NZ754900B2 - Systems and methods for removing volatile compounds from water-storage tanks - Google Patents

Systems and methods for removing volatile compounds from water-storage tanks Download PDF

Info

Publication number
NZ754900B2
NZ754900B2 NZ754900A NZ75490017A NZ754900B2 NZ 754900 B2 NZ754900 B2 NZ 754900B2 NZ 754900 A NZ754900 A NZ 754900A NZ 75490017 A NZ75490017 A NZ 75490017A NZ 754900 B2 NZ754900 B2 NZ 754900B2
Authority
NZ
New Zealand
Prior art keywords
water
air
tank
storage tank
conveyance device
Prior art date
Application number
NZ754900A
Other versions
NZ754900A (en
Inventor
Ethan Brooke
Peter Fiske
Robin Giguere
Original Assignee
Pax Water Technologies Inc
Filing date
Publication date
Application filed by Pax Water Technologies Inc filed Critical Pax Water Technologies Inc
Priority to NZ795941A priority Critical patent/NZ795941B2/en
Priority claimed from PCT/US2017/068885 external-priority patent/WO2018126100A1/en
Publication of NZ754900A publication Critical patent/NZ754900A/en
Publication of NZ754900B2 publication Critical patent/NZ754900B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B11/00Arrangements or adaptations of tanks for water supply
    • E03B11/02Arrangements or adaptations of tanks for water supply for domestic or like local water supply
    • E03B11/06Arrangements or adaptations of tanks for water supply for domestic or like local water supply with air regulators
    • E03B11/08Air regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

system for reducing an amount of volatile organic compounds which includes: a water-storage tank having a tank containing water, a roof positioned over the tank, and a headspace region formed between the roof and a surface of the water contained in the tank; an air exchange system positioned at least partially in the headspace region that is configured to exchange air exterior to the tank with air inside the tank; and a water conveyance device located at least partially in the water of the water-storage tank and which is configured to convey water in a manner that produces a surface flow velocity. A method reducing an amount of volatile organic compounds is also included.

Description

A system for ng an amount of volatile organic compounds which includes: a water-storage tank having a tank containing water, a roof positioned over the tank, and a headspace region formed between the roof and a surface of the water contained in the tank; an air exchange system positioned at least partially in the headspace region that is configured to exchange air exterior to the tank with air inside the tank; and a water conveyance device located at least partially in the water of the water-storage tank and which is ured to convey water in a manner that produces a e flow velocity. A method reducing an amount of volatile organic compounds is also included.
NZ 754900 W0 20182’126100 SYSTEMS AND METHODS FOR REMOVING VOLATILE COMPOUNDS FROM WATER-STORAGE TANKS CROSS REFERENCE TO RELATED APPLICATIONS This application claims the bene?t of United States ional Application No. 62/441,208, ?led December 31, 2016, which is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION Field of the Invention The present invention is directed to systems and methods for reducing the amount of volatile organic nds, such as trihalomethanes and other volatile contaminants present in water-storage tanks.
Description of Related Art Water delivered to humans, animals, and for agricultural uses is expected to be healthful. As such, it is ble to remove contaminants such as volatile organic compounds ("VOCs") from water systems prior to delivery to the consumers. Removal of such contaminants, especially trace amounts of such contaminants, can be problematic, however.
Moreover, with the increased adoption of secondary disinfection s, downstream generation of volatile contaminates can occur in a municipal water supply, even when the water might have substantially lower trations of such materials at the time the water left the water treatment ty. By—products of secondary disinfection regimes, namely trihalomethanes ("THMs"), can be generated prior to delivery of the water to a customer. Given the increased ial for volatile materials to occur in water s today, alternative methods to reduce disinfection by—products in water systems have been proposed.
One method for reducing disinfection by-products is to reduce l organic matter via treatment processes at the water treatment plant prior to chlorination of a water supply.
However, it is not always cost ive to eliminate all natural organic matter in a water supply and, sometimes, the speci?c con?guration of a water system can allow natural organic matter to be introduced ream of a treatment plant. Water derived from wells or rs may also be dif?cult to treat to remove natural organic matter in the ?rst instance. r method for reducing disinfection duct levels is to reduce or eliminate disinfection by—products that have been formed and that are present in a water supply system prior to delivery of water to a customer. In this regard, aeration has emerged as a method to remove disinfection by—products, as well as other volatile materials in water supplies, while the W0 20182’126100 water is in situ in a distribution system, that is, stored in a water—storage container. on practiced in distribution systems has been shown to be cost effective when compared to making major changes in treatment processes or alternate disinfection practices. Brooke, Ethan and Collins, M. Robin, Journal—American Water Works Association, Issue Date: Oct. 2011, vol. 103, No. 10, pgs. 84-96.
Separation of volatile materials Via aeration is accomplished by increasing the surface area of the water exposed to air. As applied to water-storage tanks, increased surface area is typically achieved by way of droplet creation. However, aeration can be less effective under certain conditions that are common in water-storage tanks. For example, the ef?ciency of aeration systems s to the headspace volume, with reduced headspace volume generally corresponding to d ef?ciency in that on s need both unsaturated air that can accept volatiles from the water and a suf?cient distance between the nozzle and the water surface to effect suf?cient aeration et creation).
Thus, it is desirable to provide a water system that can suf?ciently remove volatile contaminants from water-storage tanks without any of the previously described drawbacks.
Y OF THE INVENTION In certain non-limiting embodiments or aspects, the present invention is ed to a system for reducing an amount of le organic compounds comprising: a water—storage tank comprising a tank containing water, a roof positioned over the tank, and a headspace region formed between the roof and a surface of the water contained in the tank; an air exchange system positioned at least partially in the headspace region that is con?gured to exchange air exterior to the tank with air inside the tank; and a water conveyance deVice d at least partially in the water of the water-storage tank and which is con?gured to convey water in a manner that es a surface ?ow ty.
In some non-limiting embodiments or aspects, the water conveyance device is con?gured to convey water to the water surface. Further, the water conveyance device can be red to exchange water at or toward the ?oor of the tank with water at or toward the water surface. The water conveyance device can also circulate water around the tank.
] In certain non-limiting embodiments or aspects, the water conveyance device is completely submerged in the water when the tank is in use. For instance, the water conveyance device can be attached to or sit on the ?oor of the tank.
In some non-limiting embodiments or aspects, the air exchange system comprises: (i) a port that enables air to ?ow out of the water-storage tank; and (ii) an active air ventilation device con?gured to tate movement of air exterior of the water-storage tank into the headspace region. The active air ation device can be con?gured to facilitate the movement of air exterior ofthe water-storage tank into the headspace region in a direction that is non-perpendicular to the water surface. The active air ventilation device can also be con?gured to facilitate the movement of air exterior of the water—storage tank into the headspace region substantially across the water surface.
In certain non-limiting embodiments or aspects, the active air ventilation device comprises air vents that ?uidly connect the air exterior of the water-storage tank to the headspace region. In such embodiments or aspects, the active air ventilation device can comprise at least one screen that is positioned over at least one of the air vents. In some miting embodiments or aspects, the active air ventilation device ses an air moving device, such as a fan for e. In certain non-limiting embodiments or aspects, the water conveyance device comprises a mixer having blades, such as an impeller for example.
The present invention also includes a method ofremoving volatile materials from water stored in a water-storage tank. In certain non-limiting embodiments or aspects, the method comprises: ing at least a portion of the water stored in the water—storage tank from a location below a surface of the water up to the surface of the water with a water ance device; directing air from the exterior of the water-storage tank rpendicularly to the surface ofthe water stored in the water-storage tank with an active air ventilation device; and exchanging the exterior air with air in the interior of the water-storage tank through a port d above the surface of the water, thereby removing at least a n of volatile organic compounds present in the stored water of the water-storage tank.
In some miting embodiments or aspects, the water ance device ins a chemical gradient between the exterior air and the water such that volatile compounds are transferred from the water to the interior air. The exchanging of the air can comprise operating an air moving device of the active air ventilation device engaged with the water- storage tank to move the exterior air into the water-storage tank in a direction substantially across the surface of the water. Further, in some non-limiting embodiments or s, the method does not incorporate an aeration step. In certain non-limiting embodiments or aspects, the stored water contains an amount of volatile chemicals and the method automatically initiates when the amount of le chemicals in the stored water exceeds a pre—deterrnined amount. The method can also automatically stop when the amount of volatile chemicals in the stored water drops below the pre—deterrnined amount. The water stored in the water-storage tank can further comprise an initial amount of volatile chemicals and the termined amount is about 5% of the l amount.
Further non—limiting embodiments or aspects are set forth in the following clauses: Clause 1: A system for reducing an amount of volatile organic compounds comprising: a water—storage tank comprising a tank containing water, a roof positioned over the tank, and a headspace region formed between the roof and a e of the water contained in the tank; an air exchange system positioned at least partially in the headspace region that is con?gured to exchange air exterior to the tank with air inside the tank; and a water conveyance device located at least partially in the water of the water-storage tank and Which is con?gured to convey water in a manner that produces a surface ?ow velocity.
Clause 2: The system of clause 1, wherein the water conveyance device is con?gured to convey water to the water surface.
Clause 3: The system of clauses l or 2, n the tank has a ?oor and the water conveyance device is con?gured to exchange water at or toward the ?oor of the tank with water at or toward the water surface.
Clause 4: The system of any of clauses 1-3, wherein the water conveyance device ates water around the tank.
Clause 5: The system of any of clauses 1-4, wherein the water conveyance device is completely submerged in the water when the tank is in use.
Clause 6: The system of any of clauses 1-5, wherein the water conveyance device is attached to or sits upon the ?oor of the tank.
Clause 7: The system of any of clauses 1-6, wherein the air exchange system comprises: (i) a port that enables air to ?ow out of the storage tank; and (ii) an active air ventilation device con?gured to facilitate movement of air exterior of the water-storage tank into the headspace region.
Clause 8: The system of any of clauses 1-7, wherein the active air ventilation device is con?gured to facilitate the movement of air exterior of the water-storage tank into the ace region in a direction that is non—perpendicular to the water surface.
Clause 9: The system of any of clauses 1-8, wherein the active air ventilation device is con?gured to facilitate the nt of air exterior of the water-storage tank into the ace region substantially across the water surface.
Clause 10: The system of any of clauses 1-9, wherein the active air ventilation device comprises air vents that ?uidly connect the air exterior of the water—storage tank to the headspace region.
Clause 11: The system of any of clauses 1-10, wherein the active air ventilation device comprises at least one screen that is positioned over at least one of the air vents.
Clause 12: The system of any of clauses 1-11, wherein the active ventilation device comprises an air moving device.
Clause 13: The system of any of clauses 1—12, wherein the air moving device is a fan.
Clause 14: The system of any of clauses 1-13, wherein the water ance device comprises a mixer having blades.
Clause 15: A method of removing volatile materials from water stored in a water- e tank, comprising: conveying at least a portion of the water stored in the water-storage tank from a location below a surface of the water up to the surface of the water with a water conveyance device; directing air from or of the water-storage tank non-perpendicularly to the surface of the water stored in the water-storage tank with an active air ventilation device; and exchanging the exterior air with air in an interior of the water-storage tank through a port located above the surface ofthe water, thereby removing at least a portion of volatile organic compounds present in the stored water of the water-storage tank.
Clause 16: The method of clause 15, wherein the water conveyance device maintains a al gradient between the exterior air and the water such that volatile compounds are transferred from the water to the interior air.
Clause 17: The method of clauses 15 or 16, wherein the exchanging of the air comprises operating an air moving device of the active air ation device engaged with the water- storage tank to move the or air into the water- storage tank in a direction ntially across the surface of the water.
Clause 18: The method of any of clauses 15—17, wherein the method does not incorporate an aeration step.
Clause 19: The method of any of clauses 15-18, wherein the stored water contains an amount of volatile als and the method automatically initiates when the amount of volatile chemicals in the stored water exceeds a termined amount.
Clause 20: The method ofany of clauses 15-19, n the method automatically stops when the amount of volatile chemicals in the stored water drops below the pre-determined amount.
W0 20182’126100 Clause 21: The method of any of clauses 15-20, n the water stored in the container comprises an l amount of volatile chemicals and the pre-determined amount is about 5% of the initial amount.
BRIEF DESCRIPTION OF THE DRAWINGS is a partial front View of a roof portion of a water-storage tank having a VOC removal system according to a non-limiting ment of the invention; and is across-sectional front View ofan active air ation system of DESCRIPTION OF THE INVENTION For purposes of the following detailed description, it is to be understood that the invention may assume various ative variations and step sequences, except where expressly speci?ed to the contrary. Moreover, other than in any ing examples, or where otherwise indicated, all numbers expressing, for example, quantities used in the speci?cation and claims are to be understood as being d in all instances by the term "about". Accordingly, unless ted to the contrary, the numerical parameters set forth in the following speci?cation and attached claims are imations that may vary depending upon the desired properties to be ed by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope ofthe claims, each numerical parameter should at least be construed in light of the number of ed signi?cant digits and by applying ordinary rounding techniques. hstanding that the numerical ranges and ters setting forth the broad scope of the invention are approximations, the numerical values set forth in the speci?c examples are reported as precisely as possible. Any cal value, however, inherently contains certain errors necessarily resulting from the standard variation found in their respective testing measurements.
Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of "1 to 10" is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.
Further, the terms "upper," "lower," "right," "left," "vertical," "horizontal," "top," "bottom," "lateral," "longitudinal," and derivatives thereof shall relate to the invention as it is oriented in the drawing ?gures. However, it is to be understood that the invention may assume alternative variations and step sequences, except where expressly speci?ed to the contrary. It is also to be understood that the c devices and processes illustrated in the attached drawings, and bed in the speci?cation, are simply exemplary ments or aspects ofthe invention.
Hence, speci?c ions and other physical characteristics related to the embodiments or aspects disclosed herein are not to be considered as limiting.
In this application, the use of the singular includes the plural and plural encompasses singular, unless speci?cally stated otherwise. In on, in this application, the use of "or" means "and/or" unless speci?cally stated otherwise, even though "and/or" may be explicitly used in certain instances.
The term "substantially" is meant to permit deviations from the descriptive term that do not negatively impact the intended purpose.
The phrase "volatile chemical" includes VOCs such as chloroform, orrn, and trichloroethylene (TCE), as well as radon, carbon dioxide, and hydrogen sul?de. Embodiments or aspects according to this disclosure may at least partially remove one, some or all ofthe volatile als present in the water stored in the water-storage tank regardless of whether the description refers to volatile chemicals generally or certain volatile chemicals speci?cally. The term "VOCS" as used herein includes VOCs and other volatile chemicals and such terms are used interchangeably herein.
The phrases "water—storage tanks", "water—storage containers" and the like are used interchangeably. In addition, the term "water" when used to be -storage tanks/containers" encompasses both water and itions comprising water, in which water is the majority of the composition.
The term "community water supply" means a water supply provided from a central point and piped to individual users under pressure. Water sources used to generate municipal water es can vary. As ed by regulations, municipal water supplies will typically undergo primary disinfection at a treatment facility to make the water suitable for use as potable water or the like. Secondary disinfection with chloramination processes can also be provided at the water treatment plant to ensure that the water Will remain suitable for use as it travels through the water distribution system to the consumer.
"Well water" is water obtained from a below-ground water source such as an aquifer, and that is stored (or storable) for supply as potable water, among other uses. As would be recognized, well water can natively comprise free ammonia as a result of natural processes. Well water may be disinfected prior to use, or it may not be.
"Primary disinfectants" are generally intended to kill or otherwise deactivate pathogens that exist in a water source upon its arrival at a treatment plant, whereas "secondary disinfectants" are generally intended to maintain the healthiness and cleanliness of the water supply upon leaving the treatment plant throughout its path through a community water system until it reaches the faucet of a consumer. "Secondary disinfection" may be for the maintenance of free or combined chlorine levels in a water supply once the water is treated with primary disinfecting s (e.g., sedimentation, ation, UV, chlorine gas, etc.).
As ted, the present invention includes systems and methods for removing or reducing the amount of one or more volatile inants from water that is stored in a water- storage tank prior to delivery of such water to a consumer. The stored water can comprise, for example, water that has been treated with secondary disinfection at a water treatment facility, and/or the stored water can se another source of water, such as a well or an aquifer.
Although the methods and systems herein substantially do not rely on increasing the surface area of the water undergoing decontamination for ef?cacy, the systems and methods herein may be used together with approaches for removing contaminants, which rely on increasing the surface area of water. The systems and methods generally involve circulating or otherwise ing stored water within the water—storage tank while also exchanging air outside the tank for air inside the tank.
Without being bound by theory, it is believed that the movement of water coupled with the exchange of interior air with exterior air maintains or increases the chemical potential between the water e and the air to favor release of le chemicals into the air. As used , the "chemical potential" refers to the tendency for the chemical to diffuse. In some non-limiting embodiments or aspects, the systems generally comprise a storage tank ?tted with a device for circulating water in addition to a device for actively circulating air inside the headspace of the water-storage tank and for actively exchanging inside air with outside air (i.e. actively g air).
Referring to and in certain non-limiting embodiments or aspects, the present invention includes a system 1 for removing volatile compounds from a water-storage tank 10.
The system 1 includes a water-storage tank 10 ?tted (or retro?tted) with an air exchange system and a water conveyance device 50. also illustrates air ?ow patterns 6 and water ?ow ns 8 within the water-storage tank 10 when the air ge system 30 and water conveyance device 50 are active.
In some non-limiting embodiments or aspects, the water-storage tank 10 is a community storage tank 10. ity water-storage tanks typically have a capacity of about 500 gallons ofwater or greater, or about 1,000 gallons ofwater or greater, or about 0 gallons of water or greater, or about 1,000,000 gallons of water or greater. Water-storage tanks may even have capacities of up to a billion gallons of water. The systems and methods of the present invention are typically for use with large volume water-storage tanks, i.e. water-storage tanks having a volume of about 5,000 gallons or greater. Water-storage tanks can include elevated containers and other substantially enclosed containers in which these large volumes of water can be stored prior to delivery to a customer.
In use, a portion ofthe capacity ofthe water—storage tank 10 is "headspace" 12, a region, which does not contain water. The headspace 12 is therefore formed between the interior surface 16 of the roof 14 of the water—storage tank 10 and the surface 18 of a body of water 20 contained in the water-storage tank 10. As used , the surface 18 of a body of water 20 is also referred to as the air/water interface. Further, it is appreciated that the volume of headspace 12 ?uctuates in relation to the amount of the body of water 20 stored in the water-storage tank 10.
As indicated, the water-storage tank 10 ses an air exchange system 30 and a water ance device 50. The air exchange system 30 circulates air within the headspace region 12 and exchanges air interior to the water-storage tank 10 with air exterior to the water- storage tank 10. ing to the air exchange system 30 comprises a port 32 and an active air ventilation device 34, both of which, for example, can be formed through the roof 14 of the water—storage tank 10 and are in ?uid communication with the headspace region 12.
In some non-limiting embodiments or aspects, the port 32 is typical of water-storage tanks 10 for which the level of water ?uctuates (for example, to prevent ssurization and ng of the water-storage tank 10 structure during draining). It is iated that the port 32 enables air to ?ow out of the water-storage tank 10.
As previously described, the air ge system 30 also comprises an active air ventilation device 34. further illustrates a non-limiting embodiment of an active air ventilation device 34. As shown in air nt is provided by a fan or other air moving device 36. Air ?ow direction through the active air ventilation device 34 may be accomplished by appropriate orientation of the air moving device 36 and/or by using a de?ector 38 in ?uid communication with the air moving device 36. The use of a de?ector 38 may be particularly ble where the air?ow direction is otherwise perpendicular to the water surface, for example to optimize l of volatile compounds and/or minimize surface water disruptions. As such, the air moving device 36 can in?uence air?ow rate and frequency, and the optional de?ector 38 can help in?uence air?ow direction. It is appreciated that the active air ventilation device 34 is con?gured to facilitate exchange of air exterior 40 to the water-storage tank 10 with air interior to the storage tank 10 by ?uidly connecting the interior headspace region 12 with the exterior environment by way of vents 42.
To alleviate and/or prevent contamination ofwater stored within the water-storage tank , for example to alleviate or prevent ingress of animals, leaves, and/or other debris into the water—storage tank 10, screens 44 may be ed to cover the vents 42. In addition, and as indicated above, the ventilation device 34 is an "active" air ventilation device 34, and accordingly, provides input energy (e.g. ical or electrical) to assist the air exchange process. Referring to the input energy is provided by the air moving device 36 such as a fan. In some non-limiting embodiments or aspects, for example, where there may be a desire to achieve additional energy savings, a switch may be provided that automatically s the air moving device 36 when the amount of le compounds or volatile compound concentration is above a predetermined amount, and/or automatically disengages the air moving device 36 when the amount of volatile compounds or the volatile compound concentration is below a predetermined amount. In some examples, the water stored in the water-storage tank 10 comprises an initial amount of volatile chemicals and the predetermined amount is about 5% of the initial amount, about 10% of the l amount, about 15% of the initial , or about % of the initial amount.
It is appreciated that the air moving device 36 cations, and the ions of the air ventilation device 34, including the relative dimensions of the air ventilation device 34 as compared to the air moving device 36, determine the air?ow rate (or range of air ?ow rates).
Also, the angle of the active air ventilation device 34 connected to the water-storage tank 10 relative the e 18 of the body of water 20 de?ning the lower boundary of the headspace 12 will also impact air ?ow direction. Although the active air ventilation device 34 is shown mounted on the roof 14, the active air ventilation device 34 can be connected to other areas of the water-storage tank 10 such as, for example, being ducted from the ground.
In some non-limiting embodiments or aspects, the components that make up the air exchange system 30 can include the devices described in US. Patent No. 9,816,716, ?led Dec. 13, 2013, which is hereby orated by reference in its entirety.
In general, and t being bound by theory, it is believed that the ef?ciency of volatile chemical l will be dependent, in part, on the velocity and direction of air contact at the air/water ace 18. In some non-limiting embodiments or aspects, the active air ventilation device 34 is con?gured to move air into and around the water-storage tank 10 in a direction and/or velocity that zes removal of air laden with contaminants, such as VOCs.
For instance, the active air ventilation device 34 can be con?gured to move air into the water- storage tank 10 in a direction that is non-perpendicular to the water surface 18 de?ning the boundary of the headspace region 12. In certain non-limiting embodiments or aspects, the active air ventilation device 34 is con?gured to move air substantially laterally across the interior surface 16 of the roof 14 of the storage tank 10. Further, in some non-limiting embodiments or aspects, the active air ventilation device 34 is red to move air substantially laterally across the water surface 18 de?ning the boundary of the headspace region 12. In addition, the active air ventilation device 34 can be con?gured to move air in a direction and/or velocity substantially without generation of suf?cient surface waves and/or splashes (hereafter "surface tions") to create any appreciable additional e area at the air/water ace 18. The active air ventilation device 34 is also con?gured to direct the volatile chemicals away from the water surface 18 and toward the port 32 to facilitate their removal from the water-storage tank 10.
In some non-limiting embodiments or aspects, the air exchange system 30 is con?gured to achieve a ent number of air exchanges/day corresponding to maintaining a desired chemical potential across the air/water interface and a d rate of removal ofVOC. In certain miting embodiments or aspects, the air exchange system 30 is con?gured to exchange air through the water-storage tank 10 at a rate several times faster than the movement of water in and out of the water-storage tank 10. In some examples, the air exchange system 30 can accomplish at least approximately 5-100 air exchanges/day.
As usly described, and as shown in the VOC removal system 1 also es a water conveyance device 50 (also referred to herein as a "mixer") in operational engagement with the body of water 20 in the storage tank 10 for moving the water 20 throughout the water-storage tank 10. The conveyance device 50 is con?gured to move at least a portion of the stored water 20 up to the water surface 18, such that at least some of the conveyed water comes into contact with air that is supplied from the air exchange system 30 forming an air/conveyed water interface.
In some non-limiting embodiments or aspects, the water conveyance device 50 can be substantially immersed below the water surface 18, such that circulation of the water with the conveyance device 50 will substantially not result in the generation of surface disruptions and additional appreciable surface area at the water surface 18. The water conveyance device 50 is also con?gurable to substantially not generate formation of bubbles at the water surface 18. In certain miting ments or aspects, the water conveyance device 50 includes mixing blades 52 (such as an impeller for example) and is maintained at a distance below the surface 18 of the stored water in which the s) 52 of the water ance device 50 are fully submerged.
As shown in the water conveyance device 50 can be located within the water— storage tank 10 so that it is completely submerged in the body of water 20. However, the water conveyance device 50 need not be ?llly submerged as long as the water conveyance device 50, when in operation, facilitates the movement of the body ofwater 20 within the water—storage tank , preferably without substantially generating surface disruptions and additional appreciable surface area at the water e 18. In some non-limiting embodiments or aspects, the water conveyance device 50 (or at least the portion of the water conveyance device 50 that may cause surface disruptions and sed water surface area) is fully submerged at least about 36 inches beneath the water surface 18 to reduce or eliminate surface disruptions and increased water surface area. Further, in certain non-limiting ments or aspects, the water conveyance device 50 can be con?gured to exchange water at or toward the ?oor 11 of the water—storage tank with water at or toward the water surface 18. The water conveyance device 50 can also be attached to or sit upon the ?oor 11 of the storage tank 10.
In some non-limiting embodiments or aspects, the water conveyance device 50 will continuously or substantially continuously convey stored water 20 from below the water surface 18 to the water surface 18 (that is, the air/water interface) when the water conveyance device 50 is operational. In n non-limiting embodiments or aspects, including the illustrated water ?ow pattern 8 water of water is circulated around the tank water-storage 10 in a top to bottom con?guration.
Without being bound by theory, it is believed that the ef?ciency ofvolatile inant l depends, in part, on the frequency that new air/ water interfaces are generated or, put another way, how much turnover of water is created. In some non—limiting embodiments or aspects, the water conveyance device 50 is con?gured to result in circulating the entire volume of water 20 in the water-storage tank 10 at least once, at least six times, at least 10 times, at least 50 times, or at least 100 times during a ?ll and drain cycle in the water-storage tank 10. The volatile nd removal may be increased by increasing the circulation rate beyond the set number of exchanges per ?ll and drain cycle.
The air exchange system 30 and water conveyance device 50 can use a power source for operation thereof. The power source can be provided by any method known in the art. For example, the power source can be provided by tion ofthe water-storage tank 10 to a power grid. Yet ?lrther, the water-storage tank 10 can be powered by batteries. Still , power can be ed by solar panels. In addition, the power for the system may be supplied by water pressure present in the distribution system, or by pumps.
In operation, the air exchange system 30 and the water conveyance device 50 cooperate to t at least a portion of the VOCs present in the stored water 20 to the outside air. Without wishing to be bound by theory, it is believed that the air exchange system 30 and the water conveyance device 50 cooperate to maintain a chemical gradient between the air and the water.
More speci?cally, the water conveyance device 50 and air exchange system 30 ate to maintain a concentration difference between the water and the air ofthe constituent to be removed such that there is a chemical potential between the water and the air that favors the transport of the constituent out of the water and into the air.
Thus, for example, in operation, the air exchange system 30 and the water conveyance device 50 produce torroidal air ?ow and water ?ow ns 6,8 tively. ing on the 3D geometry, the ?ow patterns may be concurrent, oblique or counter-current (depending on where the axis of each ?ow is located and reference point of view). Referring to and when shown in cross—section, the air and water ?ow patterns 6, 8 are counter-current to each other (e.g. the air ?ow pattern 6 is clockwise through the headspace 12, whereas the water ?ow pattern 8 is counterclockwise around the water—storage tank 10) resulting in air and water ?ow 6, 8 in the same direction at the air/water interface 18.
As further shown in the air ?ow pattern 6 of the air exchange system 30 conveys a source of air having a relatively low content of VOCs (i.e. a lower t than the air inside the water-storage tank 10, or inside the water-storage tank 10 at the air/water ace 18), for example outside air 40, into the water-storage tank 10 via the active air ventilation device 34, across the surface of water 18 and back out through the port 32. In some non-limiting ments or aspects, air can also be ted to the exterior through the active air ventilation device 34. In this way, air inside the water-storage tank 10 having a relatively higher VOC concentration, for example at the air/water interface 18, is removed from the water-storage tank and replaced with air, for example exterior air 40, having a relatively lower concentration of VOCs.
Similarly, and as also shown in the water ?ow pattern 8 of the water conveyance device 50 circulates water from beneath the water surface 18, for example from the bottom of the storage tank 10, across the water surface 18 and back down beneath the water surface18 (e. g. back down to the bottom of the water-storage tank 10). In this way, water having a relatively lower concentration of VOCs (due to the VOCs moving out of the water into the air as a result of the chemical ial difference), for example, water at the air/water interface 18, is replaced with water, for example water at the bottom of the water—storage tank 10, having a relatively higher tration of VOCs.
Referring to which includes an exhaust port 32, volatile chemicals present in the headspace region 12 are desirably removed therefrom, so as to prevent the volatile chemicals from being reintegrated into the stored water 20, as well as to reduce the possibility that the headspace region 12 becomes saturated with the volatile chemicals. In some non- limiting embodiments or aspects, saturation of the headspace region 12 can reduce the ability for additional volatile chemicals to be ef?ciently d from the stored water 20. Thus, it can be desirable to remove volatile chemicals from the headspace region 12 after such volatile chemicals are removed from the stored water 20. In this regard, the at least one t port 32 is operational to convey air in the headspace region 12 to a location outside of the water- storage tank 10.
In certain non-limiting embodiments or aspects, the air application step will substantially not result in an increase in the e area of the water, as is the intention of existing methodologies whereby volatile materials are d from water via prior art air stripping methods used to remove volatile materials from water. In this regard, when the water- storage tank 10 is circular in cross—section, the conveyed water portion has a conveyed water portion surface area de?ned by the equation: A = TIT'Z, n r is a water-storage tank 10 interior radius de?ned by 1/2 of the er of a top surface of the stored water 20. Further, the surface area of the conveyed water present at the air/water interface 18 when air is being applied o is substantially equivalent to the surface area of the air/water interface 18 when no air is being applied o, where the volume of the stored water 20 is equivalent before and during air application. In other words, for an equivalent volume of water that has the same radius de?ned by the portion of the water-storage tank 10 that the interface 18 meets, the amount of surface water 18 that is in contact with the headspace region 12 will be substantially the same.
It is appreciated that the air exchange system 30 and water conveyance device 50 are not limited to the speci?c illustrated embodiments or aspects described herein. For example, they are not limited to an active air ventilation device 34 that moves outside air 40 across the surface of the water or to a water ance device 50 that circulates water from the bottom of the storage tank 10 across the water surface and back. Other air exchange systems 30 and water conveyance devices 50 which can facilitate maintaining a chemical ial n the water and the air that favors transport of one or more volatile chemicals out of the water and into the air is within scope of the present invention. Thus, for example, included within the scope of this disclosure are other water conveyance devices 50 that will uously, or substantially uously, refresh the water at the ter interface 18 by recirculation, thereby providing new air/water interfaces 18, and other air exchange systems 30 that will act to remove or reduce the amount of volatile chemicals present at or near the air/water interface Even in instances where very little volatile chemicals are likely present each time a new volume of ed water having a concentration of volatile chemicals comes into contact with air having a lower concentration of volatile contaminants at the air/water interface 18, at least some of the volatiles will be removed at any one time. As the water continues to be exchanged, for example re-circulated, in the storage tank 10, water with increased concentration of volatile chemicals may be presented at the air/water interface 18 ve to the water it replaced, thus providing additional t with the exchanged/refreshed air having a lower concentration of volatile compounds than the air it replaced and the new water it contacts at the air/water interface 18, which, in turn, will result in r removal of volatile chemicals from the water supply. Over time, a substantial volume of the stored water in the water— storage tank 10 will have the opportunity to come into contact with the supplied air, thus resulting in a low concentration of volatile chemicals in the water— storage tank 10, as ed to a stored water supply 20 from the same source that is not subjected to the methodology described herein.
In certain non-limiting embodiments or aspects, the inventive ology provides a level of volatiles chemicals in the stored water supply 20 that is about 1% less, or about 5% less, or about 10% less, or even up to about 50%, 55%, 60%, 65%, and 68% less than a stored water supply 20 that is not subjected to the methodology described herein. The amount of volatile chemical reduction can depend on the cross-sectional size of the water-storage tank 10 at the air/water interface 18 and detention time.
In some miting embodiments or s, the systems and methods herein provide signi?cant s over other existing volatile chemical removal methodologies. For e, the inventive methodology utilizes substantially less energy than aeration volatile removal logies. Since water— storage tanks 10 are often in locations Where it is dif?cult to e a continuous source ofpower, the low energy aspect of the present invention is an improvement.
As another example, the inventive systems and methods ntially reduce the amount of air introduced into the water, with an attendant reduction in the possibility that dissolved gases resulting from vigorous aeration (as is required to generate satisfactory volatile removal) will affect the pH and/or alkalinity of the water.
Whereas particular embodiments or aspects of this invention have been described above for purposes of illustration, it Will be evident to those skilled in the art that numerous variations of the details of the present invention may be made Without departing from the invention as de?ned in the appended claims.

Claims (12)

THE INVENTION CLAIMED IS
1. A system for reducing an amount of volatile c compounds comprising: a water-storage tank comprising a tank containing water, a roof positioned over the tank, and a headspace region formed between the roof and a surface of the water contained in the tank; an air exchange system positioned at least partially in the headspace region that is configured to exchange air exterior to the tank with air inside the tank; and a water conveyance device located at least partially in the water of the waterstorage tank and which is configured to convey water in a manner that produces a surface flow velocity, n the water conveyance device is completely submerged in the water when the system is in use, wherein the air exchange system comprises: (i) a port that enables air to flow out of the storage tank; and (ii) an active air ation device configured to facilitate movement of air exterior of the water-storage tank into the headspace region, and wherein the active air ventilation device is attached to the roof of the storage tank such that exterior air exits the active air ventilation device directly into the headspace region that is above the surface of the water.
2. The system of claim 1, wherein the water conveyance device is configured to convey water to the water surface.
3. The system of claim 1, wherein the tank has a floor and the water conveyance device is configured to ge water at or toward the floor of the tank with water at or toward the water surface.
4. The system of claim 3, wherein the water conveyance device circulates water around the tank.
5. The system of claim 3, wherein the water conveyance device is attached to or sits upon the floor of the tank.
6. The system of claim 1, wherein the active air ventilation device is configured to facilitate the movement of air exterior of the water-storage tank into the ace region in a direction that is rpendicular to the water surface.
7. The system of claim 1, wherein the active air ventilation device is configured to facilitate the movement of air exterior of the water-storage tank into the headspace region substantially across the water surface.
8. The system of claim 1, wherein the active air ventilation device comprises air vents that fluidly connect the air or of the water-storage tank to the headspace region.
9. The system of claim 8, wherein the active air ventilation device comprises at least one screen that is positioned over at least one of the air vents.
10. The system of claim 1, n the active air ventilation device comprises an air moving device.
11. The system of claim 10, wherein the air moving device is a fan.
12. The system of claim 1, wherein the water conveyance device comprises a mixer having blades. HG. "E
NZ754900A 2017-12-29 Systems and methods for removing volatile compounds from water-storage tanks NZ754900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ795941A NZ795941B2 (en) 2017-12-29 Systems and Methods for Removing Volatile Compounds from Water-Storage Tanks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662441208P 2016-12-31 2016-12-31
PCT/US2017/068885 WO2018126100A1 (en) 2016-12-31 2017-12-29 Systems and methods for removing volatile compounds from water-storage tanks

Publications (2)

Publication Number Publication Date
NZ754900A NZ754900A (en) 2023-10-27
NZ754900B2 true NZ754900B2 (en) 2024-01-30

Family

ID=

Similar Documents

Publication Publication Date Title
US20220274851A1 (en) Systems and Methods for Removing Volatile Compounds from Water-Storage Tanks
US20180305224A1 (en) Method and apparatus for treating potable water in municipal and similar water tanks
KR101890361B1 (en) An off ozone gas recirculation type UV disinfection system
KR101899898B1 (en) Sterilization and deodorization equipment using hypochlorous acid gas, sterilization and deodorization method thereof
KR101839844B1 (en) air sterilization, disinfection and deodorization equipment and method with circulation function and keeping density of Chlorine dioxide
NZ754900B2 (en) Systems and methods for removing volatile compounds from water-storage tanks
KR20150055159A (en) Apparatus for treatment of ballast water by combination of uv and chlorination
NZ795941B2 (en) Systems and Methods for Removing Volatile Compounds from Water-Storage Tanks
KR101289909B1 (en) A water-cleaning and sterilizing device for live fish aquarium
EP1696968B1 (en) Produce decontamination apparatus
NZ795943A (en) Systems and Methods for Removing Volatile Compounds from Water-Storage Tanks
RU2636076C2 (en) Method of photochemical purifying water and device for its implementation
KR20190105643A (en) Potable water generator
KR102007305B1 (en) Deodorization and sterilization device using ozone mist
JP5611127B2 (en) Defoaming apparatus and method for used discharged seawater, discharged seawater discharging system
KR102310728B1 (en) Manufacturing apparatus for sterilizing water
JP2013043172A (en) Circulating-type sewage treatment apparatus
KR102138176B1 (en) Wastewater pre-processing system with OH reaction agitation tank
KR102081880B1 (en) Reactor for circulating advanced oxidation treatment
JP2010221068A (en) Apparatus and method for processing organic waste liquid
JP4059754B2 (en) Non-exhaust ultraviolet ozone combined sterilization purification device
KR20170009419A (en) Vessle ballast water treatment apparatus for handling harmful water creature and pathogenic bacterium
JP6035109B2 (en) To-be-treated water treatment apparatus and to-be-treated water treatment method
KR100892877B1 (en) Closed poultry farm air conditioning apparatus for preventing poultry disease virus and method thereof
JPH1190461A (en) Photo-reactive liquid treatment apparatus