PL243542B1 - Sposób otrzymywania bezizocyjanianowych poliuretanów - Google Patents
Sposób otrzymywania bezizocyjanianowych poliuretanów Download PDFInfo
- Publication number
- PL243542B1 PL243542B1 PL437661A PL43766121A PL243542B1 PL 243542 B1 PL243542 B1 PL 243542B1 PL 437661 A PL437661 A PL 437661A PL 43766121 A PL43766121 A PL 43766121A PL 243542 B1 PL243542 B1 PL 243542B1
- Authority
- PL
- Poland
- Prior art keywords
- bis
- cyclic carbonate
- reacted
- isocyanate
- epichlorohydrin
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000004814 polyurethane Substances 0.000 title claims abstract description 24
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 24
- 150000005676 cyclic carbonates Chemical class 0.000 claims abstract description 40
- -1 poly(trimethylene glycol) Polymers 0.000 claims abstract description 26
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims abstract description 15
- 150000001412 amines Chemical class 0.000 claims abstract description 13
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 12
- 239000000194 fatty acid Substances 0.000 claims abstract description 12
- 229930195729 fatty acid Natural products 0.000 claims abstract description 12
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 6
- 229920000570 polyether Polymers 0.000 claims abstract description 6
- 238000007259 addition reaction Methods 0.000 claims abstract description 5
- 235000011187 glycerol Nutrition 0.000 claims abstract description 5
- 239000011261 inert gas Substances 0.000 claims abstract description 5
- 239000002699 waste material Substances 0.000 claims abstract description 5
- 150000002009 diols Chemical class 0.000 claims abstract description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 238000003786 synthesis reaction Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 9
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 6
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 5
- 238000006352 cycloaddition reaction Methods 0.000 description 5
- 238000013016 damping Methods 0.000 description 5
- 239000012948 isocyanate Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 231100000331 toxic Toxicity 0.000 description 5
- 230000002588 toxic effect Effects 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 150000002513 isocyanates Chemical class 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- 239000003225 biodiesel Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 150000004985 diamines Chemical group 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N ethyl trimethyl methane Natural products CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Wynalazek dotyczy sposobu otrzymywania bezizocyjanianowych poliuretanów metodą poliaddycji pięcioczłonowych bis(cyklicznych węglanów) otrzymanych z polieterodioli pochodzących z surowców roślinnych oraz bezizocyjanianowe poliuretany otrzymywane z pięcioczłonowych bis(cyklicznych węglanów) otrzymanych z polieterodioli pochodzących z surowców roślinnych. Według wynalazku stosuje się bis(cykliczny węglan) otrzymany z poli(glikolu trimetylenowego) pochodzenia roślinnego o średniej masie molowej od 250 do 2700 g/mol oraz bio-epichlorohydryny otrzymywanej z odpadowej gliceryny zaś bis(cykliczny węglan) poddaje się reakcji z aminowymi pochodnymi zdimeryzowanych kwasów tłuszczowych. W pierwszym etapie poli(glikol trimetylenowy) poddaje się reakcji z bio-epichlorohydryną otrzymując eter diglicydylowy, zaś w drugim etapie w temperaturze od 100 do 125°C eter diglicydylowy poddaje się reakcji z CO<sub>2</sub> otrzymując bis(cykliczny węglan). W trzecim etapie bis(cykliczny węglan) poddaje się reakcji addycji z aminowymi pochodnymi zdimeryzowanych kawasów tłuszczowych w temperaturze od 60 do 120°C w atmosferze powietrza lub gazu obojętnego.
Description
Opis wynalazku
Przedmiotem wynalazku jest sposób otrzymywania bezizocyjanianowych poliuretanów. Wynalazek ma zastosowanie w szczególności w syntezie litych materiałów polimerowych np. jako materiały tłumiące drgania.
Synteza poliuretanów drogą bezizocyjanianową stanowi alternatywę dla komercyjnie stosowanych metod otrzymywania tych materiałów- metody jednoetapowej oraz dwuetapowej (tzw. prepolimerowej). Niedogodnością w stosowaniu tradycyjnej metody polegającej na reakcji poliaddycji di- lub poliizocyjanianów z poliolami oraz małocząsteczkowymi przedłużaczami łańcucha jest zastosowanie monomerów izocyjanianowych. W celu wyeliminowania użycia di- lub poliizocyjanianów, które są związkami wrażliwymi na wilgoć oraz toksycznymi dla środowiska oraz organizmów żywych poszukiwanie nowych możliwości syntezy poliuretanów stało się koniecznością. Ponadto, najbardziej powszechny i komercyjnie wykorzystywany proces ich produkcji realizowany jest z wykorzystaniem silnie toksycznego fosgenu.
Bezizocyjanianowe poliuretany mogą być otrzymywane na drodze polikondensacji, poliaddycji, polimeryzacji z otwarciem pierścienia oraz w wyniku przegrupowań chemicznych. Twórcy przedmiotowego wynalazku uznali, że największy potencjał posiada metoda syntezy, którą jest poliaddycja pięcio-, sześcio- lub siedmioczłonowych bis(cyklicznych węglanów) z di- lub/i poliaminami. Sposób ten prowadzony jest z wykorzystaniem związków posiadających w strukturze cykliczne ugrupowania węglanowe, które otrzymywane mogą być na drodze reakcji addycji związków epoksydowych z dwutlenkiem węgla. Zaletą tej metody oprócz szerokiego wyboru substratów (również surowców pochodzenia naturalnego) i wysokiej wydajności reakcji, jest również możliwość realizowania syntezy bez użycia toksycznych rozpuszczalników organicznych, czy katalizatorów, co jednak wymagało pracy naukowo-laboratoryjnej celem ustalenia warunków reakcji, etapów reakcji jak i doboru substratów.
Ze zgłoszenia patentowego P.427124 znany jest sposób otrzymywania pięcioczłonowych węglanów cyklicznych z poli(glikolu trimetylenowego) o średniej masie molowej od 250 do 2700 g/mol. W pierwszej kolejności poliol polieterowy poddaje się reakcji z epichlorohydryną pochodzenia petrochemicznego w obecności katalizatora w temperaturze od 70 do 100°C. Następnie przeprowadza się dehydrochlorowanie za pomocą wodorotlenku w temperaturze od 40 do 60°C. W ostatnim etapie przeprowadza się cykloaddycję gazowego dwutlenku węgla w temperaturze od 70 do 140°C. Jako substrat stosuje się poli(glikol trimetylenowy) pochodzenia naturalnego o średniej masie cząsteczkowej od 250 do 2700 g/mol. Ostatni etap przeprowadza się pod ciśnieniem atmosferycznym z kontrolowaną prędkością przepływu gazu od 20 do 100 ml/min. Ten produkt może być wykorzystany do otrzymywania dalszych produktów jak np. poliuretanów metodą bezizocyjanianową. Tego ostatniego jednakże nie opisano w tym opisie. Z literatury [Błażek i wsp. Diamine derivatives of dimerized fatty acids and biobased polyether polyol as sustainable platforms for the synthesis of non-isocyanate polyurethanes, Polymer 2020, 205, 122768] znany jest sposób syntezy bezizocyjanianowych poliuretanów z wykorzystaniem cyklicznego węglanu otrzymanego z poli(glikolu trimetylenowego) o średniej masie molowej 250 g/mol oraz aminowych pochodnych zdimeryzowanych kwasów tłuszczowych (Priamine®). Znany z literatury sposób syntezy wykorzystuje, jako podstawowy monomer, bis(cykliczny węglan) o średniej masie molowej 250 g/mol, który otrzymywany jest w wyniku reakcji poliolu polieterowego z epichlorohydryną pochodzenia petrochemicznego.
Z literatury [Błażek i wsp. Synthesis and structural characterization of biobased bis(cyclic carbonate)s for the preparation ofnon-isocyanate polyurethanes, Polym. Chem., 2021,12, 1643-1652] znany jest sposób syntezy bezizocyjanianowych poliuretanów z wykorzystaniem cyklicznych węglanów otrzymanych z poli(glikolu trimetylenowego) o średniej masie molowej 250, 650 i 1000 g/mol oraz aminowych pochodnych zdimeryzowanych kwasów tłuszczowych (Priamine®). Niedogodnością przedstawionych sposobów otrzymywania bezizocyjanianowych poliuretanów jest zastosowanie epichlorohydryny pochodzenia petrochemicznego w syntezie eterów diglicydylowych, z których w drugim etapie w wyniku cykloaddycji dwutlenku węgla otrzymuje się bis(cykliczne węglany).
Z literatury [Camara i wsp. Reactivity of secondary amines for the synthesis of non-isocyanate polyurethanes, Eur. Polym. J., 2014, 55, 17-26] znany jest sposób syntezy bezizocyjanianowych poliuretanów z wykorzystaniem cyklicznych węglanów otrzymanych z 1,4-butanodiolu, trimetylopropanu i rezorcynolu. Jako drugi substrat zastosowano pierwszo- i drugorzędowe diaminy. Niedogodnością metody jest sposób otrzymywania cyklicznych węglanów, który wymaga wykorzystania toksycznego roz puszczalnika organicznego oraz podwyższonego ciśnienia wprowadzania dwutlenku węgla, co powoduje wyższe koszty produkcji. Ponadto, zastosowanie drugorzędowych diamin możliwe jest jedynie w wysokiej temperaturze sięgającej ponad 200°C.
Z literatury [Ke i wsp. Non-isocyanate polyurethane/epoxy hybrid materials with different and controlled architectures prepared from a CO2-sourced monomer and epoxy via an environmentally-friendly route, 2017, 7, 28841-28852] znany jest sposób syntezy cyklicznych węglanów z eterów diglicydylowych poli(glikolu propylenowego) (średnia masa molowa eteru glidlicydylowego wynosi 650 g/mol) otrzymanych w wyniku cykloaddycji dwutlenku węgla. W drugim etapie prowadzi się reakcję cyklicznych węglanów z 1,2-etylenodiaminą, dietylenotriaminą, trietylenotetraaminą w celu otrzymania prepolimeru zakończonego obustronnie grupami aminowymi. Reakcja prowadzona jest w obecności trietylenodiaminy, jako katalizatora. Otrzymany tym sposobem produkt stosowany jest w syntezie poliuretanowo-epoksydowych materiałów hybrydowych.
Ze względu na szerokie wykorzystanie bezizocyjanianowych poliuretanów wciąż poszukuje się bardziej efektywnych sposobów ich otrzymania, a zwłaszcza uzyskiwania produktów o pożądanych właściwościach, co stanowiło cel wynalazku. Celem było również opracowanie metody bezizocyjanianowej, w której można było zastosować substraty otrzymywane z surowców pochodzenia naturalnego a nie petrochemicznego.
Wynalazek dotyczy sposobu otrzymywania bezizocyjanianowych poliuretanów z pięcioczłonowych bis(cyklicznych węglanów) syntezowanych z polieterodioli pochodzących z surowców roślinnych.
Istota polega na tym, że proces jest 3-etapowy: w I-szym etapie otrzymuje się eter diglicydylowy w wyniku reakcji addycji poliolu do bio-epichlorohydryny. W II-gim etapie otrzymuje się cykliczny węglan w reakcji cykloaddycji CO2 do eterów diglicydylowych. W lll-im etapie otrzymuje się bezizocyjanianowy poliuretan stosując reakcję poliaddycji bis(cyklicznych węglanów) do aminowych pochodnych zdimeryzowanych kwasów tłuszczowych o nazwie handlowej Priamine®.
Przeprowadza się zatem według wynalazku następujące reakcje:
I etap poli(glikol trimetylenowy)+ bio-epichlorohydryna ^ eter diglicydylowy
II etap eter diglicydylowy + CO2 ^ bis(cykliczny węglan)
III etap bis(cykliczny węglan)+ aminowe pochodne zdimeryzowanych kwasów tłuszczowych typu Priamine® ^ bezizocyjanianowy poliuretan
Istotą wynalazku jest zastosowanie dobranego substratu i parametrów metody tj. wykorzystanie połączenia tego bis(cyklicznego węglanu) z aminowymi pochodnymi zdimeryzowanych kwasów tłuszczowych. Zaś do otrzymania epichlorohydryny została użyta odpadowa gliceryna zwłaszcza z produkcji biodiesla.
Sposób według wynalazku charakteryzuje się tym, że jako stosuje się bis(cykliczny węglan) otrzymany z poli(glikolu trimetylenowego) pochodzenia roślinnego o średniej masie molowej od 250 do 2700 g/mol oraz bio-epichlorohydryny otrzymywanej z odpadowej gliceryny. Bis(cykliczny węglan) poddaje się reakcji z aminowymi pochodnymi zdimeryzowanych kwasów tłuszczowych z tym, że w pierwszym etapie poli(glikol trimetylenowy) miesza się z kompleksem trifluorek boru-eter etylowy i po ogrzaniu mieszaniny całość poddaje się reakcji z bio-epichlorohydryną otrzymując eter diglicydylowy, zaś w drugim etapie w temperaturze od 100 do 125°C eter diglicydylowy poddaje się reakcji z CO2 otrzymując bis(cykliczny węglan), a następnie w trzecim etapie bis(cykliczny węglan) poddaje się reakcji addycji z aminowymi pochodnymi zdimeryzowanych kawasów tłuszczowych w temperaturze od 60 do 120°C w atmosferze powietrza lub gazu obojętnego.
Korzystnie, trzeci etap syntezy prowadzi się w stosunku molowym cyklicznych grup węglanowych do grup aminowych wynoszącym od 1:0,9 do 1:1,2. Korzystnie trzeci etap syntezy prowadzi się w obecności katalizatora w postaci 1,8-diazabicyklo[5.4.0]undek-7-en w ilości od 0,2 do 1,5% wagowych w przeliczeniu na ilość mieszaniny reakcyjnej. Korzystnie reakcję poliaddycji prowadzi się w temperaturze od 60 do 120°C w atmosferze powietrza lub gazu obojętnego aż do przereagowania wszystkich cyklicznych grup węglanowych. Korzystnie, produkt umieszcza się w formie, a następnie sezonuje się od 24 do 72 godzin w suszarce laboratoryjnej w temperaturze od 100 do 125°C.
Sposób według wynalazku nie wymaga stosowania wysokiego ciśnienia. Sposób według wynalazku nie wymaga również zastosowania toksycznych rozpuszczalników organicznych. Wynalazek pozwala na prowadzenie reakcji bez konieczności zastosowania drogiej aparatury, co nie generuje dodatkowych kosztów produkcji. Otrzymane według wynalazku bezizocyjanianowe poliuretany stanowią grupę produktów zawierających węgle pochodzenia roślinnego wprowadzone na miejsce węgli pochodzenia petrochemicznego i są materiałami charakteryzującymi się dużą zdolnością tłumienia drgań.
Wynalazek umożliwia łatwe zastępowanie surowców petrochemicznych przez substraty otrzymywane z surowców pochodzenia naturalnego.
Wynalazek opisano bliżej w przykładzie wykonania oraz na rysunku, na którym na Fig. 1 przedstawiono widmo FTIR bezizocyjanianowego poliuretanu otrzymanego zgodnie z przykładem 1. Otrzymane sposobem według wynalazku produkty zobrazowano na widmach przedstawiających strukturę związków analizowaną metodą spektroskopii w podczerwieni z transformacją Fouriera FTIR.
Przykład 1
ETAP I
W szklanym reaktorze z pokrywą trójszyjną zaopatrzonym w mieszadło mechaniczne, termometr i chłodnicę zwrotną umieszcza się zadaną ilość poli(glikolu trimetylenowego) o średniej masie cząsteczkowej 250 g/mol oraz kompleks trifluorek boru-eter etylowy w ilości 1,5% mas. Mieszaninę ogrzewa się stopniowo do osiągnięcia temperatury 80°C. Po osiągnięciu żądanej temperatury do reaktora dozuje się porcjami przez 30 minut bio-epichlorohydrynę w nadmiarze molowym równym 1:1,3. Reakcja prowadzona jest w 80°C pod ciśnieniem atmosferycznym z zastosowaniem ciągłego i intensywnego mieszania. Czas prowadzenia reakcji liczony jest od chwili dodania ostatniej porcji epichlorohydryny i wynosi 6 godzin. Po upływie tego czasu zawartość reaktora schładza się do temperatury 50°C, nie przerywając przy tym mieszania.
Po ochłodzeniu mieszaniny dozuje się porcjami wodny roztwór wodorotlenku sodu o stężeniu 50% przez 15 minut. Reakcja prowadzona jest pod ciśnieniem atmosferycznym z zastosowaniem ciągłego i intensywnego mieszania przez 4 godziny. Następnie powstały osad odfiltrowuje się, a otrzymany roztwór oczyszcza w celu otrzymania czystego eteru diglicydylowego.
Etap II
Do otrzymanej oleistej cieczy dodaje się bromek tetrabutyloamoniowy w ilości 0,15% masowych w przeliczeniu na ilość eteru diglicydylowego i mieszaninę ogrzewa się do temperatury 110°C z zastosowaniem ciągłego mieszania. Następnie wprowadza się gazowy dwutlenek węgla z prędkością przepływu 100 ml/min. Reakcja cykloaddycji prowadzona jest pod ciśnieniem atmosferycznym z zastosowaniem ciągłego i intensywnego mieszania. Reakcję prowadzi się aż do momentu przereagowania grup epoksydowych. Po zakończeniu procesu zawartość reaktora schładza się do temperatury pokojowej, nie przerywając przy tym mieszania.
ETAP III
W szklanym reaktorze z pokrywą trójszyjną zaopatrzonym w mieszadło mechaniczne i termometr umieszcza się 100 g (0,222 mol) bis(cyklicznego węglanu) otrzymywanego z poli(glikolu trimetylenowego) o średniej masie molowej 250 g/mol oraz 1,8-diazabicyklo[5.4.0]undek-7-en w ilości 1% wagowych mieszaniny reakcyjnej, jako katalizator. Do syntezy bis(cyklicznego węglanu) stosuje się w pierwszym etapie bio-epichlorohydrynę otrzymywaną z odpadowej gliceryny z produkcji biodiesla. Mieszaninę ogrzewa się stopniowo do osiągnięcia temperatury 80°C. Po osiągnięciu żądanej temperatury do reaktora dozuje się aminowe pochodne zdimeryzowanych kwasów tłuszczowych w stosunku molowym równym 1:1 (129,161 g). Reakcja prowadzona jest w 80°C pod ciśnieniem atmosferycznym z zastosowaniem ciągłego i intensywnego mieszania. Czas prowadzenia reakcji liczony jest od chwili dodania aminy i wynosi 4 godziny. Po upływie tego czasu zawartość reaktora umieszcza się w stalowej formie, a następnie w suszarce laboratoryjnej. Otrzymaną mieszaninę sezonuje się przez 48 godzin w temperaturze 110°C.
Strukturę chemiczną uzyskanego produktu zbadano metodą spektroskopii w podczerwieni z transformacją Fouriera za pomocą spektrofotometru Nicolet 8700 (ThermoElectron Corporation). Zarejestrowane widmo FTIR w zakresie liczby falowej od 500 do 4000 cm-1 przy rozdzielczości 4 cm-1 pokazano na rysunku. Powstające pasmo absorpcyjne przy liczbie falowej 1700 cm-1 odpowiada drganiom rozciągającym grupy karbonylowej ugrupowania uretanowego. Obecność charakterystycznych dla poliuretanów zidentyfikowanych na widmie grup funkcyjnych oraz zanik pasma charakterystycznego dla grupy karbonylowej w cyklicznym ugrupowaniu węglanowym (ok. 1800 cm-1) potwierdza uformowanie się pożądanej struktury chemicznej charakterystycznej dla bezizocyjanianowych poliuretanów w końcowym produkcie. Otrzymany produkt posiada wysoką wartość współczynnika tłumienia oraz tłumienie rejestruje się w szerokim zakresie temperaturowym, przez co może znaleźć zastosowanie jako materiał tłumiący drgania.
Claims (5)
1. Sposób otrzymywania bezizocyjanianowych poliuretanów metodą poliaddycji pięcioczłonowych bis(cyklicznych węglanów) otrzymanych z polieterodioli pochodzących z surowców roślinnych, znamienny tym, że stosuje się bis(cykliczny węglan) otrzymany z poli(glikolu trimetylenowego) pochodzenia roślinnego o średniej masie molowej od 250 do 2700 g/mol oraz bio-epichlorohydryny otrzymywanej z odpadowej gliceryny zaś bis(cykliczny węglan) poddaje się reakcji z aminowymi pochodnymi zdimeryzowanych kwasów tłuszczowych z tym, że w pierwszym etapie poli(glikol trimetylenowy) miesza się z kompleksem trifluorek boru-eter etylowy i po ogrzaniu mieszaniny całość poddaje się reakcji z bio-epichlorohydryną otrzymując eter diglicydylowy, zaś w drugim etapie w temperaturze od 100 do 125°C eter diglicydylowy poddaje się reakcji z CO2 otrzymując bis(cykliczny węglan), a następnie w trzecim etapie bis(cykliczny węglan) poddaje się reakcji addycji z aminowymi pochodnymi zdimeryzowanych kawasów tłuszczowych w temperaturze od 60 do 120°C w atmosferze powietrza lub gazu obojętnego.
2. Sposób według zastrz. 1, znamienny tym, że trzeci etap syntezy prowadzi się w stosunku molowym cyklicznych grup węglanowych do grup aminowych wynoszącym od 1:0,9 do 1:1,2.
3. Sposób według zastrz. 1 lub 2, znamienny tym, że trzeci etap syntezy prowadzi się w obecności katalizatora w postaci 1,8-diazabicyklo[5.4.0]undek-7-en w ilości od 0,2 do 1,5% wagowych w przeliczeniu na ilość mieszaniny reakcyjnej.
4. Sposób otrzymywania według zastrz. 1 lub 2 lub 3, znamienny tym, że reakcję poliaddycji prowadzi się w temperaturze od 60 do 120°C w atmosferze powietrza lub gazu obojętnego aż do przereagowania wszystkich cyklicznych grup węglanowych.
5. Sposób według zastrz. 1 lub 2 lub 3 lub 4, znamienny tym, że produkt umieszcza się w formie, a następnie sezonuje się od 24 do 72 godzin w suszarce laboratoryjnej w temperaturze od 100 do 125°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL437661A PL243542B1 (pl) | 2021-04-22 | 2021-04-22 | Sposób otrzymywania bezizocyjanianowych poliuretanów |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL437661A PL243542B1 (pl) | 2021-04-22 | 2021-04-22 | Sposób otrzymywania bezizocyjanianowych poliuretanów |
Publications (2)
Publication Number | Publication Date |
---|---|
PL437661A1 PL437661A1 (pl) | 2022-10-24 |
PL243542B1 true PL243542B1 (pl) | 2023-09-11 |
Family
ID=83724515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PL437661A PL243542B1 (pl) | 2021-04-22 | 2021-04-22 | Sposób otrzymywania bezizocyjanianowych poliuretanów |
Country Status (1)
Country | Link |
---|---|
PL (1) | PL243542B1 (pl) |
-
2021
- 2021-04-22 PL PL437661A patent/PL243542B1/pl unknown
Also Published As
Publication number | Publication date |
---|---|
PL437661A1 (pl) | 2022-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Waterborne isocyanate-free polyurethane epoxy hybrid coatings synthesized from sustainable fatty acid diamine | |
Doley et al. | Solvent and catalyst-free synthesis of sunflower oil based polyurethane through non-isocyanate route and its coatings properties | |
Beniah et al. | Non-Isocyanate polyurethane thermoplastic elastomer: amide-based chain extender yields enhanced nanophase separation and properties in polyhydroxyurethane | |
Beniah et al. | Combined effects of carbonate and soft-segment molecular structures on the nanophase separation and properties of segmented polyhydroxyurethane | |
Beniah et al. | Novel thermoplastic polyhydroxyurethane elastomers as effective damping materials over broad temperature ranges | |
Cornille et al. | Promising mechanical and adhesive properties of isocyanate-free poly (hydroxyurethane) | |
Carré et al. | Synthesis and characterization of advanced biobased thermoplastic nonisocyanate polyurethanes, with controlled aromatic-aliphatic architectures | |
KR101009718B1 (ko) | 작용화된 중합체와 반응성 실란 단량체의 연속적인 중합체유사 반응 | |
Camara et al. | Reactivity of secondary amines for the synthesis of non-isocyanate polyurethanes | |
Błażek et al. | Diamine derivatives of dimerized fatty acids and bio-based polyether polyol as sustainable platforms for the synthesis of non-isocyanate polyurethanes | |
Hsieh et al. | Synthesis of bio-based polyurethane foam modified with rosin using an environmentally-friendly process | |
JP6698095B2 (ja) | 高い安定性を有するポリオキサゾリジノン化合物の合成方法 | |
EP3994201B1 (en) | Self-blowing isocyanate-free polyurethane foams | |
Gamardella et al. | Preparation of poly (thiourethane) thermosets by controlled thiol-isocyanate click reaction using a latent organocatalyst | |
CN101143963A (zh) | 使用包含氨基甲酸酯基或脲基的聚醚稳定聚氨酯泡沫 | |
Liu et al. | Synthesis and properties of non-isocyanate polyurethane coatings derived from cyclic carbonate-functionalized polysiloxanes | |
Flores et al. | Ytterbium triflate as a new catalyst on the curing of epoxy–isocyanate based thermosets | |
JP2023520785A (ja) | 多水素結合オリゴマーの合成方法 | |
WO2023193178A1 (en) | Thermoplastic and elastomeric polyurethanes produced from biobased 1, 5-pentamethylene diisocyanate | |
Boisaubert et al. | Polyurethane coatings from formulations with low isocyanate content using a transurethane polycondensation route | |
Gabriel et al. | Isocyanates as precursors to biomedical polyurethanes | |
Ling et al. | Synthesis and characterization of 1 K waterborne non-isocyanate polyurethane epoxy hybrid coating | |
Lin et al. | Synthesis of biobased polyphenols for preparing phenolic polyurethanes with self-healing properties | |
PL243542B1 (pl) | Sposób otrzymywania bezizocyjanianowych poliuretanów | |
JP2010526155A (ja) | 2つの隣接する水酸基を有するポリエーテルアミンマクロモノマーおよびポリウレタンを製造するためのその使用 |