OA18001A - Device for producing green coal for agricultural use. - Google Patents

Device for producing green coal for agricultural use. Download PDF

Info

Publication number
OA18001A
OA18001A OA1201600214 OA18001A OA 18001 A OA18001 A OA 18001A OA 1201600214 OA1201600214 OA 1201600214 OA 18001 A OA18001 A OA 18001A
Authority
OA
OAPI
Prior art keywords
container
blades
fixed
stages
moving
Prior art date
Application number
OA1201600214
Inventor
Rawya Lotfy MANSOUR
Original Assignee
Rawya Lotfy MANSOUR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rawya Lotfy MANSOUR filed Critical Rawya Lotfy MANSOUR
Publication of OA18001A publication Critical patent/OA18001A/en

Links

Abstract

The present invention concerns device for producing green coal for agricultural use from organic agricultural materials comprising: a container (5) suitable for receiving the organic materials, an enclosure (1) enclosing the container (5) and delimiting an intermediate space around the container (5), a system for heating the intermediate space and a rotary stirring system configured to stir the organic materials placed in the container (5), characterised by the fact that the rotary stirring system comprises a plurality of blades (15) that are fixed relative to the container (5) and a plurality of blades (14a, 14b) that are mobile in rotation relative to the container (5), the plurality of fixed blades (15) being distributed between at least two stages of fixed blades (15) along the axis (13) of rotation, the plurality of mobile blades (14a, 14b) being distributed between at least two stages of mobile blades along the axis (13) of rotation, the stages of fixed blades and the stages of mobile blades alternating along the axis (13) of rotation.

Description

The présent invention relates to a device for producing charcoal for agricultural use. Charcoal for agricultural use is generally referred to as “biochar”, which is the contraction of the terms bio and charcoal, biochar being used for improving or restoring soils, in particular cultivated land, in a tropical environment or not.
The présent invention enables this charcoal for agricultural use to be manufactured from agricultural organic materials, for example rice straw, although this case is not limitative. It is possible in particular to use other waste of agricultural origin or any other form of biomass. In general terms green charcoal is spoken of.
In this field, the applicant has already proposed, through the publication WO-A2012/059113, apparatus for manufacturing charcoal for agricultural use. According to this publication, a container is formed to receive the organic material, for example rice straw, and for effecting a transformation in which the organic material is subjected to an addition of heat so as to effect a reaction without oxygen, similar to pyrolysis, for reducing the organic materials into carbonaceous products in the form of biochar. The container receiving the organic material is surrounded by a peripheral space of an enclosure subjected to high température, for example by an oil bumer. During this operation, stirring may be produced. At the end of the heating cycle, the organic material thus transformed is cooled and then discharged through an outlet situated at the bottom part of the installation.
Overall, the installation described above according to the prior art gives satisfaction in that it makes it possible to effectively produce substantial quantities of charcoal for agricultural use quickly, and in particular because of the in situ cooling by water spray. Nevertheless, the applicant has found that this existing technique could be improved, in particular with regard to the efficacy of the stirring imposed on the organic materials during the carbonisation phase.
The object of the présent invention is to propose such an improvement.
The document JP-A-2005/146119 shows a machine provided with a plurality of rotary blades in a mixing space. Fixed projections, bearing the reference 16, are présent on the circumference of the container delimiting the stirring volume. The stirring does however remain limited.
According to one aspect of an embodiment of the invention, a device for producing charcoal for agricultural use from agricultural organic materials is presented, comprising a container able to receive the organic materials, an enclosure enclosing the container and delimiting an intermediate space around the container, a system for heating the intermediate space and a rotary stimng System configured so as to stir the organic materials placed in the container.
Advantageously, the rotary stirring System comprises a plurality of blades fixed relative to the container and a plurality of blades able to rotate relative to the container, the plurality of fixed blades being distributed in at least two stages of fixed blades along the rotation axis, the plurality of moving blades being distributed in at least two stages of moving blades along the rotation axis, the fixed blade stages and the moving blade stages being in alternation along the rotation axis.
Thus, by virtue of the invention, the stimng System is distributed between a part fixed relative to the container and a moving part. The organisation of this stirring over the height of the container affords good distribution of the stirring and therefore better application of the addition of heat issuing from the heating of the enclosure, over the whole of the volume of agricultural organic materials présent in the container. The resuit is an improved pyrolysis, namely more complété and more rapid, and less tamping effect during the pyrolysis, which makes it possible to distribute the stirring force over a plurality of stages of moving blades without risking any problème of breakage or oversizing of the drive.
Advantageously, the spacing between any two adjacent stages from respectively the fixed blade stages and the moving blade stages is between 50 and 150 mm.
Moreover, the length of the fixed blades may be greater than 50% of the radius of the container when the latter has a circulai· cross section in a plane perpendicular to the rotation axis. In addition or as an alternative, this length is, at least for one of the fixed blades, greater than 90% of the radius in a preferred case.
By virtue of the above arrangements, the stirring is made effective. Whereas JP-A2005/146119 suggests latéral attachaient points by means of the projections 16, of small size, the invention proposes fixed blades greatly projecting towards the stimng space. These blades participate fully in the mixing, including in the vicinity of the rotation axis, which is more effective, whereas the current techniques are simply oriented towards stirrings mainly made by the rotary parts.
When, in addition, the spacing between any two adjacent stages from respectively the fixed blade stages and the moving blade stages is between 50 and 150 mm, stimng is obtained that is both effective and does not increase the torque of the rotation of the moving parts too greatly.
Other aims and advantages will emerge during the following description, which présents a preferred embodiment of the invention that is illustrative but non-limitative.
The accompanying drawings are given by way of examples and are not limitative of the invention. They represent only one embodiment of the invention and will make it possible to understand it easily.
- Figure 1 présents a view in cross section of an embodiment of the device of the invention in its entirety.
- Figure 2 présents a plan view of the device according to the embodiment in Figure 1.
- Figure 3 illustrâtes an example of formation of part of the enclosure and of the container.
- Figure 4 and Figure 5 présent respectively a view in cross section and a plan view of a beam part of the invention.
- Figures 6 and 7 présent respectively a view in cross section and a plan view of a blade system.
- Figures 8 and 9 show respectively a view in cross section and a plan view of another blade system that can be used according to the invention.
- Figure 10 présents a side view of an embodiment of a container body and Figure 11 gives a plan view thereof.
Before going into details in the description of embodiments of the invention, in particular in support of the drawings, features are introduced below that may optionally présent the invention individually or in accordance with any combination with each other:
- the rotary stirring system comprises four stages of moving blades and three stages of fixed blades;
- a stage of fixed blades comprises two blades having the same longitudinal axis;
- the latéral wall of the container has a circular cross section perpendicular to the rotation axis;
- the fixed blades of at least one fixed-blade stage are spaced apart by a distance of less than 25% of the diameter of the circular cross section;
- at least one moving-blade stage comprises two blades that are symmetrical in relation to the rotation axis;
- the length of the moving blades of the at least one stage is greater than 75% of the radius of the circular cross section;
- the container comprises a bottom wall inclined downwards in the direction of an outlet conduit;
- the rotary stirring system comprises a stage of additional moving blades at a height level, along the rotation axis, corresponding to a junction zone between the latéral wall of the container and the bottom wall;
- the length of the additional moving blades is less than the length of the moving blades of the moving-blade stages;
- the spacing between any two adjacent stages from respectively the fixed-blade stages and the moving-blade stages is between 50 and 150 mm;
- the fixed blades are ail situated in the same plane containing the rotation axis;
- the moving blades are mounted on a single shaft;
- the shaft is mounted for rotation on the bottom wall;
- the shaft is mounted for rotation on a beam directed transversely to the rotation axis;
- the beam comprises a circuit for injecting a cooling fluid into the container;
- the beam is surmounted by a cover closing the top opening of the container;
- the moving blades are ail situated in the same plane containing the rotation axis;
- the length of the fixed blades may be greater than 50% of the radius of the container when the latter has a circular cross section in a plane perpendicular to the rotation axis. In addition or as an alternative, this length is, at least for one of the fixed blades, greater than 90% of the radius in a preferred case.
In the example given in Figure 1, the device is overall in the fonn of an enclosure 1 having an extemal wall 2 advantageously covered with a thermally insulating cladding, for example using glass straw and/or refractory materials and/or ceramic materials. The insulating extemal wall 2 advantageously covers at least part of the latéral and bottom periphery of the enclosure 1. The assembly further comprises a cover 4, more particularly visible in plan view in Figure 2, with the case of a system substantially with a circular cross section. The cover 4 affords access to the internai space of the enclosure 1, the components of which will be described in more detail subsequently. Opposite the cover 4, the device preferentially comprises a base 3 constituting a structure for the device to bear on a support, for example the ground. The bottom of the enclosure 1 is advantageously fiat.
The space of the enclosure 1 receives a container 5 composed, in the example in Figure 1 and Figure 10, of a body substantially elongate along an axis 13 and for example with a circular cross section so as to form a cylindrical body with its axis 13 preferentially vertical. At the bottom part of the container 5, the latter comprises in the example a bottom wall 7, for example in the form of an inclined plane, having a slope enabling the charcoal produced to descend by gravity from the body part of the container 5 in the direction of an outlet conduit 8 visible in Figures 1 and 2. It will be understood that organic materials such as rice straw can be admitted through the top end of the container 5 corresponding to that situated at the cover 5, imposing a transformation by pyrolysis on this material inside the body of the container 5 and discharging the charcoal for agricultural use thus produced through the outlet conduit 8.
In general terms, the reaction produced in the device according to the invention may satisfy conditions as presented in the aforementioned prior art WO-A-2012/059113. The device advantageously comprises:
- a heating conduit 30 connected at a distal end to a bumer 29, for example a gas or oil bumer, so as to provide a high quantity of heat in a part of the enclosure 1 situated between the external wall 2 and the external face of the container 5. In this intermediate space, it is possible to produce heating of the organic materials in the absence of air so as to implement a carbonisation process. In this way powder referred to as biochar is produced. During this cycle, the gases issuing from the pyrolysis can be eliminated by means of a discharge conduit 10, either by recirculating them in order to effect pyrolysis used for heating the intermediate space of the enclosure 1, or by buming to the outside. Furthennore, a flue 9 connects the internai space of the enclosure 1 to the ambient air if required.
It will be understood that effective homogeneous pyrolysis of the organic materials serving as a basis for the manufacture of biochar is fundamental to the efficacy of the system. To this end, the invention comprises a spécifie stirring system in the container 5.
In particular, in the case depicted in Figure 1, this system comprises a plurality of blades, some of which are fixed blades 15 and some of which are moving blades 14a, 14b, cooperating in a spécifie fashion in order to homogenise the stimng of the organic materials. More particularly, the container 5 is equipped on the internai wall of its cylindrical main body with a plurality of fixed-blade stages 15. In the case of Figures 10 and 11, the fixed blades 15 are each oriented on a diameter of the container 5 and are distributed symmetrically on a single diameter. The assembly is advantageously symmetrical along the rotation axis 13 of the moving blades 14a, 14b.
Figure 10 shows the formation of three stages of fixed blades 15, for example distributed with a spacing, régulai* or not, of around 150 to 250 mm. A diameter of the container 5 of around 1300 mm may be suitable. The fixed blades 15 hâve for example a length of around 500 mm and advantageously in general terms hâve - for at least one of them and preferably each one - a length greater than 50% (and advantageously 90% for at least one of these blades 15) of the radius of the container 5. Moreover, so as to produce a sufficient obstacle to the descent of the organic materials along the container 5, the blades 15 of a fixed-blade stage are advantageously distant by less than 25% of the diameter of the circular cross section of the container 5. The invention does not exclude the formation of a large number of fixed blades at each stage or at some stages. The stirring System of the invention further comprises a part able to move relative to the container 5 with, in the example depicted in Figure 1, four stages of blades 14a, one embodiment of which is visible more particularly in Figures 6 and 7. The moving blades may be produced in equally distributed stages, for example spaced apart by 200 mm. Each stage may comprise two blades 14a symmetrical about the rotation axis 13. Each blade stage advantageously comprises a mounting ring 16 enabling them to be mounted on a shaft 12 directed along the axis 13. It will be understood that it is advantageous for the moving-blade stages 14a to share the same shaft 12, which can thus easily be connected to a drive 21, for example with a motor and a gearbox and a coupling System. The drive 21 is, in the case in Figure 1, situated above the cover 4, and a passage in the cover 4 enables the shaft 12 to pass through the inside of the container 5.
The blades depicted in Figures 6 and 7 are, advantageously like the fixed blades 15, directed perpendicular to the rotation axis 13. They are moreover symmetrical about the axis 13 in a preferred marner. Their dimensions are preferably configured so as to cover at least 75% of the radius of the container 5. In this way, as is clear from Figure 1, a fixed-blade System and moving-blade System are formed, evenly distributing the stirring towards the centre of the container 5 and towards its periphery.
In one embodiment, the fixed blades 15 are organised in the same plane containing the axis 13 and advantageously vertical. Likewise, the moving blades 14a are advantageously included in the same plane containing the axis 13 and advantageously vertical, this plane being rotary relative to the container 5. In the bottom part of the body of the container 5, it is possible to place a stage of additional blades 14b situated, in the case of Figure 1, at the junction between the body part of the container 5, here cylindrical in shape, and the bottom wall part 7, the slope of which is directed towards the outlet conduit 8. An example of définition of additional blades 14b is presented in Figures 8 and 9. As with the blades 14a, a mounting ring 16 allows mounting of the shaft 12. The blades 14b are advantageously, like the previous ones, produced symmetrically about the axis 13 so as to be directed overall along a diameter of the container 5. By way of indication, the width of the fixed 15 and moving 14a, 14b blades may be between 40 and 60 mm for a container with a diameter of 1300 mm.
The shaft 12 is preferentially guided by means of a bearing 31, visible in Figure 3, positioned on the bottom wall 7.
It should be noted that the container 5 may be formed so as to be easily mounted inside the enclosure 1. More precisely, as is clear in Figure 3, the internai face of the enclosure 1 preferentially comprises, at its top end, at the opening, a rim 20 directed towards the inside and able to receive the application of the cylindrical body part of the container 5. The opposite part of the container 5, corresponding to the bottom edge 17 visible in Figure 10, is for its part received, in the example in Figure 3, by a groove 19 situated at the top end of the bottom wall 7. It should be noted that the rim 20 advantageously coopérâtes with a top edge 18 of the container 5, the whole making it possible to effectively partition the container 5 relative to the intermediate space defined between the container 5 and the extemal wall 2 of the enclosure 1. A reinforcement 11 in the form of a square bracket stiffens the bottom wall 7, as can be seen in Figure 3.
According to another aspect of the invention, the device comprises a beam 22 visible in Figures 4 and 5 in the form of an elongate element that can be attached to the top end of the container 5 between the container 5 and the cover 4. More particularly, the beam 22 as depicted comprises first and second ends 25, 26 that can be fixed to the periphery of the enclosure 1. The intermediate part of the beam 22 fits on top of the opening of the container 5. Advantageously, the beam 22 is directed along a diameter of the container 5. It preferentially comprises a guide hole 23 at the middle of its length so as to enable the shaft 12 to pass and to guide it. It will be understood that an effective guide system for the moving blades is formed in combination with the bearing 31. A hole 24 is also positioned on the beam 22 to effect the connection of the discharge duct 10.
Furthermore, the device according to the invention advantageously comprises a system for spraying the internai space of the container 5 with a cooling fluid such as water. Advantageously, this spray system is combined with the previously described beam 22. In the case depicted, a cooling inlet 27 supplies one or more pipes visible in the form of cooling tubes 32 in Figure 5. Each of these tubes preferentially comprises a plurality of openings directed towards the inside of the container 5 so as to distribute a spraying of water when this is useful to the manufacturing cycle. In particular, the spraying of water may take place at the end of manufacture so as to quickly cool the agricultural-use charcoal manufactured and to enable it to be discharged more quickly through the outlet conduit 8.
The device of the invention can be used according to a particularly effective method in which:
- access is opened to the container 5 by movement of the cover 4;
- the organic materials depicted in Figure 2 in the form of balls of rice straw are placed inside the container 5. Access can be achieved through one or more access zones 28, also visible in Figure 2. Once the organic materials are placed in the container 5, the cover can be folded down so as to hermetically close the interior space of the container 5. The intermediate space 5 between the container 5 and the enclosure 1 is advantageously maintained hermetically at the top end of the device. When the seal is ensured, it is possible to activate the burner 29 so as to produce the pyrolysis reaction in the absence of air, enabling charcoal to be manufactured. Advantageously, the stirring system is active during at least some parts of the pyrolysis cycle so as to produce a better application of heat on the organic materials and greater efficacy of 10 carbonisation. The vertical distribution of the blades and the use of fixed blades and moving blades afford a stirring that is both effective and efficient in terms of stirring relative to the drive energy necessary. At the end of manufacture, the biochar produced can be discharged by means of the outlet conduit 8. The transformation into charcoal and the stirring makes it possible to obtain a relatively powdery product that can easily move by gravity along the bottom wall 7 so 15 as to discharge the product without difficulty.
REFERENCES
1. Enclosure
2. Extemal wall
3. Base
4. Cover
5. Container
6. Latéral wall
7. Bottom wall
8. Outlet conduit
9. Flue
10. Gas-discharge pipe
11. Reinforcement
12. Shaft
13. Axis
14a, 14b. Moving blade
15. Fixed blade
16. Mounting ring
17. Bottom edge
18. Top edge
19. Groove
20. Rim
21. Drive
22. Beam
23. Guide hole
24. Hole
25. First end
26. Second end
27. Cooling inlet
28. Access zone
29. Bumer
30. Heating pipe
31. Bearing
32. Cooling tube
UÎNSEIL EN PROPRIETE INDUSTRIELLE AGREE OAPl

Claims (17)

1. A device for producing green charcoal for agricultural use from agricultural organic materials, comprising:
- a container (5) able to receive the organic materials;
- an enclosure (1) enclosing the container (5) and delimiting an intermediate space around the container (5);
- a system for heating the intermediate space;
- a rotary stirring system configured so as to stir the organic materials placed in the container (5);
characterised in that the rotary stirring system comprises a plurality of blades (15) fixed relative to the container (5) and a plurality of moving blades (14a, 14b) rotating relative to the container (5), the plurality of fixed blades (15) being distributed in at least two stages of fixed blades (15) along the rotation axis (13), the plurality of moving blades (14a, 14b) being distributed in at least two stages of moving blades along the rotation axis (13), the fixed-blade stages and the moving-blade stages being altemating along the rotation axis (13), and in that the spacing between any two adjacent stages from respectively the fixed-blade stages (15) and the moving-blade stages (14a, 14b) is between 50 and 150 mm, and in that the latéral wall (6) of the container (5) has a circular cross section perpendicular to the rotation axis (13), and in that at least one fixed blade (15) has a length greater than 50% of the radius of the container (5).
2. A device according to claim 1, in which the rotary stirring system comprises four stages of moving blades (14a, 14b) and three stages of fixed blades (15).
3. A device according to one of the preceding daims, in which a stage of fixed blades (15) comprises two blades having the same longitudinal axis.
4. A device according to the preceding claim, in which the fixed blades (15) of at least one fixed-blade stage are spaced apart by a distance of less than 25% of the diameter of the circular cross section.
5. A device according to one of the preceding daims, in which the fixed blades (15) of the at least one fixed-blade stage each hâve a length greater than 90% of the radius of the container (5).
6. A device according to one of the preceding daims, in which at least one movingblade stage (14a, 14b) comprises two blades that are symmetrical in relation to the rotation axis (13)·
7. A device according to the preceding claim, in which the length of the moving blades (14a, 14b) of the at least one stage is greater than 75% of the radius of the circular cross section.
8. A device according to one of the preceding claims, in which the container (5) comprises a bottom wall (7) inclined downwards in the direction of an outlet conduit (8).
9. A device according the preceding claim, in which the rotary stirring system comprises a stage of additional moving blades (14b) at a height level, along the rotation axis (13), corresponding to a junction zone between the latéral wall (6) of the container (5) and the bottom wall (7).
10. A device according to the preceding claim, in which the length of the additional moving blades (14b) is less than the length of the moving blades (14a) of the moving-blade stages.
11. A device according to one of the preceding claims, in which the fixed blades (15) are ail situated in the same plane containing the rotation axis (13).
12. A device according to one of the preceding claims, in which the moving blades (14a, 14b) are mounted on a single shaft.
13. A device according to the preceding claim in combination with claim 7, in which the shaft (12) is mounted for rotation on the bottom wall (7).
14. A device according to one of the preceding two claims, said shaft (12) being mounted for rotation on a beam directed transversely to the rotation axis (13).
15. A device according to the preceding claim, in which the beam (22) comprises a circuit for injecting a cooling fluid into the container (5).
16. A device according to the preceding claim, in which the beam (22) is surmounted by a cover (4) closing the top opening of the container (5).
17. A device according to one of the preceding claims, in which the moving blades (14a, 14b) are ail situated in the same plane containing the rotation axis (13).
OA1201600214 2013-12-04 2014-11-28 Device for producing green coal for agricultural use. OA18001A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1362090 2013-12-04

Publications (1)

Publication Number Publication Date
OA18001A true OA18001A (en) 2018-03-23

Family

ID=

Similar Documents

Publication Publication Date Title
AU2014359487B2 (en) Device for producing green coal for agricultural use
CN109133048A (en) A kind of tower microwave graphite expansion equipment
CN106190206B (en) Solid heat carrier pyrolysis device
OA18001A (en) Device for producing green coal for agricultural use.
KR101450966B1 (en) Heat treatment apparatus for powder material
CN205328955U (en) End gasifier is changeed to annular
CN105318681B (en) Drier or pyrolysis apparatus
CN106281379B (en) Solid heat carrier pyrolysis device
EP3060631B1 (en) Fixed bed reactor for gasification of fuels
US4449924A (en) Industrial furnace
CN207227345U (en) A kind of cycling stirring type Chinese hawthorn seed fumigates gasification furnace
CN202290006U (en) Multipoint synchronous continuous discharging device
US4400155A (en) Equipment for heating pulverulent products
CN205603521U (en) A raw material feed device that is arranged in pyrolysis of coal revolver chemical industry system reacting furnace
RU2596169C1 (en) Fast pyrolysis reactor
CN109127046A (en) A kind of major diameter high-temperature pipe dirt block crushing device
CN105716400A (en) Helical ribbon vacuum dryer and working method thereof
ES2557492B1 (en) Mobile and autothermal pyrolizer
CN201932919U (en) Heating device and equipment for producing vanadium trioxide
CN108148629A (en) Convenient for arranging the biomass gasifying furnace of charcoal
JP3418788B2 (en) Continuous treatment type heating furnace and carbonization method using the same
EP3667220A1 (en) Conversion furnace
US292082A (en) Alfeed wilsox
US946030A (en) Gas-producer.
DE565316C (en) Oven for smoldering oil slate or the like.