
Юрий Александрович Чаплыгин
Сергей Петрович Тимошенков
Валерий Федорович Шилов
Сергей Геннадьевич Миронов
Сергей Викторович Киргизов
Олег Николаевич Глазков
Фаина Дмитриевна Летунова
Алексей Сергеевич Тимошенков
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Московский государственный институт электронной техники (технический университет) (МИЭТ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Московский государственный институт электронной техники (технический университет) (МИЭТ) filed Critical Государственное образовательное учреждение высшего профессионального образования Московский государственный институт электронной техники (технический университет) (МИЭТ)
Priority to RU2011107554/28U priority Critical patent/RU106001U1/ru
Application granted granted Critical
Publication of RU106001U1 publication Critical patent/RU106001U1/ru

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

Микромеханический датчик, содержащий корпус, стеклянную подложку с электродами, чувствительный элемент из монокристаллического кремния с маятником и внешней рамкой с площадками крепления к стеклянной подложке, крестообразные торсионы, отличающийся тем, что маятник выполнен одноплечевым, при этом соединен с двумя стеклянными подложками, сверху и снизу, а площадки крепления разнесены и находятся в в верхней и нижней зонах внешней рамки, с обеих сторон, на максимальном удалении от мест крепления торсионов к внешней рамке.

Description

Полезная модель относится к измерительной технике и может применяться в микромеханических датчиках линейных ускорений. Известен микромеханический датчик линейных ускорений, содержащий корпус, чувствительный элемент, выполненный из каркасной катушки подвешенный в корпусе на металлических растяжках, датчик перемещения каркасной катушки.
Недостатком этого устройства является сложность конструкции, нетехнологичность, низкая точность из-за чувствительности к перекрестным связям. [1].
Известен другой микромеханический датчик, у которого чувствительный элемент выполнен из плавленого кварца.
Недостатком этого устройства является трудоемкость изготовления чувствительного элемента из-за наличия в у механической обработке его упругих элементов, трудоемкой установке в корпус, сложной регулировке, высоких нулевых сигналов [2].
Известен микромеханический датчик ускорения, содержащий корпус, чувствительный элемент, выполненный из монокристаллического кремния в виде электропроводящей инерционной массы, представляющей собой маятник, имеющий два плеча и подвешенный с помощью торсионов, электрическую плату, представляющую собой диэлектрическую пластину с электродами. Торсионы выполнены крестообразными с поперечным сечением в виде Х-образного профиля, электроды симметрично размещены относительно оси подвеса и расположены двумя парами-соответственно электроды емкостной системы съема и электроды датчика момента. Ось симметрии фигуры инерционной массы совмещена с осью, проходящей через торсионы подвеса. А маятниковый подвес обеспечен удалением части одного плеча инерционной массы на внешней по отношению к электростатической плате поверхности плеча инерционной массы При этом указанная поверхнсть выполнена с ребрами жесткости, причем профиль поперечного сечения ребер жесткости имеет Т-образную форму, а наклонные грани крестообразных торсионов с профилем поперечного сечения в виде Х-образной формы ориентированы по направлению (111) кристаллографической решетки монокристаллического кремния. [3] Одним из недостатков известного датчика является то, что обеспечение маятникового подвеса, удалением (химическим травлением) части одного плеча инерционной массы на одной из сторон сопряжено с определенными трудностями. А именно разнотолщинность пластин, как и при анизотропном травлении, будет влиять на размеры получаемого элемента. Тем более, площадь вытравливаемой массы достаточно большая. При изготовлении чувствительного элемента травлением очень важно остановить процесс обработки при достижении необходимой толщины. К настоящему моменту известно несколько способов контроля и обеспечения воспроизводимости толщины упругих элементов. Наиболее важными из них являются: контроль по времени травления; оптический способ; контрольное подтравливание; При большом числе положительных характеристик данные способы обладают существенными недостатками: большая погрешность толщины упругого элемента (контроль по времени травления), ограниченность диапазона толщин кремниевых упругих элементов (оптический способ контроля), усложнение технологии и необходимость в специальном оборудовании, привносимые механические напряжения (контрольное подтравливание и легирование). Поэтому обеспечить точное расположение центра масс в данной конструкции невозможно. Это приведет к тому, что измеряемое ускорение будет приложено не к расчетному центру масс, а к с сдвинутому относительно истинного на расстояние L. Вследствие чего возникнет погрешность измерения.
Другим недостатком является то, что анодное соединение диэлектрической пластиной (стеклянная подложка типа ЛК-105) с кремниевым чувствительным элементом осуществляется непосредственно в зоне о по линии торсионов. Это существенным образом влияет на стабильность упругих свойств последних.
Так после присоединения, возникающие контактные напряжения влияют на упругий подвес, за счет чего увеличивается нестабильность смещения нуля и, как следствие, понижается точность прибора в целом.
Еще одним недостатком дайной конструкции является ее несимметричность. Т.е. стеклянная подложка с электродами расположена с одной стороны двухплечевого маятника. Это приводит к тому, что при воздействии возмущающих факторов, в частности плюсовых и минусовых температур, конструкция чувствительного элемента будет деформирована, что приведет к появлению нестабильности нулевого сигнала, его высокому уровню. Изменится так же жесткость торсионов и как следствие уход крутизны преобразователя перемещений. Все это существенно снижает точность прибора в целом.
Задачей, на решение которой направлена полезная модель, является увеличение точности микромеханического датчика.
Для достижения этого в микромеханическом датчике, содержащем корпус, стеклянную подложку с электродами, чувствительный элемент из монокристаллического кремния с маятником и внешней рамкой с площадками крепления к стеклянной подложке, крестообразные торсионы, согласно заявленному решению, маятник выполнен одноплечевым, при этом соединен с двумя стеклянными подложками, сверху и снизу, а площадки крепления разнесены и находятся в в верхней и нижней зонах внешней рамки, с обеих строи, на максимальном удалении от мест крепления торсионов к внешней рамке.
Признаком, отличающим предложенный датчик от известного является то, что чувствительный элемент выполнен одноплечевым. Это исключает дополнительную операцию выемки инерционной массы с одной стороны с обеспечением контроля травления, что упрощает процесс изготовления и снижает погрешность изготовления, что в конечном итоге повышает точность измерения. Использование двух стеклянных подложек, снизу и сверху чувствительного элемента симметрирует конструкцию в целом. При этом воздействие вредных факторов направлено в противоположные стороны и взаимно компенсируются. Разнесенные площадки для соединения со стеклянными подложками, обеспечивают минимальное влияние контактных напряжений на торсионы подвеса. Все это в целом увеличивает точность измерения полезного сигнала в целом.
Предложенный микромеханический датчик иллюстрируется чертежами, представленными на фиг.1, 2, 3. На фиг.1 изображен кремниевый чувствительный элемент в сборе со стеклянными подложками.
Где:
1 - чувствительный элемент;
2 - стеклянная подложка;
3 - контактные площадки на стеклянной подложке;
4 - контактные площадки на кремниевом чувствительном элементе.
На фиг.2, чувствительный элемент из монокристаллического кремния, в плане. На фиг.3, разрез по линии А-А фиг.3.
Где:
5 - одноплечевой маятник;
6 - внешняя рамка;
7 - упругие торсионы;
8 - площадки крепления чувствительного элемента к стеклянной подлжке.
Микромеханический датчик содержит чувствительный элемент (1), выполненный из монокристаллического кремния низкой проводимости, соединенный со стеклянными подложками (2), на которых находятся электроды (не показано) емкостного преобразователя. Подвод питания и съем сигнала осуществляется через контактные площадки (3) на стеклянных подложках и контактной площадки (4) на кремниевом чувствительном элементе (1). Чувствительный элемент (1) состоит из одноплечевого маятника (5), соединенного с внешней рамкой (6) через упругие торсионы (7). Чувствительный элемент (1) соединен со стеклянными подложками (2) через площадки крепления (8), расположенными на внешней рамке (6) и удаленными от упругих торсионов (7) на максимально удаленное расстояние R и R1.
Микромеханический датчик работает следующим образом. При воздействии линейного ускорения, одноплечевой маятник 5, кремниевого чувствительного элемента 1, отклоняется от своего нейтрального положения. При этом упругие торсионы 7 закручиваются на определенный угол. На стеклянных подложках 2 и одноплечевом маятнике 5, реализована схема обработки сигнала. При воздействии линейного ускорения возникает дисбаланс между верхом низом, со стороны стеклянных подложек. Величина этого дисбаланса пропорциональна измеряемому ускорению. При воздействии вредных факторов, расположение площадок крепления 8 на внешней рамке 6, резко уменьшает нулевой сигнал и его нестабильность, а при одновременном воздействии еще измеряемого ускорения уменьшает погрешность крутизны характеристики прибора в целом. Проведенные макетные испытания показали положительный эффект данного устройства и по технологичности и по точности.
Источники информации:
1. Акселерометр капиллярный АК5-15, ТУ 611.781.ТУ. 1984 г.
2. Патент США №3702073
3. Патент РФ №2251702 (прототип).

Claims (1)

  1. Микромеханический датчик, содержащий корпус, стеклянную подложку с электродами, чувствительный элемент из монокристаллического кремния с маятником и внешней рамкой с площадками крепления к стеклянной подложке, крестообразные торсионы, отличающийся тем, что маятник выполнен одноплечевым, при этом соединен с двумя стеклянными подложками, сверху и снизу, а площадки крепления разнесены и находятся в в верхней и нижней зонах внешней рамки, с обеих сторон, на максимальном удалении от мест крепления торсионов к внешней рамке.
    Figure 00000001
RU2011107554/28U 2011-03-01 2011-03-01 Микромеханический датчик RU106001U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011107554/28U RU106001U1 (ru) 2011-03-01 2011-03-01 Микромеханический датчик

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011107554/28U RU106001U1 (ru) 2011-03-01 2011-03-01 Микромеханический датчик

Publications (1)

Publication Number Publication Date
RU106001U1 true RU106001U1 (ru) 2011-06-27

Family

ID=44739724

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011107554/28U RU106001U1 (ru) 2011-03-01 2011-03-01 Микромеханический датчик

Country Status (1)

Country Link
RU (1) RU106001U1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2497133C1 (ru) * 2012-06-19 2013-10-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" Чувствительный элемент микромеханического компенсационного акселерометра
RU2515378C1 (ru) * 2012-11-20 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" (МИЭТ) Микромеханический акселерометр

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2497133C1 (ru) * 2012-06-19 2013-10-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" Чувствительный элемент микромеханического компенсационного акселерометра
RU2515378C1 (ru) * 2012-11-20 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" (МИЭТ) Микромеханический акселерометр

Similar Documents

Publication Publication Date Title
CN101858929B (zh) 对称组合弹性梁结构电容式微加速度传感器及制作方法
CN102495234B (zh) 一种双面对称弹性梁结构电容式微加速度传感器及方法
CN100552453C (zh) 对称直梁结构电容式微加速度传感器及其制作方法
KR0139506B1 (ko) 자체진단 기능을 구비한 대칭질량형 가속도계 및 그 제조방법
US8791380B2 (en) Acceleration switch and electronic device
CN101271124B (zh) L形梁压阻式微加速度计及其制作方法
CN105137120A (zh) 一种v形梁扭摆式单轴微机械加速度计及其制备方法
JP6260063B2 (ja) 平行板コンデンサ及びこれを含む加速度センサ
CN107643424B (zh) 一种压阻式mems加速度芯片及其制作方法
RU106001U1 (ru) Микромеханический датчик
US7253616B2 (en) Microelectromechanical magnetometer
KR20030026872A (ko) 가속도 센서
EP2617677B1 (en) Structure for isolating a microstructure die from packaging stress
RU154143U1 (ru) Чувствительный элемент микромеханического акселерометра
KR20030077424A (ko) 가속도 센서
CN111521304B (zh) 一种微压传感器芯片及其制备方法
CN110531115B (zh) 一种具有纯轴向变形敏感梁的mems压阻式三轴冲击加速度计芯片及其制备方法
CN101525115A (zh) 嵌入可动电极的微惯性传感器及其制作方法
CN102101637B (zh) 嵌入横向可动电极的微惯性传感器
RU2492490C1 (ru) Чувствительный элемент микромеханического акселерометра
RU2324192C1 (ru) Двухбалочный акселерометр
CN113933538A (zh) 一种压阻式高g值加速度计
RU131196U1 (ru) Микромеханический датчик
RU131195U1 (ru) Микромеханический датчик
CN204848255U (zh) 一种基于电磁感应的微惯性传感器

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20140302

NF1K Reinstatement of utility model

Effective date: 20150327

MM9K Utility model has become invalid (non-payment of fees)

Effective date: 20180302