NZ627375B2 - A renewal energy power generation system - Google Patents

A renewal energy power generation system Download PDF

Info

Publication number
NZ627375B2
NZ627375B2 NZ627375A NZ62737512A NZ627375B2 NZ 627375 B2 NZ627375 B2 NZ 627375B2 NZ 627375 A NZ627375 A NZ 627375A NZ 62737512 A NZ62737512 A NZ 62737512A NZ 627375 B2 NZ627375 B2 NZ 627375B2
Authority
NZ
New Zealand
Prior art keywords
fuel cell
air conditioning
hydrogen
power
renewable energy
Prior art date
Application number
NZ627375A
Other versions
NZ627375A (en
Inventor
Colin Salmond
Grant Salmond
Original Assignee
Electrygen Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrygen Pty Ltd filed Critical Electrygen Pty Ltd
Priority claimed from PCT/AU2012/001535 external-priority patent/WO2013086579A1/en
Publication of NZ627375A publication Critical patent/NZ627375A/en
Publication of NZ627375B2 publication Critical patent/NZ627375B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H2021/003Use of propulsion power plant or units on vessels the power plant using fuel cells for energy supply or accumulation, e.g. for buffering photovoltaic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/61Application for hydrogen and/or oxygen production
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/40Fuel cell technologies in production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Abstract

Disclosed is a renewable energy power generation system (10) supplying AC power to appliances (34) and air conditioning (52) to an associated space. The system includes at least one renewable energy power generating apparatus (14) adapted to generate electric power and a hydrogen power generation module (21) having a separation unit (22) adapted to separate water into hydrogen and oxygen. A fuel cell unit (28) receives air or oxygen, and hydrogen from the separation unit (22) or from a hydrogen storage (26) and produces electric power in the presence of hydrogen and oxygen. A conversion means (32) then converts DC output from the renewable energy power generating apparatus (14) and the fuel cell unit (28) to AC power. The hydrogen power generation module (21) receives electric power from the at least one renewable energy power generating apparatus (14) at least prior to production of electric power by the fuel cell unit (28). Electric appliances (34) and an air conditioning system (52) are connected to the system such that the system supplies the AC power to the appliances and the air conditioning system. The fuel cell unit (28) supplies heat to the air conditioning system (52, 52A, 91) for exchanging heat with a working fluid of the air conditioning system (52). The air conditioning system has a heating, ventilation and air conditioning module (52) including a heat exchanger (93) where heat is transferred to the working fluid, a controller (80) controlling operation of the system. dule (21) having a separation unit (22) adapted to separate water into hydrogen and oxygen. A fuel cell unit (28) receives air or oxygen, and hydrogen from the separation unit (22) or from a hydrogen storage (26) and produces electric power in the presence of hydrogen and oxygen. A conversion means (32) then converts DC output from the renewable energy power generating apparatus (14) and the fuel cell unit (28) to AC power. The hydrogen power generation module (21) receives electric power from the at least one renewable energy power generating apparatus (14) at least prior to production of electric power by the fuel cell unit (28). Electric appliances (34) and an air conditioning system (52) are connected to the system such that the system supplies the AC power to the appliances and the air conditioning system. The fuel cell unit (28) supplies heat to the air conditioning system (52, 52A, 91) for exchanging heat with a working fluid of the air conditioning system (52). The air conditioning system has a heating, ventilation and air conditioning module (52) including a heat exchanger (93) where heat is transferred to the working fluid, a controller (80) controlling operation of the system.

Description

A RENEWAL ENERGY POWER GENERATION SYSTEM TECHNICAL FIELD THIS INVENTION relates to a renewable energy power generation system, and in particular but not limited thereto, the system is adapted to use at least one renewable energy source and a hydrogen fuel source to provide power for propulsion delivery for both stationary and mobile applications on land, sea and in space.
BACKGROUND The GDP growth aspirations and expectations of the world population are in collision with “peak oil“ and man accelerated global warming. These events have resulted from a century of fossil­fuelled greenhouse gas emissions, largely caused by consumption of coal/oil/gas. Sustainable energy is between a rock and a hard place. This impasse is the catalyst to create sustainable, renewable energy fuels from the most abundant free sources, sun, wind, moon, water, earth's plasma. It is desirable to control the harvest, storage and delivery of this abundant/natural/free energy at a relatively low cost per MW in the face of unsustainable fossil­fuelled energy.
Coal, oil and gas fired power stations have historically provided commercial & domestic base load energy from mining earth’s fossil reserves. Crude oil/gas products have fuelled the transport industry through the ICE plant (internal combustion engine) which is a highly matured/sophisticated device but low in efficiency, in the order of 20%. World distribution infrastructures of fossil fuel are widespread.
OBJECT OF THE INVENTION It is an object of the present invention to provide a hydrogen power generation system to alleviate or to at least reduce to a certain level one or more of the prior art disadvantages SUMMARY OF THE INVENTION In one aspect therefore the present invention resides in a renewable energy power generation system (10) supplying AC power to appliances (34) and air conditioning (52) to an associated space comprising at least one renewable energy power generating apparatus (14) adapted to generate electric power; and a hydrogen power generation module (21) having a separation unit (22) adapted to separate water into hydrogen and oxygen, and a fuel cell unit (28) adapted to receive air or oxygen, and hydrogen from said separation unit  (22) or from a hydrogen storage  (26); the fuel cell unit  (28) being arranged to produce electric power in the presence of hydrogen and oxygen; a conversion means  (32) converting DC output from the renewable energy power generating apparatus(14)  and the fuel cell unit (28) to AC power; characterised in that ​ ; wherein the hydrogen power generation module (21)  being adapted to receive electric power from the at least one renewable energy power generating apparatus (14) at least prior to production of electric power by the fuel cell unit (28); electric appliances (34) and an air conditioning system (52) are connected to the system such that the system supplies the AC power to the appliances and the air conditioning system, said fuel cell unit (28) being adapted to supply heat to the air conditioning system (52, 52A, 91) for exchanging heat with a working fluid of the air conditioning system (52), the air conditioning system having a heating, ventilation and air conditioning module (52) including a heat exchanger (93) where heat is transferred to the working fluid, a controller (80) controlling operation of the system.
The at least one renewable energy power generating apparatus may be adapted to use one or a combination of two or more of renewable energy sources to generate electric power. The renewable energy sources may include wind, solar, water, wave, geo­thermal and the like energy sources.
The system may have one or more electric power storage devices adapted to store the electric power from the at least one renewable energy power generating apparatus and the hydrogen power generation module. The storage devices may include batteries and/or capacitors.
In preference, the system has a water purification module adapted to provide a relatively pure water from a water source. The water source may be sea water, brackish water, or any water containing part of land such as river or lake or dam.
The system may be adapted to convey a part of the water from the water purification module for use domestically or industrially.
Preferably, the system has a water tank adapted to hold water from the water purification module and at least a part of the water from the fuel cell unit, and mineralization means adapted to add appropriate minerals to water from the water tank so as to be potable.
The system according to the present invention may be adapted to control the harvest and delivery of sustainable energy from the sun, PVC & heat, wind, hydro, geothermal steam generation and additionally capture hydrogen energy from water electrolysis, waste and anaerobic sources in order to supply stationary commercial/domestic base load MWs and mobile electric motors/propulsors.
The product hydrogen may be stored in a safe hydrogen storage by cryogenic, metal hydride and chemical hydride means and deliver Hydrogen Fuel Cell efficiencies such as in the order of 85% with maintenance down time of a relatively small magnitude such as one minute in six years, driving down renewable energy MW costs.
BRIEF DESCRIPTION OF THE DRAWINGS In order that the present invention can be readily understood and put into practical effect the description will hereinafter refer to the accompanying drawings which illustrate non limiting embodiments of the present invention and wherein Figure 1 is a block flow diagram showing main components of an embodiment of the renewable energy hydrogen power generation system according to the present invention; Figure 2 is a shows a programmable logic controller for controlling the components of the system shown in Figure 1; and Figure 3 is a schematic flow diagram showing details of operation of the fuel cell assembly.
DETAILED DESCRIPTION OF THE DRAWINGS Referring to the drawings and initially to Figure 1, there is shown an embodiment of the renewable energy hydrogen power generation system 10 according to the present invention. The system 10 has renewal energy module 12 adapted to generate electrical power from wind turbines 14, solar collectors which in this embodiment are photovoltaic cells 16 and hydro turbines 18. The wind turbines generate electric power at about 48V DC. The photovoltaic cells produce electric power at about 12V DC and the hydro turbines at about 6 to 9V DC. The module 12 uses a DC/DC converter 20 to regulate its output at about 48V DC.
  The system 10 also has a hydrogen power generation module 21 having an electrolysis separation unit 22 for separating water (H ​ O) into hydrogen and oxygen components, a compressor 24 for compressing the hydrogen and feeding it into a metal hydride storage o ​ r tank ​  26, and a hydrogen fuel cell assembly 28 adapted to receive hydrogen from the storage 26. The fuel cell assembly 28 is formed of a stack of fuel cells which facilitate an electrochemical reaction between oxygen and hydrogen to produce electric power and water at an elevated temperature of about 80°.  The oxygen is extracted from air that is introduced into the fuel cells.
The DC electric powers from the renewable energy module 12 and the hydrogen power module 21 are controllably supplied to an AC power utility module 30 which uses an inverter 32 to convert the DC power into AC power for operating electric consuming devices 34 such as lighting equipment, winches, pumps, and devices generally available at a hotel.
Excess power is fed to a DC power storage module 40 for charging batteries 42 and/or super capacitors 44.
The warm water from the fuel cell assembly 28 is fed into a heating ventilation and air conditioning module (HVAC) 50 having an air conditioning system 52 for conditioning air temperature in a building. A part of the warm water may be diverted into a potable water module 60 for providing potable water. The module 60 has a distilled water tank 62 to which the warm water is delivered and a mineralization tank 64 for adding desired minerals ​ to the water from the tank 62.
The system 10 also has a water purification module 70 for producing desalinated water from sea water. In this embodiment, the module 70 use a reverse osmosis unit 72 for separating saline from sea water. The purified water is fed into the distilled water tank 62 and the saline waste is discarded as a by­product. Low pressure pump 74 is used to draw water from sea and a high pressure pump 76 is used to supply water at a relatively high pressure at the reverse osmosis unit 72.
A low pressure pump 23 in the hydrogen power generation module 20 draws distilled water from the tank 62 and feeds it into the separating unit 22 for producing hydrogen gas. A de­ionization unit may be provided for de­ionising the distilled water prior to entering the separating unit 22.
As shown in Figure 2, the system 10 has a programmable logic controller 80 adapted to control operation of controllable components of the system. [0021 ​ ] Figure 3 shows a 60 cell stack fuel cell assembly 28 which receives hydrogen from a hydrogen storage tank 26. A pressure reducer 27 reduces the pressure of the hydrogen from the tank 26 before reaching the assembly 28. Hydrogen passing through the assembly 28 may be returned by a recycle pump 27A or purged through a valve 27B.
An air blower 29B draws air through a filter 29A into the assembly 28. Water formed during the electrochemical reaction between hydrogen and oxygen in the assembly 28 is passed through a condenser 52 A of the HVAC 52 as described above and a part of the water is fed into a humidifier 90. The water is fed to a spray tower 91 where it humidifies return air from the assembly 28. A pump 92 forces the humidified air to give up certain heat at a heat exchanger 93 before returning to the assembly 28.  A flowable heat transfer medium receives heat at the exchanger 93 and releases the heat via a radiator 94.
For safe operating environment, the fuel cell assembly 28 must operate within safe operation parameters. The controller 80 or a dedicated controller (not shown) is adapted to configure and control operation of the assembly 28. Typically, the procedure for operating the assembly involves: START UP 1. Start cooling circuit; 2. Start heater in cooling circuit; 3. Start flushing cathode with air; 4. Start flushing anode with nitrogen; CONTROL ­  coolant flow rate <200kg/h ­ increase flow rate; ­  coolant heating rate >20k/min ­ slow heating rate; ­  N ​  flow rate in anode <32NI/min ­ increase flow rate; ­  air flow rate in cathode <65MI/min ­ decrease flow rate; ­  stack temp >65°c ­ switch off coolant heater; ­  stack temp <60°c ­ switch on coolant heater, WHEN ­  stack temp >60°c and      ) ­  N ​  flush time >20 min and  )  initiate operating mode ­  air flush time >10 min       ) OPERATING MODE 1. Switch to OCV (i.e. idle operation on H ​ ); 2. Set load point; 3. Start H ​  and air flow; 4. Set load to stack; CONTROL ­  in coolant temp <62.5°c ­ slow cooling down; ­  out coolant temp >67.5°c ­ increase cooling rate; ­  pressure difference. over mea      >300m Bar ­ Initiate shut­down; ­  H ​ and air stoichometric ratios out of balance – adjust; ­  cell voltage >9.8V ­ decrease H ​  and air stoic mix; ­  cell voltage <0.55V ­ increase H ​  and air @ stoic. mix; ­  cell voltage <0.3V over 5 sec – alarm; ­  cell voltage <specified minimum ­ initiate shut down; SHUT DOWN 1. switch to OCV; 2. close H ​  supply valve; 3. switch off air flow; 4. purge anode with H ​ for 10 min; . shut down cooling circuit.
Whilst the above has been given by way of illustrative example of the present invention and modifications thereto will be apparent to those skilled in the art without departing from the scope of the invention as herein set forth in the following claims.

Claims (8)

1. A renewable energy power generation system (10) supplying AC power to appliances (34) and air conditioning (52) to an associated space comprising at least one renewable energy power generating apparatus (14) adapted to generate electric power; and a hydrogen power generation module (21) having a separation unit (22) adapted to separate water into hydrogen and oxygen, and a fuel cell unit (28) adapted to receive air or oxygen, and hydrogen from said separation unit (22) or from a hydrogen storage (26); the fuel cell unit (28) being arranged to produce electric power in the presence of hydrogen and oxygen; a conversion means (32) converting DC output from the renewable energy power generating apparatus(14) and the fuel cell unit (28) to AC power; characterised in that ​ ; wherein the hydrogen power generation module (21) being adapted to receive electric power from the at least one renewable energy power generating apparatus (14) at least prior to production of electric power by the fuel cell unit (28); electric appliances (34) and an air conditioning system (52) are connected to the system such that the system supplies the AC power to the appliances and the air conditioning system, said fuel cell unit (28) being adapted to supply heat to the air conditioning system (52, 52A, 91) for exchanging heat with a working fluid of the air conditioning system (52), the air conditioning system having a heating, ventilation and air conditioning module (52) including a heat exchanger (93) where heat is transferred to the working fluid, a controller (80) controlling operation of the system.
2. A renewable energy power generation system according to claim 1 wherein said fuel cell unit (28) is adapted to produce water at an elevated temperature, wherein the water from the fuel cell unit (28) is arranged to be conveyed to the air conditioning system.
3. A renewable energy power generation system according to claim 1 or claim 2 wherein the controller controls the at least one renewable energy power generating apparatus (14) , the separation unit (22), the fuel cell unit (28), the conversion means (32), the hydrogen storage (26), and the heating, ventilation and air conditioning module (52) .
4. The system according to any one of the preceding claims having a water purification module (70) and a water tank (72) adapted to hold water from the water purification module and at least a part of the water from the fuel cell unit (28), and mineralization means (64) adapted to add appropriate minerals to water from the water tank so as to be potable.
5. The system according to any one of claims 2 to 4 wherein at least two renewable energy power generating apparatus (14, 16, 18) produce different DC output voltages, a DC to DC converter (20), the DC to DC converter (20) receiving the output voltages and the converter (20) providing a stabilised DC output, the stabilised DC output supplying power to the conversion means (32) and to the separation unit (22) and fuel cell unit (28).
6. The system according to claim 1 wherein at least two renewable energy power generating apparatus (14, 16, 18) produce different DC output voltages, a DC to DC converter (20), the DC to DC converter (20) receiving the output voltages and the converter (20) providing a stabilised DC output, the stabilised DC output supplying power to the conversion means (32) and to the separation unit (22) and fuel cell unit (28).
7. The system according to claim 1 wherein the system is divided into four power sections, a renewable energy section (12) containing the at least one renewable energy power generating apparatus (14, 16, 18), a fuel cell system containing the hydrogen power generation module (21), the separation unit (22), the fuel cell unit (28) and the hydrogen storage (26), a DC power section containing the DC to DC converter (20), DC output from the fuel cell and battery storage (42) and an AC section containing the conversion means (32), appliances (34) and air conditioning system (52).
8. The system according to any one of claims 2 to 4 wherein the system is divided into four power sections, a renewable energy section (12) containing the at least one renewable energy power generating apparatus (14, 16, 18), a fuel cell system containing the hydrogen power generation module (21), the separation unit (22), the fuel cell unit (28) and the hydrogen storage (26), a DC power section containing the DC to DC converter (20), DC output from the fuel cell and battery storage (42) and an AC section containing the conversion means (32), appliances (34) and air conditioning system (52).
NZ627375A 2011-12-14 2012-12-14 A renewal energy power generation system NZ627375B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2011905209A AU2011905209A0 (en) 2011-12-14 A renewal energy hydrogen power generation system
AU2011905209 2011-12-14
PCT/AU2012/001535 WO2013086579A1 (en) 2011-12-14 2012-12-14 A renewal energy power generation system

Publications (2)

Publication Number Publication Date
NZ627375A NZ627375A (en) 2016-02-26
NZ627375B2 true NZ627375B2 (en) 2016-05-27

Family

ID=

Similar Documents

Publication Publication Date Title
AU2012350362B2 (en) A renewal energy power generation system
US20200006942A1 (en) Water Production Employing a Hydrogen Cycle
ES2553082T3 (en) Power supply system, in particular for the building technology sector
CN110654520A (en) Ship direct-current networking system adopting fuel cell and ship applying same
CN113889648B (en) MW-level combined heat and power supply fuel cell power station
CN114142791B (en) Multi-energy complementary all-weather light-heat-electricity combined supply system for ship
JP7286071B2 (en) Hydrogen supply system and hydrogen supply method
EP3936715B1 (en) Wind park with limited transmission capacity
CN117136255A (en) Offshore renewable energy power station
DK180780B1 (en) Wind park with heat recovery piping
CN112572743A (en) Low-temperature fuel cell hybrid multi-energy power system for producing hydrogen by using solar energy
CN115679353A (en) Off-grid type wind-solar complementary coupling green hydrogen synthetic ammonia co-production system
CN112634082A (en) Island and reef integrated energy support system
AU2012246757A2 (en) A combined magnetohydrodynamic and electrochemical method and facility for namely electric power generation
JP2010280975A (en) Water electrolysis system and hydrogen utilization system
JP7452842B2 (en) Hydrogen production system and hydrogen production method
CN105757978A (en) Shipborne heat pump water heater system and heating method
CN205801489U (en) A kind of boat-carrying heat pump type air conditioning system
CN115751767A (en) Multi-system coupled combined heat, power and water supply system and method
KR101122567B1 (en) The electric power generator with both fuel-cell and gas fuel engine
US20120301801A1 (en) Systems and methods for converting received stored energy
NZ627375B2 (en) A renewal energy power generation system
EP3957852A1 (en) Wind park with data processing centres
CN117117975B (en) Hydrogen-water power cogeneration system and method based on low-temperature waste heat utilization
CN114548600B (en) Island micro-grid multi-energy system optimization scheduling model