Sposób wyodrebniania antytrombiny z plazmy krwi Przedmiotem wynalazku jest sposób wyodrebnia¬ nia antytrombiny z krwi lub substancji krwiopo¬ chodnych przez adsorpcje na zelu zawierajacym weglowodan podstawiony grupami siarczanowymi.Koagulacja krwi jest zlozonym procesem zacho¬ dzacym w ukladzie wieloskladniowym. Powstawa¬ nie skrzepów moze byc wywolywane wieloma róz¬ nymi bodzcami, najczesciej jest to mechaniczne uszkodzenie jednego lub wiekszej liczby naczyn krwionosnych. Zapoczatkowanie koagulacji naste¬ puje wtedy czesciowo przez aktywacje stykowa pewnych czynników w krwi, a czesciowo pod wplywem aktywatorów tkankowych wydostajacych sie z uszkodzonego miejsca. Na inicjacje tego pro¬ cesu wywiera wplyw równiez zachodzaca równo¬ czesnie agregacja skrzepów krwi.Zapoczatkowany zostaje lancuch reakcji prowa¬ dzacy w efekcie koncowym do utworzenia sie skrzepu w uszkodzonym miejscu. Jednym z ostat¬ nich i najwazniejszych etapów w procesie powsta¬ wania skrzepu fibrynowego jest dzialanie trombi- ny, enzymu wytwarzanego w procesie koagulacji, na fibrynogen. Wskutek tego dwie niewielkie frak¬ cje peptydów zostaja odszczepione od fibrynogenu, dajac zmodyfikowany fibrynogen, który ulega na¬ stepnie szybkiej agregacji w strukture siarkowa, tworzac skrzep.Dzialanie regulujace tendencje krwi do koagu¬ lacji i zapobiegajace rozprzestrzenianiu sie proce¬ sów lokalnych, powodujacych calkowita koagula- 10 15 20 25 cje wewnatrznaczyniowa wywierane jest przez sze¬ reg obecnych w krwi substancji opózniajacych proces koagulacji. Jedna z najwazniejszych jest antytrombina, stanowiaca substancje bialkowa wchodzaca w reakcje z trombina i powodujaca jej dezaktywacje. Wskutek tego zdezaktywowana trombina nie moze reagowac z fibrynogenem i w konsekwencji zahamowany zostaje proces powsta¬ wania skrzepów.W praktyce medycznej obserwowano w wielu przypadkach patologicznie niskie poziomy anty¬ trombiny. Konsekwencje tego stanowi zwiekszone niebezpieczenstwo trombosis, na przyklad po po¬ waznych zabiegach chirurgicznych. Istnieja pod¬ stawy do stwierdzenia, ze terapia antytrombinowa moze przynosic cenne wyniki przy leczeniu takich przypadków. Zmniejszone poziomy antytrombiny wykrywane byly równiez w konsekwencji stoso¬ wania niektórych leków z grupy sterydów.W przeszlosci antytrombina byla wyodrebniona jedynie w ilosciach sladowych, wskutek czego jest ona stosunkowo malo znana.Znane sposoby byly niezwykle skomplikowane i charakteryzowaly sie bardzo malymi wydajno- sciami, rzedu 1—2%. Sposób wedlug wynalazku umozliwia ekstrakcje antytrombiny z wydajnoscia powyzej 90°/o.W czasie doswiadczen nad wyodrebnieniem czyn¬ ników powodujacych koagulacje z plazmy krwi droga adsorpcji na zelach zawierajacych weglowo- 83 49083 490 dan podstawiony grupami siarczanowymi, nieocze¬ kiwanie stwierdzono, ze specyficzne czynniki koa- gulujace wiazane sa przez omawiane zele. Dodat¬ kowe rozdzielanie materialu przez odsaczenie zelu pozwala na wyodrebnienie skladnika o ciezarze 5 czasteczkowym okolo 65.000 i silnie zaznaczonym dzialaniu opózniajacym proces koagulacji. Bada¬ nia tej proteiny metodami fizykochemicznymi i immunologicznymi wTykazuja identycznosc z opi¬ sana wczesniej antytrombina III. io Eksperymenty z elucja gradientowa zelu w ko¬ lumnie wykazuja, ze antytrombine mozna otrzy¬ mywac bezposrednio w stanie nalezycie oddzielo¬ nym od innych substancji bialkowych zawartych w materiale wyjsciowym. Dla uzyskania duzych 15 ilosci antytrombiny korzystnie jest adsorbowac ja z IV frakcji Cohna (metoda 6), przez dodanie zelu do roztworu tej frakcji. Po adsorpcji mozna zel odsaczyc, przemyc i poddac elucji. Wyciek poddaje sie filtracji zelowej przez Sephadex G 150 (pro- 20 dukcji firmy Pharmacia Fine Chemicals, Uppsala.Szwecja) i otrzymuje calkowicie czysta antytrom¬ bine.Przykladowymi zelami nadajacymi sie do stoso¬ wania jako adsorbenty sa: usieciowany siarczan 25 dekstranu, usieciowany siarczan dekstrano-agaro- zowy, usieciowana heparyna, usieciowana hepary- no-agaroza oraz usieciowany siarczan chondryty- no-agarozowy. Pojedyncze usieciowane zele wy¬ mienione w pierwszej i trzeciej kolejnosci wy- 30 twarza sie przez dodanie -bromku cyjanu do roz¬ tworu polisacharydu. Przez skorygowanie war¬ tosci pH do okolo 11 powoduje sie powstawanie mostków sieciujacych miedzy czasteczkami i pow¬ stawaniezelu. 35 Natomiast mieszane zele wyszczególnione powy¬ zej w drugiej, czwartej i piatej kolejnosci wy¬ twarza sie przez dodanie polisacharydu zawiera¬ jacego grupy siarczanowe do zelu agarozy (Sep- hadex 4B, Pharmacia Fine Chemicals, Uppsala. 40 Szwecja) i nastepnie dodanie bromku cyjanu przy wartosci pH=ll. Te rodzaje zeli sa latwiejsze w obróbce i pozwalaja na stosowanie wiekszych predkosci przeplywu, niz zele jednorodne.Wynalazek zilustrowany jest nastepujacymi przy- 45 kladami.Przyklad I. Do roztworu 100 ml siarczanu dekstranu o stezeniu 20 mg/ml dodaje sie 5 g BrCN. Odczyn mieszaniny podwyzsza sie nastep¬ nie do wTartosci pH=ll,0 za pomoca 5M roztworu 5° NaOH w ciagu 7 minut i mieszanine miesza do nastepnego dnia. W wyniku reakcji powstaje bia¬ la, granulowana pasta zelowa. Paste te wprowa¬ dza sie do malej kolumny o srednicy 5 mm i dlu¬ gosci 8 cm i doprowadza do stanu równowagi 55 z buforem zlozonym z 0,02M roztworu TRIS, 0,0IM roztworu cytrynianu, 0,15 M roztworu NaCl o od¬ czynie o wartosci pH=8,5. Przez kolumne przepu¬ szcza sie 2 ml plazmy normalnej. Po przejsciu przez kolumne plazma traci zdolnosci koagulacji. 6° Kolumne przemywa sie najpierw oryginalnym buforem, a nastepnie eluuje zwiekszajac stopnio¬ wo stezenie soli do IM roztworu NaCl. Wyciek zawiera material, który po dializie w obecnosci buforu fosforanowego przedluza czas koagulacji *5 plazmy normalnej po ponownym wprowadzeniu wapnia z 3 minut do 45 minut. Analiza immunolo¬ giczna wykazuje obecnosc antytrombiny i niektó¬ rych lipoprotein w wycieku.Przyklad II. Omówiony tu proces polega na adsorpcji z plazmy na zelu usieciowanego siar¬ czanu clekstrano-agarozowTego i elucji gradiento¬ wej.Siarczan dekstranu wytwarza sie przez zmie¬ szanie 30 ml roztworu siarczanu dekstranu o ste¬ zeniu 15 mg/ml, 50 ml 4€/o spolimeryzowanej aga¬ rozy w formie perelek i 1 g BrCN przy utrzyma¬ niu odczynu o wartosci pH=ll. Mieszanine mie¬ sza sie w ciagu 7 minut i utrzymuje wartosc pH na tym samym poziomie przez ciagle doprowadza¬ nie NaOH. Nastepnie dodawanie alkaliów przery¬ wa sie, a odczyn srodowiska spada w ciagu 5 mi¬ nut do wartosci pH=8,5. Mieszanie kontynuuje sie do nastepnego dnia w temperaturze pokojowej, a nastepnie wytworzony zel przemywa sie.Wytworzonym w ten sposób siarczanem dek- strano-agarozowym napelnia sie kolumne. W eta¬ pie adsorpcji przez kolumne przepuszcza sie 3 ml plazmy normalnej zmieszanej w proporcji 1 :1 z buforem zlozonym z 0,02 M TRIS, 0,01 M cytry¬ nianu, 0,15 M NaCl i wykazujacym wartosc pEL=8,5. Po przejsciu przez kolumne wyciekzateza sie do objetosci 3 ml i poddaje próbom dla okre¬ slenia zdolnosci koagulacji. W czasie przechodze¬ nia przez kolumne plazma traci zdolnosc koagula¬ cji i miedzy innymi zostaje pozbawiona czynników koagulacyjnych nr VIII i IX.Zaadsorbowany material desorbuje sie za pomo¬ ca 0,02 M TRIS i 0,01 M cytrynianu, przy odczy¬ nie o wartosci pH=7,3, w gradiencie stezenia soli od 0,15 M NaCl. Wyciek odpowiada okolo 2% ma¬ terialu wyjsciowego i sklada sie w przewazajacej mierze z dwóch skladników, z których jeden sta¬ nowi frakcje lipoproteinowa typu pre-bata, a dru¬ gi antytrombine III. Identyfikacji dokonuje sie metodami immunologicznymi oraz fizykochemicz¬ nymi.Przyklad III. Omówiony ponizej proces po¬ lega na adsorpcji z plazmy na zelu usieciowanego siarczanu dekstrano-agarozowego i elucji stopnio¬ wej oraz przesaczania przez zel.Proces adsorpcji na zelu siarczanu dekstrano-aga¬ rozowego przeprowadza sie tym samym sposobem, jaki omówiony jest w przykladzie II. Desorpcje prowadzi sie w jednym etapie za pomoca 0,02 M TRIS, 0,01 M cytrynianu sodu, 1 M NaCl przy wartosci pH=7,3. Desorbat zateza sie i poddaje filtracji przez Sephadex G150 w obecnosci fizjolo^ gicznego buforu fosforanowego. Czysta antytrombw ne otrzymuje sie we frakcji dobrze oddzielonej od frakcji lipoproteinowej.Przyklad IV. Proces adsorpcji z plazmy na usieciowanym zelu heparyno-agarozowynu Heparyno-agaroze wytwarza sie takim samym sposobem, jaki omówiony jest w przykladzie II dla siarczanu dekstrano-agarozowego. Zamiast siarcza¬ nu dekstranu stosuje sie 30 ml roztworu hepary¬ ny o stezeniu 5000 jednostek miedzynarodowych/ml.Zel umieszcza sie w kolumnie i przeprowadza do¬ swiadczenia, tak jak to omówione jest w przykla-5 83 490 6 dzle II. Wyniki sa analogiczne do cytowanych w przykladzie II.Przyklad V. Adsorpcja na zelu siarczanu dekstrano-agarozowego materialu bialkowego plaz¬ my z frakcji IV Cohna (metoda 6). Elucja stop¬ niowa. Saczenie przez zel.Badaniami immunologicznymi mozna wykazac, ze antytrombina jest obecna w IV frakcji Cohna (metoda 6). 135 g frakcji IV w postaci pasty roz¬ puszcza sie w 4 ml buforu adsorpcyjnego i dodaje 500 ml zelu siarczanu dekstrano-agarozowego. Mie¬ szanine miesza sie z niewielka predkoscia w cia¬ gu 1 godziny oziebiajac, a nastepnie dekantuje roztwór i przemywa zel buforem adsorpcyjnym.Zel umieszcza sie w kolumnie jonitowej i eluuje zwiekszajac stopniowo stezenie NaCl w buforze TRIS posiadajacym odczyn o -wartosci pH = 7,2 z 0,5 M do 1 M i 1,5 M. Wyciek zawierajacy lipo- proteine i antytrombine zateza sie droga ultrafil- tracji i nastepnie oczyszcza sie przez filtracje zelu na Sephadex-ie G 150. Identyfikacje i badania czystosci przeprowadza sie metodami immunolo¬ gicznymi i fizyko-chemicznymi.Przyklad VI. Przez zmieszanie 250 mg siar¬ czanu chondrytyny VI, 40 ml spolimeryzowanej 4Vo agarozy w postaci perelek i 1 g BrCN przy zachowaniu odczynu srodowiska o wartosci pH=ll otrzymuje sie zel siarczanu chondrytyno-agarozy.Mieszanine pozostawia sie w ciagu 7 minut utrzy¬ mujac te wartosc pH przez dodawanie w sposób ciagly roztworu NaOH.Potrzeba do tego bardzo malych ilosci wodoro¬ tlenku. Po uplywie 7 minut wartosc pH ostroznie nastawia sie na 8,5 przez dodanie kwasu cytryno¬ wego.Mieszanie przy odczynie mieszaniny o wartosci pH=8,5 kontynuuje sie do nastepnego dnia, a na¬ stepnie zel przemywa. Zel stosuje sie do wypelnia¬ nia kolumny i w warunkach takich samych jak okreslono powyzej przepuszcza przez kolumne 3 ml normalnej plazmy, rozcienczonej w stosunku 1 :1. Nastepnie stosujac taki sam bufor elucyjny, jak okreslony jest w przykladzie, mozna z zelu wyeluowac antytrombine. PL PLMethod for the isolation of antithrombin from blood plasma. The present invention relates to a method for the isolation of antithrombin from blood or blood derivatives by adsorption on a sulphated carbohydrate gel. Blood coagulation is a complex process taking place in a multi-factor system. The formation of clots can be caused by many different stimuli, the most common being mechanical damage to one or more blood vessels. The initiation of coagulation then takes place partly through the activation of the contacts of certain factors in the blood, and partly under the influence of tissue activators emerging from the damaged area. The initiation of this process is also influenced by the simultaneous aggregation of blood clots. A chain of reactions is initiated which ultimately leads to the formation of a clot at the damaged site. One of the last and most important steps in the formation of a fibrin clot is the action of thrombin, an enzyme produced by the coagulation process, on fibrinogen. As a result, two small fractions of peptides are cleaved from fibrinogen, yielding a modified fibrinogen, which aggregates rapidly into a sulfur structure, forming a clot. Action to regulate the tendency of the blood to coagulate and prevent the spread of local processes causing complete Intravascular coagulation is exerted by a number of substances present in the blood which delay the coagulation process. One of the most important is antithrombin, which is a protein substance that reacts with thrombin and causes its inactivation. As a result, inactivated thrombin cannot react with fibrinogen and the clotting process is inhibited. In medical practice, pathologically low levels of antithrombin have been observed in many cases. The consequence of this is an increased risk of thrombosis, for example after major surgery. There are grounds for concluding that antithrombin therapy can be of value in treating such cases. Decreased levels of antithrombin have also been detected as a consequence of the use of some steroids. In the past, antithrombin was isolated only in trace amounts, so that it is relatively little known. Known methods were extremely complicated and had very low yields. 1-2%. The method according to the invention makes it possible to extract antithrombin with an efficiency exceeding 90%. During the experiments on the isolation of coagulating factors from the blood plasma by adsorption on gels containing carbonaceous content, it was surprisingly found that specific coagulation factors were found in the gulators are bound by the gels in question. Additional separation of the material by draining the gel allows for the isolation of a component with a molecular weight of about 65,000 and a marked delaying the coagulation process. The study of this protein by physicochemical and immunological methods shows its identity with the antithrombin III described earlier. and Column gel gradient elution experiments show that antithrombin can be obtained directly in a state that is sufficiently separate from other protein substances contained in the starting material. For obtaining large amounts of antithrombin, it is preferable to adsorb it from Cohn fraction IV (method 6) by adding the gel to the solution of this fraction. After adsorption, the gel can be drained, washed and eluted. The leakage is gel-filtered through Sephadex G 150 (manufactured by Pharmacia Fine Chemicals, Uppsala, Sweden) and is completely pure antithrombine. Examples of gels suitable for use as adsorbents are: cross-linked dextran sulfate, cross-linked sulfate dextran-agarose, cross-linked heparin, cross-linked heparin-agarose and cross-linked chondritin-agarose sulfate. The single cross-linked gels listed in the first and third order are prepared by adding cyanogen bromide to the polysaccharide solution. By adjusting the pH value to about 11, the formation of cross-linking bridges between the molecules and the formation of a gel. In contrast, the mixed gels listed above in the second, fourth and fifth sequence are prepared by adding a polysaccharide containing sulfate groups to an agarose gel (Sepadex 4B, Pharmacia Fine Chemicals, Uppsala. 40 Sweden) and then adding cyanogen bromide. at pH = II. These types of gels are easier to work with and allow higher flow rates than homogeneous gels. The invention is illustrated by the following examples. Example 1. 5 g of BrCN is added to a solution of 100 ml of dextran sulphate at a concentration of 20 mg / ml. The mixture was then brought to pH 11.0 with a 5M solution of 5 ° NaOH for 7 minutes and the mixture was stirred overnight. The reaction produces a white granular gel paste. These pastes are introduced into a small column 5 mm in diameter and 8 cm long and equilibrated with a buffer consisting of 0.02 M TRIS solution, 0.0 M citrate solution, 0.15 M NaCl solution of deed with a value of pH = 8.5. 2 ml of normal plasma are passed through the column. After passing through the column, the plasma loses its ability to coagulate. 6 ° The column is washed first with the original buffer and then eluted by increasing the salt concentration gradually into 1M NaCl solution. The spill contains material that, when dialyzed in the presence of a phosphate buffer, extends the coagulation time * 5 of normal plasma after calcium reintroduction from 3 minutes to 45 minutes. Immunological analysis shows the presence of antithrombin and some lipoproteins in the effluent. Example II. The process discussed here is a plasma adsorption on a cross-linked clextran-agarose gel and a gradient elution. Dextran sulfate is prepared by mixing 30 ml of a 15 mg / ml dextran sulfate solution with 50 ml of 4% dextran sulfate. with polymerized agarose in the form of pearls and 1 g of BrCN while maintaining the pH = 11 pH. The mixture is stirred for 7 minutes and the pH value is kept the same by the continuous addition of NaOH. Thereafter, the addition of the alkali is interrupted and the pH of the environment drops to a pH of 8.5 within 5 minutes. Stirring is continued over the next day at room temperature, then the gel formed is washed. The dextrose agarose sulphate produced in this way is filled into the column. At the adsorption stage, 3 ml of normal plasma mixed 1: 1 with a buffer composed of 0.02 M TRIS, 0.01 M citrate, 0.15 M NaCl showing a pEL of 8.5 are passed through the column. . After passing through the column, the effluent is congealed to a volume of 3 ml and tested for coagulation ability. As it passes through the column, the plasma loses its coagulability and is deprived of, among other things, coagulation factors VIII and IX. The adsorbed material is desorbed with 0.02 M TRIS and 0.01 M citrate at a pH of pH values = 7.3 with a salt concentration gradient from 0.15 M NaCl. The leakage corresponds to about 2% of the starting material and consists predominantly of two components, one of which is the prebata lipoprotein fraction and the other is the antithrombin III fraction. Identification is made by immunological and physicochemical methods. Example III. The process discussed below is based on adsorption from the plasma on a cross-linked dextranagarose gel and step elution and filtering through the gel. The adsorption process on the gel of dextranagarose sulfate is carried out in the same manner as in Example II. The desorption is carried out in one step with 0.02 M TRIS, 0.01 M sodium citrate, 1 M NaCl at a pH value of 7.3. The desorbate is concentrated and filtered through Sephadex G150 in the presence of physiological phosphate buffer. Pure antithrombotic is obtained in a fraction well separated from the lipoprotein fraction. Example IV. Plasma adsorption process on cross-linked heparin-agarose gel Heparin-agarose is prepared by the same method as discussed in example II for dextran-agarose sulfate. Instead of dextran sulfate, 30 ml of heparin solution 5,000 international units / ml are used. The gel is placed in a column and the experiments are carried out as described in example 2, 83,490. The results are analogous to those cited in Example II. Example 5 Gel adsorption of dextran-agarose sulfate protein material from the Cohn fraction IV plasma (method 6). Gradual elution. Gel infiltration Immunological tests show that antithrombin is present in Cohn fraction IV (method 6). 135 g of fraction IV in the form of a paste are dissolved in 4 ml of an adsorption buffer and 500 ml of dextran-agarose sulphate gel are added. The mixture is mixed at low speed for 1 hour with cooling, then the solution is decanted and the gel is washed with an adsorption buffer. The gel is placed in an ion exchange column and eluted by gradually increasing the concentration of NaCl in the TRIS buffer having a pH value of 7, 2 from 0.5M to 1M and 1.5M. The effluent containing lipoprotein and antithrombin is concentrated by ultrafiltration and then purified by gel filtration on Sephadex G 150. Identification and purity tests are carried out using immunoassays And physico-chemical properties. Example VI. By mixing 250 mg of chondritin VI sulfate, 40 ml of polymerized 4% agarose in the form of beads and 1 g of BrCN, maintaining the pH value of 11 in the environment, a chondritin agarose sulphate gel is obtained. The mixture is allowed to stand for 7 minutes with these the pH value by adding a NaOH solution continuously. Very small amounts of hydroxide are needed for this. After 7 minutes, the pH is carefully adjusted to 8.5 by adding citric acid. Mixing with the mixture at pH 8.5 is continued until the next day, and the gel is then washed thoroughly. The gel is used to fill the column and 3 ml of normal plasma, diluted 1: 1, are passed through the column under the same conditions as described above. The antithrombin can then be eluted from the gel using the same elution buffer as described in the example. PL PL