PL422259A1 - Method for producing magnesium composites with carbon foams - Google Patents

Method for producing magnesium composites with carbon foams

Info

Publication number
PL422259A1
PL422259A1 PL422259A PL42225917A PL422259A1 PL 422259 A1 PL422259 A1 PL 422259A1 PL 422259 A PL422259 A PL 422259A PL 42225917 A PL42225917 A PL 42225917A PL 422259 A1 PL422259 A1 PL 422259A1
Authority
PL
Poland
Prior art keywords
diameter
carbon foams
powder
producing magnesium
composites
Prior art date
Application number
PL422259A
Other languages
Polish (pl)
Other versions
PL236432B1 (en
Inventor
Anita Olszówka-Myalska
Jerzy Myalski
Marcin Godzierz
Original Assignee
Politechnika Śląska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Politechnika Śląska filed Critical Politechnika Śląska
Priority to PL422259A priority Critical patent/PL236432B1/en
Publication of PL422259A1 publication Critical patent/PL422259A1/en
Publication of PL236432B1 publication Critical patent/PL236432B1/en

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

Sposób wytwarzania kompozytów magnezowych z pianami węglowymi polega na tym, że otwartokomórkowe piany węglowe amorficzne zawierające pory o średnicy 250 - 1200 µm umieszcza się w formie, korzystnie grafitowej, a następnie wypełnia ziarnami proszku czystego technicznie magnezu lub jego stopów odlewniczych średnicy nie większej niż 300 µm i mniejszej niż 35% średnicy otworów komórki piany i zagęszcza na sucho, poddając drganiom pionowo - skrętnym o częstotliwości 50 Hz w kilku cyklach, korzystnie trzech uzupełniając proszek magnezu tak, aby po zakończeniu zagęszczania na górnej powierzchni kształtki pozostał naddatek, korzystnie warstwa proszku o grubości nie mniejszej niż 20% jej wysokości, po czym całość ogrzewa się w próżni lub atmosferze ochronnej do stopienia metalu, prasuje i chłodzi pod obciążeniem.The method of producing magnesium composites with carbon foams consists in the fact that amorphous open-cell carbon foams containing pores with a diameter of 250 - 1200 µm are placed in a mold, preferably graphite, and then filled with grains of technically pure magnesium powder or its casting alloys not larger than 300 µm in diameter and smaller than 35% of the diameter of the holes of the foam cell and compacted dry, subjecting vertically to torsional vibrations with a frequency of 50 Hz in several cycles, preferably three, supplementing magnesium powder so that after completing the compaction on the upper surface of the molded piece an excess, preferably a layer of powder not less than 20% of its height, after which the whole is heated in a vacuum or protective atmosphere until the metal melts, pressed and cooled under load.

PL422259A 2017-07-18 2017-07-18 Method for producing magnesium composites with carbon foams PL236432B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL422259A PL236432B1 (en) 2017-07-18 2017-07-18 Method for producing magnesium composites with carbon foams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL422259A PL236432B1 (en) 2017-07-18 2017-07-18 Method for producing magnesium composites with carbon foams

Publications (2)

Publication Number Publication Date
PL422259A1 true PL422259A1 (en) 2019-01-28
PL236432B1 PL236432B1 (en) 2021-01-11

Family

ID=65034062

Family Applications (1)

Application Number Title Priority Date Filing Date
PL422259A PL236432B1 (en) 2017-07-18 2017-07-18 Method for producing magnesium composites with carbon foams

Country Status (1)

Country Link
PL (1) PL236432B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL444024A1 (en) * 2023-03-07 2024-09-09 Politechnika Śląska Method of manufacturing composite products with a matrix of magnesium and its alloys with constant cross-sectional geometry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL444024A1 (en) * 2023-03-07 2024-09-09 Politechnika Śląska Method of manufacturing composite products with a matrix of magnesium and its alloys with constant cross-sectional geometry

Also Published As

Publication number Publication date
PL236432B1 (en) 2021-01-11

Similar Documents

Publication Publication Date Title
Wang et al. Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material
Xia et al. Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam
Mu et al. Effect of cell shape anisotropy on the compressive behavior of closed-cell aluminum foams
US6576168B2 (en) Process for making carbon foam induced by process depressurization
Szlancsik et al. Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres
CN108486400B (en) Metal-based hollow sphere composite foam material and preparation method thereof
Hassanli et al. Improvement in energy absorption properties of aluminum foams by designing pore-density distribution
Nakajima et al. Fabrication of Lotus‐type porous metals and their physical properties
Yang et al. Compressive properties of cellular Mg foams fabricated by melt-foaming method
Bonabi et al. Fabrication of metallic composite foam using ceramic porous spheres “Light Expanded Clay Aggregate” via casting process
CN104949870A (en) Pressing method for methane hydrate containing rock core sample
CN101898228A (en) Method for casting sound casting by using lost foam coated with high-performance coating in vibration way
PL422259A1 (en) Method for producing magnesium composites with carbon foams
Zhang et al. Experimental study on the thermal storage performance of phase change materials embedded with additively manufactured triply periodic minimal surface architected lattices
Bekoz et al. Effect of heat treatment on mechanical properties of low alloy steel foams
CN102416440B (en) Casting method for liquid metal pouring of lost mold casting model in high-frequency micro-vibration field under negative pressure of dry sand
Tang et al. Experimental study on the tensile strength of a sintered porous metal composite
PL422243A1 (en) Method for production magnesium elements that contain inserts from carbon foams
KR101221060B1 (en) Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium
Sutarno et al. Optimization of calcium carbonate content on synthesis of aluminum foam and its compressive strength characteristic
Warzoha et al. Evaluation of methods to fully saturate carbon foam with paraffin wax phase change material for energy storage
Jian-Ning et al. Grain boundary peak in a foamed Zn-Al eutectoid alloy
CN207695600U (en) A kind of casting and forming chill with fixed structure
Mondal et al. Effect of age hardening on compressive deformation behavior of Al-alloy (LM13)–cenosphere hybrid foam prepared using CaCO3 as a foaming agent
Zhao Porous metallic materials produced by P/M methods