PL109758B1 - Method of producing catalyst for reduction of carbon monoxide by means of hydrogen - Google Patents

Method of producing catalyst for reduction of carbon monoxide by means of hydrogen Download PDF

Info

Publication number
PL109758B1
PL109758B1 PL1977202450A PL20245077A PL109758B1 PL 109758 B1 PL109758 B1 PL 109758B1 PL 1977202450 A PL1977202450 A PL 1977202450A PL 20245077 A PL20245077 A PL 20245077A PL 109758 B1 PL109758 B1 PL 109758B1
Authority
PL
Poland
Prior art keywords
men
mei
volume
iron
compound
Prior art date
Application number
PL1977202450A
Other languages
Polish (pl)
Other versions
PL202450A1 (en
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of PL202450A1 publication Critical patent/PL202450A1/en
Publication of PL109758B1 publication Critical patent/PL109758B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/24Nitrogen compounds
    • C07C2527/26Cyanides

Description

Przedmiotem wynalazku jest sposób wytwarza¬ nia katalizatora do redukcji monotlenku wegla za pomoca wodoru z utworzeniem mieszanin weglo¬ wodorów o 1—4 atomach wegla, przez czesciowy albo calkowity rozklad okreslonych komplekso¬ wych cyjanków metali.Jednym z najwazniejszych nizszych weglowo¬ dorów, które w przemysle chemicznym maja sze¬ rokie zastosowanie jako produkty wyjsciowe do wytwarzania licznych produktów wtórnych, jest etylen. Z uwagi na znaczne zapotrzebowanie na etylen godne uwagi jest udostepnienie dla tego produktu równiez innych zródel surowców niz ro¬ pa naftowa. Jako tego rodzaju zródlo surowców nadaje sie gaz wodny otrzymywany w reakcji wegla z para wodna w wysokiej temperaturze.Katalityczne uwodornienie monotlenku wegla z utworzeniem weglowodorów opisane jest szczegó¬ lowo np. przez Winnacker-Weingaertner'aw „Che- mische Technologie", tom Organische Technologie I, str. 780—803, Carl Hauser Verlag, Monachium, 1052. W tej reakcji powstaja glównie wszystkie weglawodory szeregu olefinowego i parafinowego w róznych ilosciach, zaleznie od tego jaki katali¬ zator i jakie warunki reakcji sie stosuje. Na str. 786 wymienionej pozycji literatury wywiedziono miedzy innymi, ze przy uwodornieniu CO z zasto¬ sowaniem zelaza albo mieszanin zelaza i miedzi jako katalizatora w przeciwienstwie do katalizato¬ rów kobaltowych uprzywilejowane jest tworzenie 2 olefin v zmniejszony jest udzial metanu. Znane katalizatory stanowia tak zwane katalizatory stra¬ cone. W celu ich wytworzenia rozpuszcza sie np. metale w kwasie azotowym i szybko straca na go- 5 raco za pomoca roztworu weglanu metalu alka¬ licznego. Po straceniu osad saczy sie, wymywa woda, suszy w temperaturze ll)0oC, lamie i prze¬ siewa. Redukcje przesianego materialu przeprowa¬ dza sie przez przeprowadzanie wodoru albo gazu io syntezowego w temperaturze 225°C i pod cisnie¬ niem 10 atm.Wytworzone w wyzej opisany sposób kataliza¬ tory z zelaza lub zelaza i miedzi pod wzgledem dzialania katalitycznego przy uwodornieniu CO sa 15 o tyle niezadowalajace, ze zawartosc weglowodo¬ rów C2—C4, w szczególnosci weglowodorów C2, w gazie reakcyjnym jest zbyt mala, to znaczy ze te katalizatory w odniesieniu do tworzenia niz¬ szych weglowodorów olefinowych nie sa wystar- 20 czajaco selektywne.Z polskiego opisu patentowego nr 10759, str. 1, znane jest przyspieszanie reakcji CO zHgZ utwo¬ rzeniem weglowodorów za pomoca katalizatora, który obok znacznej ilosci zelaza, niklu albo ko- 25 baltu albo ich zwiazków w postaci kompleksów cyjankowych zawiera dodatkowo kadm albo tal albo ich zwiazki albo mieszaniny wymienionych skladników. Aktywnosc tej masy kontaktowej mozna zwiekszyc przez dodanie pn. miedzi. Przy 30 zastosowaniu tego katalizatora otrzymuje sie mie- 109 7583 109 758 4 szanine produktów, która sklada sie z weglowo¬ dorów, wyzszych alkoholi i eterów. Znany katali¬ zator nie jest selektywny w odniesieniu do two¬ rzenia nizszych weglowodorów.Przedmiotem wynalazku jest zatem sposób wy¬ twarzania katalizatora [do redukcji monotlenku wegla za pomoca wodoiii z utworzeniem mieszanin weglowodorów o 1—4 atomach wegla, przy czym katalizator sklada sie z zelaza, kobaltu, niklu albo miedzi w mieszaninie z co najmniej jednym dal¬ szym metalem jako skladników czynnych, który polega na tym, ze z wodnego roztworu zelazocy- janku potasu za pomoca wodnego roztworu soli metali wytraca sie sól kompleksowa o ogólnym wzorze Mei{Meii/CN/x], w którym Mei jako sklad¬ nik kationowy oznacza pierwiastki Ce, Cu, Co, Ni, Fe, Mn, Zn albo Ag lub mieszaniny tych pierwia¬ stków albo Ca lub Mg w mieszaninie z /NH4/, Men jako skladnik anionowy oznacza pierwiastki Co, Fe albo Mn i x oznacza sume wartosciowosci metali, przy czym jednakze Mei i Men nie moze oznaczac zelaza samego lub w mieszaninie z mie¬ dzia, wytracony osad ewentualnie nanosi sie na nosnik, suszy i poddaje rozkladowi termicznemu w temperaturze 200—500°C pod zmniejszonym cis¬ nieniem albo pod cisnieniem do 100 atm.Korzystna postac wykonania przy wytwarzaniu katalizatora polega na tym, ze rozklad termiczny soli kompleksowej przeprowadza sie w obecnosci wodoru albo mieszanin zlozonych z wodoru i mo¬ notlenku wegla w temperaturze 200—500°C oraz z zastosowaniem cisnienia 1—100 ata, w szczegól¬ nosci 4—30 ata.Ze skladników jonowych wystepujacych w ogól¬ nym wzorze Me]}[Men/CN/x] jako Mei lub Men okazaly sie korzystne okreslone kombinacje. W przypadku, gdy Men oznacza zelazo, jako sklad¬ nik Mei wyrózniaja sie takie kombinacje jak sre¬ bro, cynk, kobalt albo mangan albo mieszanin miedzi, z zelazem i niklem albo miedzi z cerem albo kobaltem albo manganem albo mieszaniny srebra z cerem albo zelazem albo mieszaniny wap¬ nia albo magnezu z NH4.Jesli natomiast Men oznacza kobalt, to jako skladnik Mei szczególnie przydatna jest miedz albo srebro. Wreszcie ogólny wzór Meii[Meii/CN/x] obejmuje korzystna kombinacje metali, która po¬ lega na tym, ze Men oznacza mangan i Mei ozna¬ cza miedz.Katalizator moze wystepowac np. w postaci ziar¬ na albo tabletek albo tez katalizator moze byc na¬ niesiony na nosniku takim jak tlenek glinu, kwas krzemowy, ziemia okrzemkowa, azbest, wlókno szklane, mineraly ilaste, pumeks albo wegiel akty¬ wny. W./przypadku formowania katalizatora na nosniku ,.zawartosc katalitycznie czynnych skladni- kójsy na substancji nosnej wynosi okolo 1—9'5%i wagowych, korzystnie 5—30% wagowych, w od¬ niesieniu do ogólnego ciezaru skladników katali¬ tycznie czynnych i substancji nosnika.Nanoszenie wytworzonych w wyzej opisany spo¬ sób, katalizatorów na substancje nosnika mozna np. przeprowadzic w ten sposób, ze stracanie soli kwasów cyjanowodorowych przeprowadza sie w wodnej zawiesinie materialu nosnika, oddziela sie mieszanine zlozona z wytraconej soli i materialu nosnika, suszy, przemywa i w zadanej tempera¬ turze poddaje rozkladowi termicznemu.Mozliwe jest jednak równiez impregnowanie 5 wstepnie uformowanych- materialów nosnikowych, przy czym najpierw substancje nosnika nasyca sie wodnym roztworem soli kwasu cyjanowodorowego, nastepnie suszy sie nasycony nosnik i potem na nosnik oddzialywuje sie wodnym roztworem soli 10 oowodujacej stracanie lub postepuje sie na od¬ wrót.Dalsza korzystna postac wykonania polega na wymieszaniu na sucho skladnika czynnego z nos¬ nikiem. 15 Katalizator wytworzony sposobem wedlug wy¬ nalazku, jak to jeszcze zostanie szczególowo przed¬ stawione w nastepujacych przykladach, nalezy okreslic jako technicznie postepowy, poniewaz mozna go wytwarzac w sposób ekonomiczny i w 20 reakcji monotlenku wegla z wodorem z utworze¬ niem mieszanin weglowodorów Ct—C4 wykazuje stosunkowo wysoka selektywnosc.Przyklad I. Ce4Cu24f[Fe/CN/6]J5 • 34,7g Ce /N03/3 • 6H20 i 116 g Cu/NOg/a • 3H20 rozpuszczono 25 w 1 litrze wody i nastepnie wprowadzono roz¬ twór, silnie mieszajac w temperaturze 60°C, do roztworu 12.6,7 g K4[Fe/CN/6] • 3H20 w litrze wody.Powstaly osad odsaczono i przemyto za pomoca 1,5 litra wody w porcjach po 100 ml. Osad, który 31 sumarycznie odpowiada skladowi CaCu2^[Fe/CN/6]i5, wysuszono w temperaturze 60°C, twarda mase roz¬ drobniono do srednicy czastek 1,6—2,5 mm. Przez 30 g wytworzonego w ten sposób produktu prze¬ prowadzono w temperaturze 340—350°C i pod cis- 35 nieniem 20 ata mieszanine gazowa zlozona z 50% objetosciowych H2 i 50%, objetosciowych CO. Od¬ ciagana z aparatury ilosc gazu wynosila niezmien¬ nie 25 Nl/h. Gaz reakcyjny zawieral 11,25% obje¬ tosciowych CH4, 2,45%i objetosciowych C2H4, 1,18% 40 objetosciowych C2H6, 1,7% objetosciowych C3H6 i 0,3% objetosciowych C3H8. Z umieszczonego za reaktorem oddzielacza a po uplywie 10 godzin otrzymano dodatkowo 6,4 g nie zidentyfikowane¬ go oleju.Przyklad II. Ce4Cu12{Fe/CN/6]9. Analogicznie jak w przykladzie I polaczono roztwór 52,05 g Ce/NQ3/3 .6H2O+87,0 g Cu/NO^ • 3HzO w 1 litrze wody z roztworem 114 g K4i[Fe/CN/6] • 3H20, w 1 litrze wody i powstaly osad odsaczono, przemyto, wysuszono i rozdrobniono. Przez 30 g otrzymanego produktu przeprowadzono w temperaturze 315°C i pod cisnieniem 30 ata mieszanine gazowa zlozo¬ na z 50% wagowych H2 i 50% wagowych CO. Przy odbieraniu gazu w ilosci 33 Nl/h ten ostatni zawie¬ ral 11,70/01 objetosciowych CH4, 2,7% objetoscio¬ wych C2H4, 1,38% objetosciowych C2H6, 1,78%. objetosciowych C3H6 i 0,52% objetosciowych CSH8.Po okresie produkcyjnym wynoszacym 30 godzin otrzymano jeszcze dodatkowo 60 g wysokowrza- cych weglowodorów.Przyklad III. Cu15Co0,5tFe/CN/6]. Do roz¬ tworu 0,5 mola K^Fe/CN/J w 1 litrze wody wpro¬ wadzono mieszajac roztwór 0,75 mola CuSO4i0,25 05 mola Co/N03/2 w 1 litrze wody. Po odsaczeniuIOS 753 powstalego osadu i dokladnym przemyciu woda jeszcze wilgotny placek filtracyjny wymieszano w ugniatarce laboratoryjnej ze 125 g azbestu i 125 g mialkiego kwasu krzemowego, potem wysuszono i nastepnie sprasowano na tabletki o srednicy 5 3 mm. Sklad sumaryczny placka filtracyjnego od¬ powiadal w przyblizeniu wzorowi Cu^Co^ [Fe/CN/6]. 40 g masy tabletek napelniono do rea¬ ktora i nastepnie poddano obróbce w temperatu¬ rze 320°C i pod cisnieniem 10 atn za pomoca ga- 10 zowego wodoru. Skutecznosc wytworzonego katali¬ zatora zbadano pod cisnieniem 7 atn i w tempe¬ raturze 300°C—310°C przez przeprowadzenie miesza¬ niny CO/H2 w stosunku 1:1. Odciagana niezmiennie ilosc ogólna 25 Nl/h gazu reakcyjnego zawierala 15 11,5% objetosciowych CH4, 2,86% objetosciowych C2H4, 0,74% objetosciowych C2H6, 2,14% objeto¬ sciowych C3H6 i 0,31% objetosciowych CaH8. Przy cisnieniu 4 atn, w temperaturze 290°C i ilosci gazu odlotowego 10 Nl/h gaz odlotowy zawieral 9,38% 20 objetosciowych CHj, 2,0% objetosciowe C2H4, 0,32% objetosciowych C2H6, 1,37% objetosciowych C$H6 i 1,37% objetosciowych C3H8.Przyklad IV. OuFe^Ni^CFe/CN/J. Do roz¬ tworu 211,2 g K^Fe/CN/g] w 1 litrze wody wpro- 25 wadzono mieszajac 2 litry wodnego roztworu, któ¬ ry zawieral 137,3 g CuS04 • 5HzO, 93,2 g FeS04 • 7H20 i 51,2 g NiS04 • 7H20, silnie miesza¬ jac. Powstaly osad odsaczono, przemyto woda i placek filtracyjny, który sumarycznie odpowiada 30 wzorowi CUiFejj/gNii/atFe/CN/g], wymieszano ze 125 g azbestu i 125 g kwasu krzemowego, wysuszono i sprasowano na tabletki. 40 g tych tabletek na¬ pelniono do reaktora i poddawano obróbce w cia¬ gu 2 godzin za pomoca Hg w temperaturze 320°C 35 pod cisnieniem 10 atn. Przy przeprowadzaniu mieszaniny gazowej zlozonej z H2 i CO w stosun¬ ku objetosciowym 1 : 1 przez mase tabletek pod cisnieniem 10 atn i w temperaturze 340°C gaz od¬ lotowy przy odbieraniu stalej ilosci 10 Nl/h zawie- 40 ral 13,6%: objetosciowych CH4, 0,81% objetoscio¬ wych C2H4, 2,56% objetosciowych C2H6, 1,61% objetosciowych C3H& i 0,35%i objetosciowych C3H8.Przyklad V. Cod[Fe/CN/6]. Roztwór 1/5 mola K^[Fe/CN/6] w 0,8 litra wody polaczono z roztwo- 45 rem, który zawieral 2/5 mola Co/N03/2 w 0,5 litra wody. Wytracajacy sie osad odsaczono i przemyto dokladnie za pomoca 1,5 litra wody, do której do¬ dano 1/5 mola Co/NOs/2 na litr roztworu myjacego, i nastepnie wymieszano z 50 g azbestu i 50 g kwa- 50 su krzemowego, mieszanine wysuszono i tabletko¬ wano. Dalsza obróbke masy tabletek przeprowa¬ dzono analogicznie jak w przykladzie IV w tem¬ peraturze 280°C, przy czym gaz reakcyjny zawie¬ ral 12,32% objetosciowych CH4, 1,66% objetoscio- 55 wych C2H4, 0,96% objetosciowych C2H6, 1,96% objetosciowych G8H6 i 0,35% objetosciowych CSH8.Wyzej wrzace kondensaty po uplywie 55 godzin otrzymano w ilosci 36 g.Przyklad VI. Fe^NilPe/CN/J* Analogicznie 6ft . jak w przykladzie I z Fe/NOa/8 • 9H20, Ni/NO^ . • 6H20 i K^Fe/CN/J wytworzono . kompleksowy cyjanek o skladzie sumarycznym Fe2Nil[Fe/CN/6]2 i przez ten ostatni przeprowadzano jak w przykla¬ dzie I mieszanine zlozona z CO i H2. Odciagany 65 6 gaz reakcyjny zawiera. 32,48% objetosciowych CH4, 0,06% objetosciowych C2H4, 3,44%, objetosciowych C2H6, 1,47% objetosciowych C3H6, 1,05% objetoscio¬ wych C3H8. W ciagu 20 godzin otrzymano dodatko¬ wo 10 g weglowodorów cieklych; Przyklad VII. Mngi[Fe/CN/6]2. Analogicznie jak w przykladzie I z wodnych roztworów 0,3 mola MnS04 i 0,2 mola K^Fe/CN/J wytworzono wytracony osad o skladzie sumarycznym Mn^[Fe/CN/6]2 i ten ostatni przemyto, wysuszono i rozdrobniono. Przez 30 g tak otrzymanego produ¬ ktu przeprowadzano w temperaturze 310°C i pod cisnieniem 4 atn mieszanine gazowa zlozona z CO i H2 w stosunku objetosciowym 1 : 1. Odciagana z aparatury ilosc gazu wynosila niezmiennie 10 Nl/h i zawierala 6,76%- objetosciowych CH4, 0,52% objetosciowych C2H4, 1,96%. objetosciowych C2H6, 1,68% objeto¬ sciowych CaH6 i 0,77% objetosciowych CaH8.Przyklad VIII. Cu^Mno^Fe/CN/g] Przez reakcje 0,2 mola K^Fe/CN/J • 3H.A 0,3 mola CuS04 • 5H20 i 0,1 mola MnS04 • H20 w roztworze wodnym otrzymano wytracony osad o skladzie sumarycznym Cu^Mno^Fe/CN/g]. Dalsza obróbke osadu przeprowadzono analogicznie jak w przykla¬ dzie VII. Odciagany gaz reakcyjny zawieral 8,4% objetosciowych CH4, 2,04% objetosciowych 0^4, 1,3% objetosciowych C2H6, 3,8% objetoscio¬ wych C3H6 i 0,49%i objetosciowych C8H8. W zakre¬ sie produkcyjnym wynoszacym 62 godziny otrzy¬ mano dodatkowo jeszcze 25,5 g weglowodorów cieklych.Przyklad IX. Cu^Nic^e/CN/J. 40 g opisa¬ nej w przykladzie III soli kompleksowej o wzorze CUi^NicglFe/CN/e] zasilono mieszanina gazowa zlo¬ zona z CO i H2 w stosunku objetosciowym 1 : 1 w temperaturze 320°C i pod cisnieniem 4 aitn, przy czym odciagana ilosc gazu wynosila niezmiennie 25 Nl/h. Gaz reakcyjny zawieral 17,78% objeto¬ sciowych CH4, 0,04% objetosciowych C2H4, 2,2% objetosciowych C2H6, 0,35% objetosciowych C8H6 i 0,91% objetosciowych C3H8. Nie zaobserwowano tworzenia oleistych weglowodorów wyzszych.Przyklad X. Cu^Co/CN/Jg. Osad, otrzymany przez reakcje K^[Co/CN/6] z octanem miedzi w roz¬ tworze wodnym przerobiono na tabletki w sposób analogiczny do opisanego w przykladzie III i przez 40 g masy tabletek przeprowadzono mieszanie ga¬ zowa zlozona z CO i Ej w stosunku 1 : 1 w tem¬ peraturze 340°C i pod cisnieniem 10 atn. Odcia¬ gana ilosc gazu wynosila niezmiennie 10 l/h, przy czym strumien gazu zawieral 16% objetosciowych CH4, 0,16% objetosciowych C2H4, 1,70% objetoscio¬ wych C2H6, 0,63%, objetosciowych CSH6 i 0,32% objetosciowych C3H8. Wyzsze ciekle weglowodory utworzyly sie w ciagu 13 godzin w ilosci 2,1 g.Przyklad XI. Ag3'[CO/CN/6]. Przez stracanie z Ks[Co/CN/6] za pomoca AgNOs w rozcienczonym wodnym roztworze kwasu octowego wytworzono sól kompleksowa o skladzie sumarycznym Ag^[Co/CN/6]. Osad analogicznie jak w przykladzie III tabletkowano z azbestem i kwasem^ krzemo¬ wym i 40 g tych tabletek zasilano mieszanina ga¬ zowa zlozona z Co^i H2 w stosunku objetosciowym 1 : 1 pod cisnieniem 10 atn i w temperaturze109 758 8 320°C. Ilosc gazu odlotowego wynosila niezmiennie 10 Nl/h, przy czym gaz zawieral 12,3% objetoscio¬ wych CH4, 0,05% objetosciowych CgH^ 1,06% objeto¬ sciowych C2H6, 0,35% objetosciowych C3H6 i 0,40% objetosciowychC8H8. 5 Przyklad XII. CuJMn/CN/J. Sól komplekso¬ wa, wytworzona przez stracanie K^Mn/CN^] za pomoca amoniakalnego roztworu soli miedzi jed- nowartosciowej, zasilano w warunkach opisanych w przykladzie XI mieszanina gazowa zlozona z CO io i Hj. Gaz odlotowy zawieral 1,6% objetosciowych CH*, 0,3% objetosciowych C2H4, 0,4% objetoscio¬ wych C2H6, 0,3% objetosciowych C5H6 i 0,12% obje¬ tosciowych CgH8. Ciekle wyzsze weglowodory nie utworzylysie. 15 Przyklad XIII. Mry[Fe/CN/J. Do roztworu 0,2 mola K4{Fe/CN/6] w 1 litrze wody wprowadzo¬ no mieszajac 1 litr roztworu wodnego, który za¬ wieral 0,4 mola MnS04. Wytracony bialy osad, któ¬ ry mial sumaryczny sklad Mn2[Fe/CN/6], odsaczo- 20 no, przemyto i tabletkowano w sposób opisany w przykladzie V, po domieszaniu azbestu i kwasu krzemowego. Przez 50 ml tabletkowanego produ^ ktu przeprowadzono w temperaturze 315°C i pod cisnieniem 4 atn mieszanine gazowa zlozona z 50% 25 objetosciowych CO i 50% objetosciowych H2. Ilosc gazu odlotowego wynosila 10 NI gazu na godzine.Gaz reakcyjny zawieral 4,74% objetosciowych CH4, 1,76% objetosciowych C^, 0,72% objetosciowych CA, 2,59% objetosciowych CjHg i 0,24% objeto- 30 sciowych CSH8. W ciagu 100 godzin produkcji po- ^afeplo dodatkowo 28,3 g weglowodorów cieklych.Krzyk lad XIV. Mg/NH4/^[Fe/CN/G]. Przez po- ,lar.7+nie roztworów wodnych, które zawieraly ste- chiometryczne ilosci MgCl2, chlorku amonu i ze- 3| lazocyjanku potasu, wytworzono zelazocyjanek ma- gnezowoamonowy.Po wysuszeniu soli kompleksowej wprowadzono 10 g substancji o wielkosci ziarna 2 mm do rea¬ ktora i zasilano w temperaturze 320°C i pod cis- 40 nieniem 20 atn mieszanina gazowa zlozona z CO i H2 w stosunku objetosciowym 1:1. Przy nie¬ zmiennej ilosci gazu olotowego wynoszacej 20 Nl/h gaz reakcyjny zawieral 15,9% objetosciowych CH4, 0,5% objetosciowych C2H4, 2,35% objetosciowych 45 C2H$ 0,3% objetosciowych QH6 i 0,77% objetoscio¬ wych CjHg. W ciagu 22 godzin otrzymano dodatko¬ wo 19 g wyzszych weglowodorów cieklych.Przyklad XV. Ca/NH4/^Fe/CN/6]. Analogicz¬ nie jak w przykladzie XIV wytworzono zelazocy- 50 jtjaadfc* wapniowoamonowy i sól kompleksowa w ^waiamkach opisanych w przykladzie XIV zasialno ^gazowa mieszanina CO/H2. Odciagany w ilosci 20 Nl/h gaz reakcyjny zawieral 111,2% objetoscio¬ wych CH4, 1,02% objetosciowych CJlA, 0,85% obje- 55 tosciowych C^e, 0,77%. objetosciowych C$H6 i 0,43% objetosciowych CSH8. W ciagu 27 godzin powstalo dodatkowo 19,6 g weglowodorów cieklych.Przyklad XV. ZnjTe/CN/6]2. Przez reakcje 0,6 mola ZnS04 • 7H20 z 0,4 mola KJFe/CN/6] w 60 roztworze wodnym, który zawieral 279' g Si02 /Ketjen SiOzFx/, wytworzono osad o skladzie su¬ marycznym Zn5[Fe/CN/6] • x Si02 • 27 g tej mie¬ szaniny zasilano mieszanina gazowa /CO:H2=1:1/ pod cisnieniem 9,5 atn. W temperaturze 340°C 85 i przy 15 Nl/h gazu odlotowego otrzymano naste¬ pujacy sklad: 8,5% objetosciowych CH4, 1,6% obje¬ tosciowych C2H4, 1,4% objetosciowych C2H6 oraz weglowodory wyzsze.Przyklad XVII. Ag^[Fe/CN/6]. Z wodnego roztworu K^Fe/CN/J przez dodanie AgNOs wy¬ tracono sól kompleksowa o skladzie sumarycznym Ag4[Fe/CN/6], te ostatnia przemyto woda i po do¬ mieszaniu azbestu i kwasu krzemowego sprasowa¬ no na tabletki o srednicy 3 mm. 115 g tabletkowa¬ nego produktu wprowadzono do reaktora i zasi¬ lano mieszanina gazowa zlozona z CO i H2 w sto¬ sunku objetosciowym 1 : 1 w temperaturze 340°C i pod cisnieniem 20 atn. Gaz odlotowy odciagany w ilosci 10 Nl/h zawieral 10,71% objetosciowych CH4, 0,7% objetosciowych C2H4, 1,9% objetoscio¬ wych C2H6, 71% objetosciowych C*H6 i 0,5% obje¬ tosciowych C3H8.Przyklad XVIII. CeAg[Fe/CN/6]. Przez rea¬ kcje azotanu cerawego, AgNOs i K/Fe/CN/g] w roztworze wodnym wytworzono osad o skladzie sumarycznym CeAg[Fe/CN/6]. Po przemyciu i wy¬ suszeniu osadu w temperaturze 60°C rozdrobniono go na odlamki o wielkosci 1—2,5 mm. Przy prze¬ prowadzaniu mieszaniny gazowej zlozonej z 33% objetosciowych CO i 67% objetosciowych H2 przez 30 g produktu o ksztalcie odlamków w tempera¬ turze 370°C i pod cisnieniem 10 atn gaz odlotowy odciagany w ilosci 15 Nl/h zawieral 11,9% objeto^ sciowych CH4, 2,62% objetosciowych C2H4, 0,6% objetosciowych C^g, 1,25% objetosciowych C^He i 0,25% objetosciowych C^H*.Przyklad XIX. Ag2Fe[/CN/6] • 0,5 mola osa¬ du, wytworzonego przez stracanie, o skladzie su¬ marycznym AggFeCFe/CN/J wymieszano z 250 g tlenku glinu oznaczonego Condea NG i nastepnie grudkowano. 30 g grudek o srednicy 1,5—2,5 mm wprowadzono do reaktora i zasilano w temperatu¬ rze 320°C i pod cisnieniem 20 atn mieszanina ga¬ zowa zlozona z 50% objetosciowych CO i 50% objetosciowych H2. Gaz reakcyjny, odciagany w ilosci 30 Nl/h, zawieral 24,1% objetosciowych CH4r 0,9% objetosciowych C2H4, 4,32% objetosciowych C2H6, 2,04% objetosciowych C8H6 i 1,1<8% objeto¬ sciowych C8H8. W ciagu 26 godzin powstalo do¬ datkowo 25 g cieklych weglowodorów wyzszych.Przyklad XX. Ag^Fe[/CN/6]. Osad wytworzo¬ ny wedlug przykladu XIX zmieszano z azbestem i kwasem krzemowym i mieszanine sprasowano na tabletki o srednicy 3 mm. Do 0,5 mola Ag2Fe[Fe/CN/6] domieszano 125 g azbestu i 125 g kwasu krzemowego. 30 g tabletkowanego produ¬ ktu zasilano w temperaturze 320°C i pod cisnie¬ niem 20 atn mieszanina gazowa zlozona z CO iH2 w stosunku objetosciowym 1 : 1. Mieszanina re¬ akcyjna odciagana w ilosci 30 Nl/h zawierala 10,62% objetosciowych CH4, 2,64% objetosciowych C2H4, 1,95% objetosciowych C2H6, 2,52% objetoscio¬ wych C8H6 i 0,67% objetosciowych C,H8. W ciagu 18 godzin produkcji powstalo 6,8 g weglowodorów wyzszych.Zastrzezenia patentowe 1. Sposób wytwarzania katalizatora do redukcji monotlenku wegla za pomoca wodoru z utworze-109 758 9 10 niem weglowodorów o 1—4 atomach wegla, przy czym katalizator sklada sie z zelaza, kobaltu, nik¬ lu albo miedzi w mieszaninie z co najmniej jed¬ nym innym metalem jako skladników czynnych, znamienny tym, ze z wodnego roztworu zelazocy- janku potasu za pomoca wodnego roztworu soli metalu wytraca sie sól kompleksowa o ogólnym wzorze Mei[Men/CN/x] w którym Mei oznacza ja¬ ko skladnik kationowy pierwiastki Ce, Cu, Co, Ni, Fe, Mn, Zn albo Ag lub mieszaniny tych pier¬ wiastków albo Ca lub Mg w mieszaninie z /NH4/, Men oznacza jako skladnik anionowy pierwiastki Co, Fe albo Mn, a x oznacza sume wartosciowosci metali, przy czym jednakze Mei i Men nie moze oznaczac samego zelaza lub w mieszaninie z mie¬ dzia, wytracony osad ewentualnie osadza sie na nosniku, suszy i poddaje rozkladowi termicznemu w temperaturze 200—500°C pod zmniejszonym cis¬ nieniem albo pod cisnieniem do 100 ata. 2. Sposób wedlug zastrz. 1, znamienny tym, ze rozklad soli kompleksowej przeprowadza sie w obecnosci wodoru albo mieszanin zlozonych z wo¬ doru i monotlenku wegla w temperaturze 200— —500°C oraz z zastosowaniem cisnienia 1—100 ata, w* szczególnosci 4—30 ata. 3. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o ogólnym wzorze Mei[Men /CN/X], w którym Men oznacza zelazo i Mei ozna¬ cza srebro, cynk, kobalt albo mangan. 4. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o ogólnym wzorze Mer[Men /CN/X], w którym Men oznacza zelazo i Mei ozna¬ cza mieszaniny miedzi z zelazem i niklem albo miedzi z cerem albo kobaltem albo manganem. 5. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o ogólnym wzorze Mei[Men/CN/x], w którym Men oznacza zelazo i Mei oznacza mieszaniny srebra z cerem albo ze¬ lazem. 6. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o ogólnym wzorze Mei[Men/CN/x], w którym Men oznacza zelazo i Mei oznacza mieszaniny wapnia albo magnezu z NH4. 7. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o wzorze ogólnym Mei[Men/CN/x], w którym Men oznacza kobalt i Mei oznacza miedz albo srebro. 8. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o wzorze ogólnym Mei[Meii/CN/x], w którym Men oznacza mangan i Mei oznacza miedz. 9. Sposób wedlug zastrz. 1, znamienny tym, ze termiczny rozklad soli przeprowadza sie w tempe¬ raturze 200—350°C. 10. Sposób wedlug zastrz. 1, albo 2, albo 3, albo 4, albo 5, albo 6, albo 7, albo 8, znamienny tym, ze sole kompleksowe podczas wytracania nanosi sie na nosnik, przy czym zawartosc soli wynosi 1—95°/o wagowych ogólnej masy katalizatora. 11. Sposób wedlug zastrz. 10, znamienny tym, ze jako substancje nosna stosuje sie tlenek glinu, kwas krzemowy, ziemie okrzemkowa, azbest, wló¬ kno szklane, mineraly ilaste, pumeks albo wegiel aktywny. 12. Sposób wedlug zastrz. 10, znamienny tym, ze zawartosc skladników katalitycznie czynnych na substancji nosnej wynosi 5—30% wagowych, w odniesieniu do ogólnego ciezaru skladników kata¬ litycznych czynnych i substancji nosnej. 13. Sposób wedlug zastrz. 1, albo 2, albo 3, albo 4, albo 5, albo 6, albo 7, albo 8, albo 9, albo 11, albo 12, znamienny tym, ze podczas obróbki ter¬ micznej stosuje sie zmniejszone cisnienie wyno¬ szace okolo 1 do ponizej 760 torów. 10 15 20 25 30 PLThe present invention relates to the preparation of a catalyst for the reduction of carbon monoxide with hydrogen to form mixtures of hydrocarbons with 1 to 4 carbon atoms by partial or complete decomposition of certain complex metal cyanides. One of the most important lower hydrocarbons which are In the chemical industry, ethylene is widely used as starting products for the production of numerous secondary products. Due to the high demand for ethylene, it is noteworthy that other sources of raw materials than petroleum are available for this product. Water gas obtained by reacting carbon with steam at high temperature is suitable as such a source of raw materials. The catalytic hydrogenation of carbon monoxide with the formation of hydrocarbons is described in detail, for example, by Winnacker-Weingaertner in Chemische Technologies, Tom Organische Technologie. I, pp. 780-803, Carl Hauser Verlag, Munich, 1052. In this reaction, mainly all hydrocarbons of the olefin and paraffin series are formed in varying amounts, depending on the catalyst and reaction conditions used. It has been found in the literature, inter alia, that in the hydrogenation of CO with the use of iron or mixtures of iron and copper as a catalyst, in contrast to cobalt catalysts, the formation of 2 olefins is favored, and the proportion of methane is reduced, Known catalysts are so-called lost catalysts. For their production, for example, metals are dissolved in nitric acid and burned quickly into a dry state by means of a solution of an alkali metal carbonate. After loss, the sediment is filtered, washed with water, dried at 11) 0 ° C, broken and sieved. The reduction of the screened material is carried out by introducing hydrogen or synthesis gas at a temperature of 225 ° C and a pressure of 10 atm. The catalysts prepared as described above, made of iron or iron and copper, are catalytically active in the hydrogenation of CO. unsatisfactory as the content of C2-C4 hydrocarbons, in particular C2 hydrocarbons, in the reaction gas is too low, i.e. these catalysts are not sufficiently selective with respect to the formation of lower olefinic hydrocarbons. No. 10759, p. 1, it is known to accelerate the reaction of CO with HgZ by the formation of hydrocarbons with the aid of a catalyst which, in addition to a significant amount of iron, nickel or cobalt or their cyanide complex compounds, additionally contains cadmium or thallium or compounds thereof or mixtures of the listed ingredients. The activity of this contact mass can be increased by adding pn. copper. When this catalyst is used, a mixture of products is obtained, which consists of hydrocarbons, higher alcohols and ethers. The known catalyst is not selective with respect to the formation of lower hydrocarbons. The subject of the invention is therefore a method of producing a catalyst for the reduction of carbon monoxide with water to form mixtures of hydrocarbons having 1-4 carbon atoms, the catalyst consisting of iron, cobalt, nickel or copper in admixture with at least one other metal as active ingredients, which consists in separating the complex salt of the general formula Mei {Meii from an aqueous solution of potassium ferrocyanide with an aqueous solution of the metal salt. (CN / x], in which Mei as the cationic component represents the elements Ce, Cu, Co, Ni, Fe, Mn, Zn or Ag or mixtures of these elements or Ca or Mg in a mixture with (NH4), Men as the anionic component denotes the elements Co, Fe or Mn and x denotes the sum of the value of metals, but Mei and Men cannot, however, denote iron alone or in a mixture with copper, the precipitate is possibly applied to the carrier, dried and under gives thermal decomposition at a temperature of 200-500 ° C. under reduced pressure or under a pressure of up to 100 atm. A preferred embodiment for the preparation of the catalyst is that the thermal decomposition of the complex salt is carried out in the presence of hydrogen or mixtures of hydrogen and can. carbon monoxide at a temperature of 200-500 ° C and using a pressure of 1-100 atm, especially 4-30 atm. From the ionic components present in the general formula Me]} [Men / CN / x] as Mei or Men Certain combinations have proved to be advantageous. In the case where Men denotes iron, combinations such as silver, zinc, cobalt or manganese or mixtures of copper with iron and nickel or copper with ceremony or cobalt or manganese or mixtures of silver with ceremony or iron are distinguished as a component of Mei. or mixtures of calcium or magnesium with NH4. If Men is cobalt, copper or silver are particularly suitable as the Mei component. Finally, the general formula Meii [Meii / CN / x] includes the preferred combination of metals, which is that Men is manganese and Mei is copper. The catalyst may be, for example, in the form of grains or tablets, or the catalyst may be be applied to a carrier such as alumina, silicic acid, diatomaceous earth, asbestos, glass fiber, clay minerals, pumice or activated carbon. In the case of the formation of the carrier catalyst, the content of the catalytically active ingredients on the carrier material is about 1-5% by weight, preferably 5-30% by weight, based on the total weight of the catalytically active ingredients and The application of the catalysts prepared as described above on the carrier substances can, for example, be carried out in such a way that the loss of the hydrocyanic acid salts is carried out in an aqueous suspension of the carrier material, the mixture consisting of the lost salt and the carrier material is separated, dried, it is washed and subjected to thermal decomposition at a given temperature. However, it is also possible to impregnate 5 pre-formed carrier materials, whereby the carrier substances are first saturated with an aqueous solution of hydrocyanic acid salts, then the saturated carrier is dried and then the carrier is treated with the aqueous salt solution 10 resulting in a loss, or the reverse is followed. A further preferred form is performed It consists in dry mixing the active ingredient with the carrier. The catalyst prepared according to the invention, as will be shown in more detail in the following examples, is to be described as technically progressive, since it can be produced economically and by reacting carbon monoxide with hydrogen to form Ct-C4 hydrocarbon mixtures. shows relatively high selectivity. Example I. Ce4Cu24f [Fe / CN / 6] J5 • 34.7 g Ce / NO3 / 3 • 6H2O and 116 g Cu / NOg / a • 3H2O were dissolved in 1 liter of water and then the solution was introduced , with vigorous stirring at 60 ° C, to a solution of 12.6.7 g of K4 [Fe / CN / 6] • 3H2O in 1 liter of water. The resulting precipitate was filtered off and washed with 1.5 liters of water in 100 ml portions. The precipitate, which in total corresponds to the composition of CaCl2 [Fe / CN / 6] and 5, was dried at a temperature of 60 ° C., and the hard mass was ground to a particle diameter of 1.6-2.5 mm. 30 g of the product thus obtained were passed through at 340-350 ° C. and a pressure of 20 g. A gas mixture consisting of 50% by volume H 2 and 50% by volume CO. The amount of gas withdrawn from the apparatus was constantly 25 Nl / h. The reaction gas contained 11.25% by volume CH4, 2.45% by volume C2H4, 1.18% by volume C2H6, 1.7% by volume C3H6 and 0.3% by volume C3H8. An additional 6.4 g of unidentified oil was obtained from a separator downstream of the reactor after 10 hours. Example II. Ce4Cu12 {Fe / CN / 6] 9. Similarly as in example I, a solution of 52.05 g Ce / NQ3 / 3 .6H2O + 87.0 g Cu / NO ^ • 3HzO in 1 liter of water was combined with a solution of 114 g K4i [Fe / CN / 6] • 3H20, in 1 liter of water and the resulting precipitate was filtered off, washed, dried and ground. 30 g of the product obtained were brought into a gas mixture of 50% by weight H 2 and 50% by weight CO at a temperature of 315 ° C. and a pressure of 30%. At a gas withdrawal of 33 Nl / h, the latter contained 11.70 / 01 by volume CH4, 2.7% by volume C2H4, 1.38% by volume C2H6, 1.78% by volume. by volume C3H6 and 0.52% by volume CSH8. After a production period of 30 hours, an additional 60 g of high-boiling hydrocarbons were obtained. Example III. Cu15Co0.5tFe / CN / 6]. A solution of 0.75 moles of CuSO.sub.4.0.25 moles of Co (NO.sub.3) 2 in 1 liter of water was introduced into a solution of 0.5 mole of K3 Fe / CN / J in 1 liter of water. After filtering off the IOS 753 precipitate and thoroughly washing the water, the still wet filter cake was mixed in a laboratory kneader with 125 g of asbestos and 125 g of fine silicic acid, then dried and then pressed into tablets with a diameter of 5 - 3 mm. The total composition of the filter cake corresponded approximately to the formula Cu ^Co ^ [Fe / CN / 6]. 40 g of tablet mass was filled into a reactor and then processed at 320 ° C. and 10 atm with hydrogen gas. The effectiveness of the catalyst prepared was tested at a pressure of 7 atm and a temperature of 300 ° C to 310 ° C by passing a 1: 1 CO / H 2 mixture. The total withdrawn total amount of 25 Nl / hr of reaction gas consistently contained 11.5% by volume CH4, 2.86% by volume C2H4, 0.74% by volume C2H6, 2.14% by volume C3H6 and 0.31% by volume CaH8. At a pressure of 4 atm, at a temperature of 290 ° C and an exhaust gas quantity of 10 Nl / h, the exhaust gas contained 9.38% by volume CHj, 2.0% by volume C2H4, 0.32% by volume C2H6, 1.37% by volume C $ H6 and 1.37% by volume C3H8. Example IV. OuFe ^ Ni ^ CFe / CN / J. 2 liters of an aqueous solution containing 137.3 g of CuSO 4 · 5 HzO, 93.2 g of FeSO 4 · 7 H 2 O and 2 liters of water were added to a solution of 211.2 g of K4 Fe / CN / g] in 1 liter of water. 51.2 g. NiSO 4. 7H 2 O, stirring vigorously. The precipitate formed was filtered off, washed with water and a filter cake, which in total corresponds to the formula CUiFej / gNii / atFe / CN / g], mixed with 125 g of asbestos and 125 g of silicic acid, dried and pressed into tablets. 40 g of these tablets were filled into a reactor and processed for 2 hours with Hg at 320 ° C. and 10 atm. When passing a gas mixture of H 2 and CO in a volume ratio of 1: 1 through the tablet mass at a pressure of 10 atm and a temperature of 340 ° C, the exhaust gas, while taking a constant amount of 10 Nl / h, contained 13.6%: % by volume CH4, 0.81% by volume C2H4, 2.56% by volume C2H6, 1.61% by volume C3H & and 0.35% by volume C3H8. Example V. Cod [Fe / CN / 6]. A solution of 1/5 mole of K ^ [Fe / CN / 6] in 0.8 liter of water was combined with the solution which contained 2/5 mole of Co / NO3 / 2 in 0.5 liter of water. The precipitate was filtered off and washed thoroughly with 1.5 liters of water, to which was added 1/5 mole of Co / NO3 / 2 per liter of washing solution, and then mixed with 50 g of asbestos and 50 g of silicic acid, the mixture was dried and tableted. Further processing of the mass of tablets was carried out in the same way as in Example IV at a temperature of 280 ° C., the reaction gas contained 12.32% by volume of CH4, 1.66% by volume of C2H4, 0.96% by volume of C2H6. , 1.96% by volume G8H6 and 0.35% by volume CSH8. Above boiling condensates after 55 hours were obtained in an amount of 36 g. Example VI. Fe ^ NilPe / CN / J * Same as 6ft. as in example I with Fe / NOa / 8 · 9H2O, Ni / NO ^. • 6H 2 O and K 3 Fe / CN / J were produced. complex cyanide of the total composition Fe2Nil [Fe / CN / 6] 2 and through the latter a mixture consisting of CO and H 2 was carried out through the latter, as in Example 1. The extracted reaction gas contains. 32.48% by volume CH4, 0.06% by volume C2H4, 3.44% by volume C2H6, 1.47% by volume C3H6, 1.05% by volume C3H8. An additional 10 g of liquid hydrocarbons were obtained in 20 hours; Example VII. Mngi [Fe / CN / 6] 2. By analogy with example 1, a precipitate with the total composition of Mn2 [Fe / CN / 6] 2 was produced from aqueous solutions of 0.3 mol MnSO 4 and 0.2 mol K 2 Fe / CN / J and the latter was washed, dried and ground. A gas mixture of CO and H 2 in the volume ratio of 1: 1 was carried out through 30 g of the product thus obtained at a temperature of 310 ° C and a pressure of 4 atmospheres. The amount of gas withdrawn from the apparatus was invariably 10 Nl / h and was 6.76% - by volume CH4, 0.52% by volume C2H4, 1.96%. % by volume C2H6, 1.68% by volume CaH6, and 0.77% by volume CaH8. Example VIII. Cu ^ Mno ^ Fe / CN / g] The reaction of 0.2 mole K ^ Fe / CN / J • 3H.A 0.3 mole CuSO4 • 5H20 and 0.1 mole MnSO4 • H20 in aqueous solution resulted in a precipitate of the following composition: total Cu ^ Mno ^ Fe / CN / g]. Further treatment of the precipitate was carried out in the same way as in Example VII. The pull-off gas contained 8.4% by volume CH4, 2.04% by volume 0-4, 1.3% by volume C2H6, 3.8% by volume C3H6 and 0.49% by volume C8H8. An additional 25.5 g of liquid hydrocarbons were obtained in a production time of 62 hours. Example IX. Cu ^ Nic ^ e / CN / J. 40 g of the complex salt of the formula CUi-NicglFe / CN / e] described in Example III were fed into a gas mixture of CO and H 2 in a 1: 1 by volume ratio at 320 ° C. and a pressure of 4 a.m. the amount of gas was invariably 25 Nl / h. The reaction gas contained 17.78% by volume CH4, 0.04% by volume C2H4, 2.2% by volume C2H6, 0.35% by volume C8H6 and 0.91% by volume C3H8. The formation of oily higher hydrocarbons was not observed. Example X. Cu ^ Co / CN / Jg. The precipitate, obtained by reacting K 3 [Co / CN / 6] with copper acetate in an aqueous solution, was processed into tablets in a manner analogous to that described in Example III, and gas consisting of CO and Ej was mixed with 40 g of tablet weight. in a 1: 1 ratio at 340 ° C. and 10 atmospheres pressure. The amount of gas extracted was consistently 10 l / h, the gas stream containing 16% by volume CH4, 0.16% by volume C2H4, 1.70% by volume C2H6, 0.63% by volume CSH6 and 0.32% by volume. volumetric C3H8. Higher liquid hydrocarbons were formed in 13 hours in an amount of 2.1 g. Example XI. Ag3 '[CO / CN / 6]. By loss of Ks [Co / CN / 6] with AgNOs in dilute aqueous acetic acid solution, a complex salt with the sum of Ag 2 [Co / CN / 6] was prepared. The sediment was pelleted with asbestos and silicic acid in the same way as in Example III, and 40 g of these tablets were fed with a gas mixture consisting of CO2 and H2 in a 1: 1 ratio by volume at a pressure of 10 atm and a temperature of 109 758 8 320 ° C. The amount of waste gas was invariably 10 Nl / h, with the gas containing 12.3% by volume of CH4, 0.05% by volume of CgH, 1.06% by volume of C2H6, 0.35% by volume of C3H6 and 0.40% by volume. volumetric valves C8H8. 5 Example XII. CuJMn / CN / J. The complex salt, prepared by the loss of K MMn / CN]] with an ammoniacal monovalent copper salt solution, was fed under the conditions described in Example XI to a gas mixture consisting of CO0 and Hj. The waste gas contained 1.6% by volume CH *, 0.3% by volume C2H4, 0.4% by volume C2H6, 0.3% by volume C5H6 and 0.12% by volume CgH8. The higher hydrocarbons did not form. Example XIII. Mry [Fe / CN / J. To a solution of 0.2 moles of K4 (Fe / CN / 6) in 1 liter of water, 1 liter of an aqueous solution containing 0.4 moles of MnSO 4 was introduced with stirring. The precipitated white precipitate, which had a total composition of Mn2 [Fe / CN / 6], was drained, washed and tabletted as described in Example 5, after admixing asbestos and silicic acid. A gas mixture of 50% CO by volume and 50% H 2 by volume was made at a temperature of 315 ° C and a pressure of 4 atmospheres for 50 ml of the tableted product. The amount of off-gas was 10 NI of gas per hour. The reaction gas contained 4.74% by volume CH4, 1.76% by volume C ^, 0.72% by volume CA, 2.59% by volume CjHg and 0.24% by volume CjHg. CSH8. During 100 hours of production of polafeplo, an additional 28.3 g of liquid hydrocarbons. Example XIV. Mg / NH4 / 4 [Fe / CN / G]. By polarity of 7+ aqueous solutions which contained stoichiometric amounts of MgCl2, ammonium chloride and ze- 3 | After the complex salt was dried, 10 g of a substance with a grain size of 2 mm were introduced into the reactor and fed at a temperature of 320 ° C and a pressure of 20 atmospheres with a gas mixture consisting of CO and H2 in the ratio volumetric 1: 1. With a constant amount of volatile gas of 20 Nl / h, the reaction gas contained 15.9% by volume CH4, 0.5% by volume C2H4, 2.35% by volume 45 C2H, 0.3% by volume QH6 and 0.77% by volume. outgoing CjHg. An additional 19 g of the higher hydrocarbons were obtained in 22 hours. Example XV. Ca (NH 4) 4 Fe / CN / 6]. By analogy with Example XIV, the iron-calcium ammonium chloride and the complex salt were prepared in the forms described in Example XIV. CO / H 2 gas supply mixture. The reaction gas pulled off at 20 Nl / h contained 111.2% by volume CH4, 1.02% by volume CJlA, 0.85% by volume C6e, 0.77% by volume. C $ H6 by volume and 0.43% by volume CSH8. An additional 19.6 g of liquid hydrocarbons were produced in 27 hours. Example XV. ZnjTe / CN / 6] 2. By reacting 0.6 moles of ZnSO4. 7H2O with 0.4 moles of KJFe (CN) in an aqueous solution containing 279 g of SiO2 (Ketjen SiOzFx), a precipitate of Zn5 sum composition [Fe (CN / 6) was produced. 27 g of this mixture was fed with a gas mixture (CO: H 2 = 1: 1) under a pressure of 9.5 atm. At a temperature of 340 ° C 85 and 15 Nl / h of off-gas the following composition was obtained: 8.5% by volume CH4, 1.6% by volume C2H4, 1.4% by volume C2H6 and higher hydrocarbons. Example XVII. Ag ^ [Fe / CN / 6]. A complex salt of the total composition Ag4 [Fe / CN / 6] was precipitated from the aqueous K4 Fe / CN / J solution by adding AgNO 5, the latter was washed with water and, after mixing asbestos and silicic acid, compressed into tablets with a diameter of 3 mm. 115 g of the pelletized product was introduced into the reactor and a gas mixture of CO and H 2 in a 1: 1 volume ratio by volume was fed at a temperature of 340 ° C and a pressure of 20 atm. The exhaust gas extracted at 10 Nl / h contained 10.71% by volume CH4, 0.7% by volume C2H4, 1.9% by volume C2H6, 71% by volume C * H6 and 0.5% by volume C3H8. XVIII. CeAg [Fe / CN / 6]. By reacting cerium nitrate, AgNOs and K / Fe / CN / g] in an aqueous solution, a precipitate was produced with the total composition of CeAg [Fe / CN / 6]. After washing and drying the precipitate at a temperature of 60 ° C, it was broken into pieces of 1-2.5 mm. When a gaseous mixture of 33% by volume CO and 67% by volume H 2 was passed through 30 g of a fragmented product at a temperature of 370 ° C and a pressure of 10 atm, the exhaust gas extracted at 15 Nl / h contained 11.9% % by volume CH4, 2.62% by volume C2H4, 0.6% by volume C ^ g, 1.25% by volume C ^ He and 0.25% by volume C ^ H *. Example XIX. Ag2Fe [/ CN / 6]. 0.5 mole of the precipitate, produced by the losing, of the total composition AggFeCFe / CN / J, was mixed with 250 g of alumina, designated Condea NG, and then pelleted. 30 g of pellets 1.5-2.5 mm in diameter were introduced into the reactor and fed at a temperature of 320 ° C. and 20 atm. A gas mixture composed of 50% by volume CO and 50% by volume H 2. The reaction gas, pulled off at 30 Nl / h, contained 24.1% by volume CH4r, 0.9% by volume C2H4, 4.32% by volume C2H6, 2.04% by volume C8H6 and 1.1 <8% by volume C8H8. An additional 25 g of liquid hydrocarbons were formed within 26 hours. Example XX. Ag ^ Fe [/ CN / 6]. The precipitate produced according to Example 19 was mixed with asbestos and silicic acid, and the mixture was pressed into tablets of 3 mm in diameter. 125 g of asbestos and 125 g of silicic acid were mixed with 0.5 mole of Ag2Fe [Fe / CN / 6]. 30 g of the tableted product was fed at a temperature of 320 ° C and a gas mixture of 1: 1 by volume of CO and H 2 under a pressure of 20 kg. The reaction mixture withdrawn at 30 Nl / h contained 10.62% by volume of CH 4. , 2.64% by volume C2H4, 1.95% by volume C2H6, 2.52% by volume C8H6 and 0.67% by volume C, H8. Within 18 hours of production, 6.8 g of higher hydrocarbons were produced. Patent claims 1. Method for the preparation of a catalyst for the reduction of carbon monoxide with hydrogen to form-109 758 9 10 hydrocarbons with 1 to 4 carbon atoms, the catalyst consisting of iron , cobalt, nickel or copper in admixture with at least one other metal as the active ingredients, characterized in that a complex salt of the general formula Mei [Men] is precipitated from an aqueous solution of potassium ferrocyanide with an aqueous solution of the metal salt. CN / x] in which Mei denotes as a cationic component the elements Ce, Cu, Co, Ni, Fe, Mn, Zn or Ag or mixtures of these elements or Ca or Mg in a mixture with (NH4), Men denotes as a constituent anionic elements Co, Fe or Mn, x denotes the sum of the value of metals, but Mei and Men cannot, however, denote only iron or in a mixture with copper, the precipitated sludge eventually settles on the carrier, dries and is thermally decomposed at temperature 200-500 ° C. under reduced pressure or pressures up to 100 atm. 2. The method according to claim A process as claimed in claim 1, characterized in that the decomposition of the complex salt is carried out in the presence of hydrogen or mixtures of hydrogen and carbon monoxide at a temperature of 200-500 ° C and a pressure of 1-100 atm, in particular 4-30 atm. 3. The method according to p. A compound according to claim 1, characterized in that a compound of the general formula Mei [Men / CN / X] is precipitated, where Men is iron and Mei is silver, zinc, cobalt or manganese. 4. The method according to p. The process of claim 1, wherein the compound of the general formula Mer [Men / CN / X] is precipitated, in which Men is iron and Mei is mixtures of copper with iron and nickel or copper with either cobalt or manganese. 5. The method according to p. A compound according to claim 1, characterized in that the compound of the general formula Mei [Men / CN / x] is precipitated, in which Men is iron and Mei is mixtures of silver with ceremony or iron. 6. The method according to p. A compound according to claim 1, characterized in that the compound of general formula Mei [Men / CN / x] is precipitated, wherein Men is iron and Mei is mixtures of calcium or magnesium with NH4. 7. The method according to p. The process of claim 1, wherein the compound of general formula Mei [Men / CN / x] is precipitated, in which Men is cobalt and Mei is copper or silver. 8. The method according to p. The process of claim 1, wherein the compound of general formula Mei [Meii / CN / x] is precipitated, in which Men is manganese and Mei is copper. 9. The method according to p. The process of claim 1, wherein the thermal decomposition of the salt is carried out at a temperature of 200-350 ° C. 10. The method according to p. 1, 2, 3, 4, 5, 6, 7 or 8, characterized in that the complex salts are applied to the carrier during precipitation, the salt content being 1 to 95% by weight of the total weight catalyst. 11. The method according to p. The process of claim 10, characterized in that alumina, silicic acid, diatomaceous earth, asbestos, glass fiber, clay minerals, pumice or activated carbon are used as the carriers. 12. The method according to p. The method of claim 10, characterized in that the content of catalytically active ingredients on the carrier substance is 5 to 30% by weight, based on the total weight of the catalytic active ingredients and the carrier substance. 13. The method according to p. 1, or 2, or 3, or 4, or 5, or 6, or 7, or 8, or 9, or 11 or 12, characterized in that a reduced pressure of about 1 is used during the thermal treatment. to below 760 tracks. 10 15 20 25 30 PL

Claims (13)

Zastrzezenia patentowe 1. Sposób wytwarzania katalizatora do redukcji monotlenku wegla za pomoca wodoru z utworze-109 758 9 10 niem weglowodorów o 1—4 atomach wegla, przy czym katalizator sklada sie z zelaza, kobaltu, nik¬ lu albo miedzi w mieszaninie z co najmniej jed¬ nym innym metalem jako skladników czynnych, znamienny tym, ze z wodnego roztworu zelazocy- janku potasu za pomoca wodnego roztworu soli metalu wytraca sie sól kompleksowa o ogólnym wzorze Mei[Men/CN/x] w którym Mei oznacza ja¬ ko skladnik kationowy pierwiastki Ce, Cu, Co, Ni, Fe, Mn, Zn albo Ag lub mieszaniny tych pier¬ wiastków albo Ca lub Mg w mieszaninie z /NH4/, Men oznacza jako skladnik anionowy pierwiastki Co, Fe albo Mn, a x oznacza sume wartosciowosci metali, przy czym jednakze Mei i Men nie moze oznaczac samego zelaza lub w mieszaninie z mie¬ dzia, wytracony osad ewentualnie osadza sie na nosniku, suszy i poddaje rozkladowi termicznemu w temperaturze 200—500°C pod zmniejszonym cis¬ nieniem albo pod cisnieniem do 100 ata.Claims 1. A method for the preparation of a catalyst for the reduction of carbon monoxide with hydrogen to form hydrocarbons of 1-4 carbon atoms, the catalyst consisting of iron, cobalt, nickel or copper in a mixture with at least with one other metal as active ingredients, characterized in that the complex salt of the general formula Mei [Men / CN / x] is precipitated from the aqueous solution of potassium ferrocyanide with the aid of an aqueous solution of the metal salt, in which Mei is the cationic component elements Ce, Cu, Co, Ni, Fe, Mn, Zn or Ag or mixtures of these elements or Ca or Mg in a mixture with (NH4), Men denotes as anionic component the elements Co, Fe or Mn, x denotes the sum of the value of metals , however, Mei and Men cannot denote iron alone or in a mixture with copper, the precipitate eventually deposited on the carrier, dried and thermally decomposed at 200-500 ° C under reduced pressure or pressure d about 100 ata. 2. Sposób wedlug zastrz. 1, znamienny tym, ze rozklad soli kompleksowej przeprowadza sie w obecnosci wodoru albo mieszanin zlozonych z wo¬ doru i monotlenku wegla w temperaturze 200— —500°C oraz z zastosowaniem cisnienia 1—100 ata, w* szczególnosci 4—30 ata.2. The method according to claim A process as claimed in claim 1, characterized in that the decomposition of the complex salt is carried out in the presence of hydrogen or mixtures of hydrogen and carbon monoxide at a temperature of 200-500 ° C and a pressure of 1-100 atm, in particular 4-30 atm. 3. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o ogólnym wzorze Mei[Men /CN/X], w którym Men oznacza zelazo i Mei ozna¬ cza srebro, cynk, kobalt albo mangan.3. The method according to p. A compound according to claim 1, characterized in that a compound of the general formula Mei [Men / CN / X] is precipitated, where Men is iron and Mei is silver, zinc, cobalt or manganese. 4. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o ogólnym wzorze Mer[Men /CN/X], w którym Men oznacza zelazo i Mei ozna¬ cza mieszaniny miedzi z zelazem i niklem albo miedzi z cerem albo kobaltem albo manganem.4. The method according to p. The process of claim 1, wherein the compound of the general formula Mer [Men / CN / X] is precipitated, in which Men is iron and Mei is mixtures of copper with iron and nickel or copper with either cobalt or manganese. 5. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o ogólnym wzorze Mei[Men/CN/x], w którym Men oznacza zelazo i Mei oznacza mieszaniny srebra z cerem albo ze¬ lazem.5. The method according to p. A compound according to claim 1, characterized in that the compound of the general formula Mei [Men / CN / x] is precipitated, in which Men is iron and Mei is mixtures of silver with ceremony or iron. 6. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o ogólnym wzorze Mei[Men/CN/x], w którym Men oznacza zelazo i Mei oznacza mieszaniny wapnia albo magnezu z NH4.6. The method according to p. A compound according to claim 1, characterized in that the compound of general formula Mei [Men / CN / x] is precipitated, wherein Men is iron and Mei is mixtures of calcium or magnesium with NH4. 7. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o wzorze ogólnym Mei[Men/CN/x], w którym Men oznacza kobalt i Mei oznacza miedz albo srebro.7. The method according to p. The process of claim 1, wherein the compound of general formula Mei [Men / CN / x] is precipitated, in which Men is cobalt and Mei is copper or silver. 8. Sposób wedlug zastrz. 1, znamienny tym, ze wytraca sie zwiazek o wzorze ogólnym Mei[Meii/CN/x], w którym Men oznacza mangan i Mei oznacza miedz.8. The method according to p. The process of claim 1, wherein the compound of general formula Mei [Meii / CN / x] is precipitated, in which Men is manganese and Mei is copper. 9. Sposób wedlug zastrz. 1, znamienny tym, ze termiczny rozklad soli przeprowadza sie w tempe¬ raturze 200—350°C.9. The method according to p. The process of claim 1, wherein the thermal decomposition of the salt is carried out at a temperature of 200-350 ° C. 10. Sposób wedlug zastrz. 1, albo 2, albo 3, albo 4, albo 5, albo 6, albo 7, albo 8, znamienny tym, ze sole kompleksowe podczas wytracania nanosi sie na nosnik, przy czym zawartosc soli wynosi 1—95°/o wagowych ogólnej masy katalizatora.10. The method according to p. 1, 2, 3, 4, 5, 6, 7 or 8, characterized in that the complex salts are applied to the carrier during precipitation, the salt content being 1 to 95% by weight of the total weight catalyst. 11. Sposób wedlug zastrz. 10, znamienny tym, ze jako substancje nosna stosuje sie tlenek glinu, kwas krzemowy, ziemie okrzemkowa, azbest, wló¬ kno szklane, mineraly ilaste, pumeks albo wegiel aktywny.11. The method according to p. The process of claim 10, characterized in that alumina, silicic acid, diatomaceous earth, asbestos, glass fiber, clay minerals, pumice or activated carbon are used as the carriers. 12. Sposób wedlug zastrz. 10, znamienny tym, ze zawartosc skladników katalitycznie czynnych na substancji nosnej wynosi 5—30% wagowych, w odniesieniu do ogólnego ciezaru skladników kata¬ litycznych czynnych i substancji nosnej.12. The method according to p. The method of claim 10, characterized in that the content of catalytically active ingredients on the carrier substance is 5 to 30% by weight, based on the total weight of the catalytic active ingredients and the carrier substance. 13. Sposób wedlug zastrz. 1, albo 2, albo 3, albo 4, albo 5, albo 6, albo 7, albo 8, albo 9, albo 11, albo 12, znamienny tym, ze podczas obróbki ter¬ micznej stosuje sie zmniejszone cisnienie wyno¬ szace okolo 1 do ponizej 760 torów. 10 15 20 25 30 PL13. The method according to p. 1, or 2, or 3, or 4, or 5, or 6, or 7, or 8, or 9, or 11 or 12, characterized in that a reduced pressure of about 1 is used during the thermal treatment. to under 760 tracks. 10 15 20 25 30 PL
PL1977202450A 1976-11-27 1977-11-26 Method of producing catalyst for reduction of carbon monoxide by means of hydrogen PL109758B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19762653985 DE2653985A1 (en) 1976-11-27 1976-11-27 CATALYST FOR REDUCING CARBON MONOXIDE WITH HYDROGEN

Publications (2)

Publication Number Publication Date
PL202450A1 PL202450A1 (en) 1978-07-17
PL109758B1 true PL109758B1 (en) 1980-06-30

Family

ID=5994150

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1977202450A PL109758B1 (en) 1976-11-27 1977-11-26 Method of producing catalyst for reduction of carbon monoxide by means of hydrogen

Country Status (13)

Country Link
US (1) US4186112A (en)
JP (1) JPS5367688A (en)
BE (1) BE861198A (en)
CA (1) CA1096847A (en)
CS (1) CS213333B2 (en)
DE (1) DE2653985A1 (en)
FR (1) FR2372132A1 (en)
GB (1) GB1554082A (en)
IT (1) IT1090587B (en)
NL (1) NL7712509A (en)
PL (1) PL109758B1 (en)
SU (1) SU884555A3 (en)
ZA (1) ZA777012B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394298A (en) * 1980-01-10 1983-07-19 Phillips Petroleum Company Hydrogenation catalyst
US4604375A (en) * 1983-12-20 1986-08-05 Exxon Research And Engineering Co. Manganese-spinel catalysts in CO/H2 olefin synthesis
US4618597A (en) * 1983-12-20 1986-10-21 Exxon Research And Engineering Company High surface area dual promoted iron/managanese spinel compositions
US4670476A (en) * 1983-12-20 1987-06-02 Exxon Research And Engineering Company Manganese-spinel catalysts in CO/H2 olefin synthesis
US4588705A (en) * 1984-08-10 1986-05-13 Exxon Research And Engineering Co. Method for preparing dual colloid compositions
CA1250565A (en) * 1984-08-10 1989-02-28 Michael A. Richard Method for preparing dual colloid catalyst compositions
US4639431A (en) * 1985-07-11 1987-01-27 Exxon Research And Engineering Company Catalysts in Fischer-Tropsch process for producing olefins
US4657885A (en) * 1985-07-11 1987-04-14 Exxon Research And Engineering Company Cerium promoted Fischer-Tropsch catalysts
US4613722A (en) * 1985-07-25 1986-09-23 Phillips Petroleum Company Dehydrogenation of C3 and C4 hydrocarbons over an iron-based catalyst
US5504118A (en) * 1986-05-08 1996-04-02 Rentech, Inc. Process for the production of hydrocarbons
US4876402A (en) * 1986-11-03 1989-10-24 Union Carbide Chemicals And Plastics Company Inc. Improved aldehyde hydrogenation process
US4762817A (en) * 1986-11-03 1988-08-09 Union Carbide Corporation Aldehyde hydrogenation catalyst
US5032570A (en) * 1987-08-04 1991-07-16 Hitachi Metals, Ltd. Method for producing ceramic superconducting material using intermediate products
US5198592A (en) * 1987-12-11 1993-03-30 Engelhard De Meern B.V. Hydrogenolysis reaction and catalyst suitable therefor
GB9005964D0 (en) * 1990-03-16 1990-05-09 Shell Int Research Catalyst preparation process
GB9015193D0 (en) * 1990-07-10 1990-08-29 Shell Int Research Catalysts and catalysts precursors suitable for hydrocarbon synthesis
US20020019309A1 (en) * 1999-10-15 2002-02-14 Lapidus Albert L?Apos;Vovich Process for the preparation of high activity carbon monoxide hydrogenation catalysts; the catalyst compositions, use of the catalysts for conducting such reactions, and the products of such reactions
JP4773116B2 (en) * 2005-03-24 2011-09-14 新日本製鐵株式会社 Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas using the catalyst
JP6948057B2 (en) * 2017-08-30 2021-10-13 公立大学法人大阪 Organophosphorus compound decomposition catalyst
WO2020176210A1 (en) * 2019-02-28 2020-09-03 Exxonmobil Chemical Patents Inc. Catalyst compositions and precursors, processes for making the same and syngas conversion processes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE729290C (en) * 1936-02-26 1942-12-15 Ig Farbenindustrie Ag Process for converting carbon monoxide and hydrogen
US2234246A (en) * 1937-12-09 1941-03-11 Celanese Corp Metallic composition
FR1011662A (en) * 1949-02-26 1952-06-25 Ruhrchemie Ag Process for obtaining carbon monoxide hydrogenation products with a high content of oxygen compounds
US2767202A (en) * 1952-01-30 1956-10-16 Ruhrchemie Ag Catalytic hydrogenation of carbon monoxides
US2753367A (en) * 1952-07-09 1956-07-03 Ruhrchemie Ag Catalytic hydrogenation of carbon monoxide
NL7414755A (en) * 1973-11-20 1975-05-22 Basf Ag PROCEDURE FOR ETHYNYLATION.
DE2546587C3 (en) * 1975-10-17 1978-05-03 Hoechst Ag, 6000 Frankfurt Catalyst for the reduction of carbon monoxide

Also Published As

Publication number Publication date
CA1096847A (en) 1981-03-03
ZA777012B (en) 1978-10-25
DE2653985A1 (en) 1978-06-01
GB1554082A (en) 1979-10-17
PL202450A1 (en) 1978-07-17
BE861198A (en) 1978-05-25
FR2372132B1 (en) 1983-06-03
FR2372132A1 (en) 1978-06-23
CS213333B2 (en) 1982-04-09
JPS5367688A (en) 1978-06-16
NL7712509A (en) 1978-05-30
IT1090587B (en) 1985-06-26
SU884555A3 (en) 1981-11-23
US4186112A (en) 1980-01-29

Similar Documents

Publication Publication Date Title
PL109758B1 (en) Method of producing catalyst for reduction of carbon monoxide by means of hydrogen
Kung Deactivation of methanol synthesis catalysts-a review
US7820037B2 (en) Desulfurizing agent manufacturing method and hydrocarbon desulfurization method
RU2476267C2 (en) Composite oxide of catalyst of reforming of hydrocarbons, method of its obtaining and method of obtaining synthesis-gas with its application
JP5258910B2 (en) Preparation of desulfurization substances
KR101547100B1 (en) Bimetallic catalyst for high nitrate reduction and selectivity and Manufacturing method thereof
US7964114B2 (en) Iron-based water gas shift catalyst
WO2003082468A1 (en) Water gas shift catalysts
NZ594030A (en) Desulphurisation materials
US5603913A (en) Catalysts and process for selective oxidation of hydrogen sulfide to elemental sulfur
CN101602000B (en) Iron catalyst containing cobalt auxiliary agent for Fischer-Tropsch synthesis reaction and preparation method thereof
NZ264308A (en) Steam-reforming of hydrocarbons using a copper-containing nickel catalyst
CN102711991A (en) Heterogeneous catalyst containing iron and manganese and method for producing olefins by converting carbon monoxide with hydrogen
WO2007041553A1 (en) Method of removing contaminants from fluid streams and solid formations
CN102665899A (en) Heterogeneous catalyst containing iron and copper and method for producing olefins by converting carbon monoxide with hydrogen
JPS6234986A (en) Abrasion resistant sulfide in conversion of synthetic gas
KR0133169B1 (en) Catalysts
JP6970406B2 (en) A method for producing an aqueous solution containing ammonium ions and / and ammonia, a method for producing an ammonium salt, and an apparatus for producing the same.
PL223967B1 (en) The multi-component oxide catalyst for low temperature oxidation of methane and a method of its manufacturing
DE2546587C3 (en) Catalyst for the reduction of carbon monoxide
US4172053A (en) Catalyst for reducing carbon monoxide
SU660571A3 (en) Catalyst for purifying waste gas from nitrogen oxides
KR100302640B1 (en) Removal of Sulfur Oxides and Nitrogen Oxides Using Natural Manganese Ore in a Continuous Fluidized Bed Reactor
Suzuki et al. Catalytic activity of rare earth compounds for the steam and carbon dioxide gasification of coal
JP2010051858A (en) Absorbent of impurities including mercury, arsenic and sulfur, and method for removing the same