NZ536864A - Use of oligodeoxyribonucleotides for the protection of endothelial and epithelial cells during chemotherapy - Google Patents
Use of oligodeoxyribonucleotides for the protection of endothelial and epithelial cells during chemotherapyInfo
- Publication number
- NZ536864A NZ536864A NZ536864A NZ53686403A NZ536864A NZ 536864 A NZ536864 A NZ 536864A NZ 536864 A NZ536864 A NZ 536864A NZ 53686403 A NZ53686403 A NZ 53686403A NZ 536864 A NZ536864 A NZ 536864A
- Authority
- NZ
- New Zealand
- Prior art keywords
- use according
- cells
- defibrotide
- immunosuppressant
- medicament
- Prior art date
Links
- 210000002889 endothelial cell Anatomy 0.000 title claims abstract description 49
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 title claims abstract description 35
- 210000002919 epithelial cell Anatomy 0.000 title claims abstract description 22
- 230000003511 endothelial effect Effects 0.000 title description 19
- 238000002512 chemotherapy Methods 0.000 title description 4
- 230000001681 protective effect Effects 0.000 claims abstract description 45
- 229960003444 immunosuppressant agent Drugs 0.000 claims abstract description 44
- 239000003018 immunosuppressive agent Substances 0.000 claims abstract description 44
- 230000001861 immunosuppressant effect Effects 0.000 claims abstract description 42
- 108091034117 Oligonucleotide Proteins 0.000 claims abstract description 34
- 230000006907 apoptotic process Effects 0.000 claims abstract description 34
- 238000011282 treatment Methods 0.000 claims abstract description 32
- 230000004913 activation Effects 0.000 claims abstract description 18
- 239000000178 monomer Substances 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 11
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 9
- 201000011510 cancer Diseases 0.000 claims abstract description 6
- 230000036210 malignancy Effects 0.000 claims abstract description 5
- JNWFIPVDEINBAI-UHFFFAOYSA-N [5-hydroxy-4-[4-(1-methylindol-5-yl)-5-oxo-1H-1,2,4-triazol-3-yl]-2-propan-2-ylphenyl] dihydrogen phosphate Chemical group C1=C(OP(O)(O)=O)C(C(C)C)=CC(C=2N(C(=O)NN=2)C=2C=C3C=CN(C)C3=CC=2)=C1O JNWFIPVDEINBAI-UHFFFAOYSA-N 0.000 claims description 86
- 229960004120 defibrotide Drugs 0.000 claims description 85
- 229960000390 fludarabine Drugs 0.000 claims description 45
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 claims description 45
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 claims description 22
- 238000011476 stem cell transplantation Methods 0.000 claims description 18
- 239000003814 drug Substances 0.000 claims description 17
- 230000037396 body weight Effects 0.000 claims description 15
- 230000008033 biological extinction Effects 0.000 claims description 6
- 230000036765 blood level Effects 0.000 claims description 6
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 claims description 5
- 229960001924 melphalan Drugs 0.000 claims description 5
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 4
- 229960004397 cyclophosphamide Drugs 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 claims description 3
- 239000002777 nucleoside Substances 0.000 claims description 3
- 125000003835 nucleoside group Chemical group 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 claims description 2
- 102000015271 Intercellular Adhesion Molecule-1 Human genes 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims 1
- 238000001962 electrophoresis Methods 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 95
- HBUBKKRHXORPQB-FJFJXFQQSA-N (2R,3S,4S,5R)-2-(6-amino-2-fluoro-9-purinyl)-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O HBUBKKRHXORPQB-FJFJXFQQSA-N 0.000 description 90
- 210000004924 lung microvascular endothelial cell Anatomy 0.000 description 62
- 230000000694 effects Effects 0.000 description 27
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 23
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 23
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 21
- 210000000822 natural killer cell Anatomy 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 18
- 230000000735 allogeneic effect Effects 0.000 description 17
- 230000003750 conditioning effect Effects 0.000 description 17
- 230000009089 cytolysis Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 17
- 102000043129 MHC class I family Human genes 0.000 description 16
- 108091054437 MHC class I family Proteins 0.000 description 16
- 230000001640 apoptogenic effect Effects 0.000 description 16
- 210000004369 blood Anatomy 0.000 description 14
- 239000008280 blood Substances 0.000 description 14
- 239000012636 effector Substances 0.000 description 14
- 238000003782 apoptosis assay Methods 0.000 description 13
- 238000000684 flow cytometry Methods 0.000 description 13
- 230000006378 damage Effects 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 238000011534 incubation Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 9
- 230000005522 programmed cell death Effects 0.000 description 9
- 108010002350 Interleukin-2 Proteins 0.000 description 8
- 102000000588 Interleukin-2 Human genes 0.000 description 8
- 102000004388 Interleukin-4 Human genes 0.000 description 8
- 108090000978 Interleukin-4 Proteins 0.000 description 8
- 210000001185 bone marrow Anatomy 0.000 description 8
- 239000002158 endotoxin Substances 0.000 description 8
- 238000003304 gavage Methods 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 229940028885 interleukin-4 Drugs 0.000 description 8
- 210000001035 gastrointestinal tract Anatomy 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 6
- 208000009329 Graft vs Host Disease Diseases 0.000 description 6
- 210000002821 alveolar epithelial cell Anatomy 0.000 description 6
- 230000002482 anti-endothelial effect Effects 0.000 description 6
- 210000000424 bronchial epithelial cell Anatomy 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 208000024908 graft versus host disease Diseases 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 231100000419 toxicity Toxicity 0.000 description 6
- 230000001988 toxicity Effects 0.000 description 6
- 238000002054 transplantation Methods 0.000 description 6
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 238000002965 ELISA Methods 0.000 description 5
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 5
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 231100000673 dose–response relationship Toxicity 0.000 description 5
- 239000012894 fetal calf serum Substances 0.000 description 5
- 210000002510 keratinocyte Anatomy 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- VYZAMTAEIAYCRO-BJUDXGSMSA-N Chromium-51 Chemical compound [51Cr] VYZAMTAEIAYCRO-BJUDXGSMSA-N 0.000 description 4
- 208000024340 acute graft versus host disease Diseases 0.000 description 4
- 230000000719 anti-leukaemic effect Effects 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 238000010322 bone marrow transplantation Methods 0.000 description 4
- 230000003828 downregulation Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000017074 necrotic cell death Effects 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 230000000770 proinflammatory effect Effects 0.000 description 4
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 3
- 102000011727 Caspases Human genes 0.000 description 3
- 108010076667 Caspases Proteins 0.000 description 3
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 3
- 108010036949 Cyclosporine Proteins 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 206010028851 Necrosis Diseases 0.000 description 3
- 206010031264 Osteonecrosis Diseases 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 230000035045 associative learning Effects 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 229960001265 ciclosporin Drugs 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229930182912 cyclosporin Natural products 0.000 description 3
- 230000001461 cytolytic effect Effects 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 230000001506 immunosuppresive effect Effects 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000005865 ionizing radiation Effects 0.000 description 3
- 230000007775 late Effects 0.000 description 3
- 229920006008 lipopolysaccharide Polymers 0.000 description 3
- 210000004925 microvascular endothelial cell Anatomy 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- -1 BCNU Chemical compound 0.000 description 2
- 229930105110 Cyclosporin A Natural products 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 206010048554 Endothelial dysfunction Diseases 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 2
- 201000007023 Thrombotic Thrombocytopenic Purpura Diseases 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 208000012346 Venoocclusive disease Diseases 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 2
- 230000007402 cytotoxic response Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 230000008694 endothelial dysfunction Effects 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- 238000012224 gene deletion Methods 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 108091008042 inhibitory receptors Proteins 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 238000007431 microscopic evaluation Methods 0.000 description 2
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 210000004976 peripheral blood cell Anatomy 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 2
- 229960002930 sirolimus Drugs 0.000 description 2
- 210000004927 skin cell Anatomy 0.000 description 2
- 238000009168 stem cell therapy Methods 0.000 description 2
- 238000009580 stem-cell therapy Methods 0.000 description 2
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 2
- 229960001967 tacrolimus Drugs 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- WKMPTBDYDNUJLF-UHFFFAOYSA-N 2-fluoroadenine Chemical compound NC1=NC(F)=NC2=C1N=CN2 WKMPTBDYDNUJLF-UHFFFAOYSA-N 0.000 description 1
- BUOYTFVLNZIELF-UHFFFAOYSA-N 2-phenyl-1h-indole-4,6-dicarboximidamide Chemical compound N1C2=CC(C(=N)N)=CC(C(N)=N)=C2C=C1C1=CC=CC=C1 BUOYTFVLNZIELF-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- 208000009304 Acute Kidney Injury Diseases 0.000 description 1
- 208000032800 BCR-ABL1 positive blast phase chronic myelogenous leukemia Diseases 0.000 description 1
- 208000004860 Blast Crisis Diseases 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 206010068051 Chimerism Diseases 0.000 description 1
- 102100030497 Cytochrome c Human genes 0.000 description 1
- 108010075031 Cytochromes c Proteins 0.000 description 1
- 238000000116 DAPI staining Methods 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Natural products CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 1
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 1
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 208000029523 Interstitial Lung disease Diseases 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 208000033626 Renal failure acute Diseases 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 238000011579 SCID mouse model Methods 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 230000010782 T cell mediated cytotoxicity Effects 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- PIOKUWLZUXUBCO-FJFJXFQQSA-N [[(2R,3S,4S,5R)-5-(6-amino-2-fluoropurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@@H]1O PIOKUWLZUXUBCO-FJFJXFQQSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 208000029244 acute graft vs. host disease Diseases 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 238000011316 allogeneic transplantation Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940044684 anti-microtubule agent Drugs 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 230000001494 anti-thymocyte effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 230000009084 cardiovascular function Effects 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000012578 cell culture reagent Substances 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007665 chronic toxicity Effects 0.000 description 1
- 231100000160 chronic toxicity Toxicity 0.000 description 1
- 238000011278 co-treatment Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000002435 cytoreductive effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 208000018645 hepatic veno-occlusive disease Diseases 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- MIKKOBKEXMRYFQ-WZTVWXICSA-N meglumine amidotrizoate Chemical compound C[NH2+]C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CC(=O)NC1=C(I)C(NC(C)=O)=C(I)C(C([O-])=O)=C1I MIKKOBKEXMRYFQ-WZTVWXICSA-N 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 206010062198 microangiopathy Diseases 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 230000004682 mucosal barrier function Effects 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000001400 myeloablative effect Effects 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N n-propyl alcohol Natural products CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000031942 natural killer cell mediated cytotoxicity Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 230000004987 nonapoptotic effect Effects 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000008289 pathophysiological mechanism Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 238000012342 propidium iodide staining Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000009396 radiation induced apoptosis Effects 0.000 description 1
- 238000007829 radioisotope assay Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000012121 regulation of immune response Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
- A61K31/198—Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/52—Purines, e.g. adenine
- A61K31/522—Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
- A61K31/675—Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7076—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Transplantation (AREA)
- Toxicology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Materials For Medical Uses (AREA)
Abstract
Disclosed is the use of a protective oligodeoxyribonucleotide for protecting epithelial and/or endothelial cells from apoptosis and/or activation induced by the administration of an immunosuppressant in the treatment of a malignancy, wherein said protective oligodeoxyribonucleotide is selected from: a polydeoxyribonucleotide corresponding to the following formula of random sequence: P1-5, (dAp)12-24, (dGp)10-20, (dTp)13-26, (dCp)10-20, wherein P=phosphoric radical, dAp=deoxyadenylic monomer, dGp=deoxyguanylic monomer, dTp=deoxythymidylic monomer, dCp=deoxycytidylic monomer; or an oligodeoxyribonucleotide having the following physico-chemical and chemical characteristics: molecular weight 4000-10000 Da; hyperchromicity parameter: < 10; A + T/C + G: 1.100-1.455; A + G/C + T: 0.800-1.160; specific rotation: +30 ±48.
Description
53b "SfeH
wo 03/101468 pct/ep03/05753
METHOD FOR THE PROTECTION OF ENDOTHELIAL AND EPITHELIAL CELLS
DURING CHEMOTHERAPY
Field of the invention
The invention relates to the field use of radiation therapy and/or chemotherapy. More specifically, the invention relates to a method for assuaging side effects associated with such treatment.
State of the art
Allogeneic stem cell transplantation (SCT) is a well established method for the treatment of hematological neoplasias and an increasing variety of other malignant disorders. SCT mainly consists of two sequential steps: The pretransplant conditioning, classically consisting of total body irradiation (TBI) and chemotherapy, leading to minimal residual disease and the immunosuppression of the recipient as the first step, and the transfer of allogeneic stem cells that should finally provide the cure as the second step. However, due to disparities in major (MHC) and minor (mHAg) histocompatibility antigens, severe inflammatory reactions, including acute graft-versus-host disease (GvHD), can occur in different phases post transplant. Based on studies by the inventors1 and several other investigators2,3 it is widely accepted that conditioning contributes via non-specific inflammation to these transplant-related complications (TRC). in addition, a direct toxicity of especially TBI has been demonstrated.4'5 This has led to a variety of alternative conditioning regimens currently under investigation. In addition, new pre transplant therapies allow the extension of treatment protocols and the patients' selection. One compound of these novel conditioning concepts is fludarabine, a non-myeloablative immunosuppressant that had originally been used for the treatment of chronic lymphatic leukemia.6 Fludarabine in combination with e.g. BCNU and melphalan, cyclophosphamide or other agents can replace TBI or is used together with dose reduced TBI regimens.7,8 The clinical data obtained so far argue for comparably low side effects and a hematopoetic and immune cell specificity of fludarabine.9 However, the influence of this compound on
OFFICE OF N 2.
2 0 JUN 2008 received non-hematopoetic cells like endothelial and epithelial cells has not been subject to investigation yet.
Virtually all TRC are associated with endothelial dysfunction and damage.10 The inventors and others have shown that the endothelium is a target of pre-transplant conditioning in vitro and in vivo. Ionizing radiation induces programmed cell death (apoptosis) in endothelial cells. 11-14 At the same time the endothelium is activated in terms of adhesion molecule expression leading to increased leukocyte-endothelial interactions as a prerequisite for inflammatory processes. 15,16 These effects are significantly enhanced by bacterial endotoxin (lipopolysaccharide, LPS) that might translocate through damaged mucosal barriers from the gastrointestinal tract. 17 In addition, LPS has been shown to increase the antigenicity of endothelial cells to-wards allogeneic CD8+ cytotoxic T lymphocytes.18
Clinical results with fludarabine containing reduced intensity conditioning (RIC) regimens obtained so far show a clear downregulation of conditioning-related toxicity without affecting immune reconstitution. 25 The incidence of acute GvHD in patients receiving RIC is comparable or even less than in those patients receiving the classical conditioning regimen. 26 However, reports on equally severe or even increased late effects like osteonecrosis, 27 pulmonal complications, 28 and more cases of chronic GvHD29 clearly demonstrate the potential for serious side effects associated with fludarabine treatment.
Summary of the invention
The invention is based on the discovery that fludarabine activates and damages endothelial and epithelial cells. The activation of the cells leads to damage in the treatment situation where fludarabine is used, e.g., when treating malignancies using SCT. The epithelial and endothelial cells can be protected from this activation and damage by treatment with defibrotide. This treatment may be concomitant or defibrotide may be given before treatment with fludarabine or thereafter.
The invention provides for the use of a protective oligodeoxyribonucleotide for the manufacture of a medicament for protecting epithelial and/or endothelial cells from apoptosis and/or activation induced by the administration of an immunosuppressant in the treatment of a malignancy, wherein said protective oligodeoxyribonucleotide is
2
(Followed by page 2a)
<1V ■ (.kkbV I Wnb ■ » »w. —" -
office of nx
2 0 JUN 2008
[received selected from: a polydeoxyribonucleotide corresponding to the following formula of random sequence: P1.5, (dAp)i2-24, (dGp)i0-2o, (dTp)i3-26, (dCp)io-2o, wherein P=phosphoric radical, dAp=deoxyadenylic monomer, dGp=deoxyguanylic monomer, dTp=deoxythymidylic monomer, dCp=deoxycytidylic monomer; or an oligodeoxyribonucleotide having the following physico-chemical and chemical characteristics: molecular weight 4000-10000 Da; hyperchromicity parameter: < 10; A + T/C + G: 1.100-1.455; A + G/C + T: 0.800-1.160; specific rotation: +30 ± 48.
Abbreviations and definitions
SCT: Haematopoetic stem cell transplantation.
(Followed by page 3)
wo 03/101468 pct/ep03/05753
Immunosuppressant: substance that down-reguiates the immune response of a subject upon administration. Immunosuppressants are used in suppressing the immune system of patients undergoing stem cell therapy. Examples of immunosuppressants include fludarabine, cyclophosphamide, BCNU, cyclosporin, sirolimus, tacrolimus and melphalan. Preferred within the context of this application is fludarabine (also known as 2-fluoro-9-|3-D-arabinofuranosyladenine).
Protective oligodeoxyribonucleotide: shall mean, within the context of this application, both oligodeoxyribonucleotides as defined in US patent 5,646,268 and polydeoxyri-bonucleotides as defined in US 5,223,609, which are incorporated by reference herein in their entirety.
US patent 5,646,268 discloses a process for producing an oligodeoxyribonucleotide having the following physico-chemical and chemical characteristics:
Molecular weight: 4000-10000
h: < 10
A + T/C + G* 1.100-1.455
A + G/C + T* 0.800-1.160
Specific rotation : +30° - + 48°
*base molar ratio h= hyperchromicity parameter
A process for producing such an oligodeoxyribonucleotide comprises: precipitating 0.8M sodium acetate aqueous solutions of polydeoxyribonucleotide sodium salts at 20° C by addition of an alkyl alcohol selected from the group consisting of ethyl, propyl and isopropyl alcohol.
US patent 5,223,609 discloses a defibrotide which fulfills certain pharmacological and therapeutical properties and is therefore particularly suitable, if the nucleotide fractions forming it are in stoichiometrica! agreement with the following polydeoxyri-bonucleotidic formula of random sequence:
P1-5, (dAP)l2-24, (dGp)lO-20, (dTp)i3-26, (dCp)io„20
wherein
P=phosphoric radical
wo 03/101468 pct/ep03/05753
dAp=deoxyadenylic monomer dGp=deoxyguanylic monomer dTp=deoxythymidylic monomer dCp=deoxycytidylic monomer
The Defibrotide corresponding to this formula moreover shows the following chemico-physical properties: e!ectrophoresis=homogeneous anodic mobility: extinction coefficient, E 1 Cm1% at 260 ±1 nm=220 ±10; extinction ratio, E230 /E260 =0.45 ± 0.04; coefficient of molar extinction (referred to phosphorous), e(P)=7.750 ± 500; rotatory power [a]D20° =53 0 ± 6; reversible hyperchromicity, indicated as % in native DNA, h=15 ± 5.
A preferred protective oligodeoxyribonucleotide is Defibrotide (CAS Registry Number: 83712-60-1), a polynucleotide well known to the person skilled in the art, which normally identifies a polydeoxyribonucleotide obtained by extraction (US 3,770,720 and US 3,899,481) from animal and/or vegetable tissue; this polydeoxyribonucleotide is normally used in the form of a salt of an alkali metal, generally sodium, and usually has a molecular weight of approximately 45-50 kDa. Defibrotide is used principally for its antithrombotic activity (US 3,829,567) although it may be used in different applications, such as, for example, the treatment of acute renal insufficiency (US 4,694,134) and the treatment of acute myocardial ischaemia (US 4,693,995). United States patents US 4,985,552 and US 5,223,609 describe a process for the production of defibrotide which enables a product to be obtained which has constant and well defined physico-chemical characteristics and is also free from any undesired side-effects.
Detailed description of the invention
The invention relates to a method for the treatment of a patient undergoing treatment with an immunosuppressant, comprising the step of administering an effective dose of a protective oligodeoxyribonucleotide to the patient. The treatment with an immunosuppressant preferably occurs during SCT. The immunosuppressant is preferably selected from the group comprising antimetabolites (e.g., 5-fluorouracii (5-FU), methotrexate (MTX), fludarabine, anti-microtubule agents (e.g., vincristine, vinblastine, taxanes (such as paclitaxel and docetaxel)), alkylating agents (e.g., cyclophosphamide, melphalan, bischloroethylnitrosurea (BCNU)), platinum agents (e.g., cis-
wo 03/101468 pct/ep03/05753
platin (also termed cDDP), carboplatin, oxaliplatin, JM-216, CI-973), anthracydines (e.g., doxorubicin, daunorubicin), antibiotic agents including mitomycin-C, topoi-somerase inhibitors (e.g., etoposide, camptothecin), cyclosporin, tacrolimus, siro-limus, and other cytotoxic agents that act to suppress the immune system. A review of such agents that are frequently used in the therapy of malignancies may be found in Gonzales et al., Alergol. Immunol. Clin. 15, 161-181, 2000, which is incorporated herein by reference. Preferred immunosuppressants are nucleosides (i.e. the glycosides resulting from the removal of the phosphate group from a nucleotide), as for instance fludarabine which, by the way, is the preferred immunosuppressant for the purposes of the present invention.
The protective oligodeoxyribonucleotide may be administered concurrently, simultaneously, or together with the immunosuppressant. A preferred combination is the simultaneous gavage of defibrotide and fludarabine.
The step of administering the protective oligodeoxyribonucleotide preferably occurs concurrently, concomitantly, simultaneously, after or before the gavage of the immunosuppressant to the patient.
In a preferred embodiment of the invention, the step of administering the protective oligodeoxyribonucleotide occurs after gavage of the immunosuppressant to the patient. In a further preferred embodiment, the time delay between step of administering the protective and the gavage of the immunosuppressant to the patient is about one hour to about two weeks. The time delay between the step of administering the protective and the gavage of the immunosuppressant to the patient is preferably about two days to about seven days.
In another preferred embodiment of the invention, the step of administering the protective oligodeoxyribonucleotide occurs before gavage of the immunosuppressant to the patient. Preferably, the time difference between step of administering the protective and the gavage of the immunosuppressant to the patient is about one hour to about two weeks. More preferably, the time difference between step of administering the protective and the gavage of the immunosuppressant to the patient is about two hours to about two days.
wo 03/101468 pct/ep03/05753
The preferred protective oligodeoxyribonucleotide is defibrotide, however, other substances as mentioned above as protective oligonucleotides may be used. The following embodiments define preferred doses for defibrotide; however, similar doses may be used when using a protective oligodeoxyribonucleotide which is not defibrotide. The optimal dose for any protective oligodeoxyribonucleotide will be determined by the attending physician. The experiments described below show the protective effects of defibrotide. The effective dose determined in such experiments may be used as a guide for determining an effective dose for treatment.
The defibrotide is preferably administered orally or is injected intravenously.
The preferred dose of of defibrotide is chosen so as to reach a blood level of about 100 [jg/mL to 0.1 pg/mL. More preferably, the dose of defibrotide is chosen so as to reach a blood level of about 10 ng/mL to about 100 pg/mL. Most preferably, the dose of defibrotide is chosen so as to reach a blood level of about 100 |jg/mL In a preferred embodiment of the invention, the dose of defibrotide administered is about 100 mg/kg body weight of the patient to about 0.01 mg/kg body weight. Preferably, the dose of defibrotide administered is about 20 mg/kg body weight of the patient to about 0.1 mg/kg body weight. More preferably, the dose of defibrotide administered is about 15 mg/kg body weight of the patient to about 1 mg/kg body weight. More preferably, a daily dosage of about 12 mg to about 14 mg per Kg. of body weight of the patient is administered. Most preferably, the dose of defibrotide administered is about 12 mg/kg body weight of the patient.
Preferably, administration of a protective oligodeoxyribonucleotide according to the invention according to the invention is able to protect endothelial cells and epithelial cells from the effects of the immunosuppressant. The immunosuppressant preferably activates epithelial cells and endothelial cells and induces apoptosis therein. Thus, in a preferred embodiment, the protecting olideoxynucleotide protects epithelial and/or endothelial cells from apoptosis and/or activation by the immunosuppressant. The immunosuppressant is preferably fludarabine. The protective oligodeoxyribonucleotide is preferably defibrotide.
The activation includes enhanced expression of ICAM-1 and of MHC class I molecules. The enhancement of expression is preferably substantial. Further preferably,
wo 03/101468 pct/ep03/05753
the immunosuppressant induces a pro-inflammatory activation of endothelial cells and/or of epithelial cells in a patient. The cells are preferably human microvascular endothelial cells (HMEC) and/or dermal and/or alveolar epithelial cells. The damage preferably occurs when the patient's endothelial and/or epithelial cells have been exposed to the immunosuppressant for about 1 hour to about 1 week or more. More preferably, said damage occurs when said cells have been exposed for about 5 hours to about 72 hours. Even more preferably, the duration of such exposure is between 20 hours and 72 hours. Most preferably, the duration of such exposure is more than 48 hours.
The treatment with the immunosupressant preferably occurs during haematopoetic stem cell transplantation. The haematopoetic stem cell transplantation is preferably allogeneic haematopoetic stem cell transplantation.
The invention also relates to a pharmaceutical composition comprising at least a protective oligodeoxynucleotide, for the treatment of a patient in need thereof, which patient is being treated with an immunosuppressant. The administration of said pharmaceutical composition alleviates or protects from side effects caused by the immunosuppressant or by the immunosuppressant and a transplant. The transplant is preferably a bone marrow or haematopoetic stem cell transplant. More preferably, the transplant is an allogeneic bone marrow or haematopoetic stem cell transplant.
The side effects are preferably related to endothial and/or epithelial cells and/or tissues of the patient. Preferably, said side effects involve apoptosis of said cells, and/or activation of said cells. The activation preferably comprises enhanced expression of MHC class I molecules and/or of intercellular adhesion molecule 1 (ICAM-1). The side effects damages human microvascular endothelial cells (HMEC) as well as, preferably, dermal and alveolar epithelial cell lines after 48 hours of culture, when used in pharmacologically relevant concentrations (range: 10 pg/mL to 1 pg/mL).
The side effects generally include damages to target tissues of transplant related complications and stimulated allogeneic immune responses.
wo 03/101468 pct/ep03/05753
The side effects preferably include significant upregulation of the intercellular adhesion molecule 1 (ICAM-1) and MHC class I molecules in endothelial cells and/or pei-thelial cells of the patient, particularly in alveolar endothelial cells. The side effects further include a a pro-inflammatory activation of microvascular endothelial cells. The side effects further preferably include enhanced lysis of such cells by by allogeneic MHC class I restricted cytotoxic T lymphocytes derived from the transplant.
Adminstration of the protective oligodeoxynucleotide preferably protects against im-munosuppressant-induced side effects, including apoptosis and alloactivation.
The pharmaceutical compositions comprising the immunosuppressant of the present invention can be formulated with techniques, excipients and vehicles of conventional and well known type, for the administration both orally and by injection, particularly by intravenous route. The dosages of active ingredient in the compositions according to the present invention ranges between 50 and 1500 mg for unitary dose, whereas to attain the desired results the daily administration of 10 to 40 mg/kg is suggested. Methods for the preparation defibrotide may be found in US 4,985,552 and US 5,223,609, which patents are incorporated hereby in their entirety by reference.
The invention also relates to a pharmaceutical composition containing a therapeutically effective dose of an immunosuppressant and of a protective oligodeoxyribonucleotide. The immunosuppressant is preferably fludarabine. protective oligodeoxyribonucleotide is preferably defibrotide.
Brief description of the Figures
Fig 1: Fludarabine induces programmed cell death in human micorvascular endothelial cells (HMEC). HMEC were either left untreated or incubated with 2-fluoro-9-p-D-arabinofuranosyIadenine (hereinafter referred to as F-Ara, the metabolized form of fludarabine) in descending concentrations for 48 hours and subjected to flow cytometric analysis (A) or microscopic DAPI stain analysis. A: Contour plots of the side scatter (SSC) image (x-axis) of propidium iodide (Pl)-negative cells plotted against the forward scatter image (y-axis) as a parameter for cellular granularity versus cell size. B: Quantitative fluorescence microscopy analysis of DAPI-stained endothelial cells. Results are given in % apoptotic HMEC (% apoptotic cells) ± standard
wo 03/101468 pct/ep03/05753
deviation (out of n= 10 microscopic fields with an average of 70 cells per field). Representatives of at least five independent experiments are shown. *: p<0.001 of untreated control versus F-Ara (10 [jg/mL) treated cells.
Fig 2: Defibrotide (D) inhibits F-Ara-induced apoptosis in HMEC, evidence for an intracellular antagonism. F-Ara: 10 pg/mL. D: 100 pg/mL. Flow cytometric analysis of the SSC-image of Pl-negative cells. A: reproducible induction of apoptosis by F-Ara. B: Dose-dependent inhibition of F-Ara-induced apoptosis by D. C: left plot: incubation of HMEC with F-Ara for 1 hour, subsequent incubation with D for 48 hours after washing. Right plot: incubation of HMEC with D for 1 hour, subsequent incubation with F-Ara for 48 hours after washing. For experimental details see legend to Fig 1 and Materials and Methods. Shown is one representative out of three independent experiments.
Fig 3: F-Ara induces apoptosis in keratinocytes and alveolar epithelial cells, but not in gut or bronchial epithelial cells; protective effect of Defibrotide. F-
Ara: 10 pg/mL. D: 100 pg/mL. Flow cytometric analysis of the SSC-image of Pl-negative cells (Fig 3 A) and DAPI-stain analysis of apoptotic cells (Fig 3 B). Results are given in mean % apoptotic cells ± standard deviation out of three different experiments. HaCaT: human keratinocyte cell line. SW 480: gut epithelial cells line. A 549: lung carcinoma cell line from the alveolar epithelium. BEAS-2B: bronchial epithelial cell line. Primary bronchial epithelial cells have been derived from a bron-choscopic brush procedure. Fig 3 A: *: p=0.005 of F-Ara- versus F-Ara+D treated HaCaT cells. **: p=0.116 of F-Ara versus F-Ara+D treated A 549 cells. 0 : no apoptosis induction. Fig 3 B: +: p=0.026 of F-Ara- versus F-Ara+D treated HaCaT cells. ++: p=0.001 of F-Ara versus F-Ara+D treated A 549 cells. For experimental details see legend to Fig 1 and Materials and Methods. Three representative experiments are summarized for each cell line.
Fig 4: Defibrotide (D) does not interfere with the anti-leukaemic and the anti-PBMC effect of F-Ara. F-Ara: 10 pg/mL. D: 100 pg/mL. A: Propidium iodide staining of primary acute myeloid leukemia (AML) cells derived from a patient in blast crisis (70 % blasts of total PBMC count). Results are given in mean % vitality of three independent experiments. *: p=0.008 of Control- versus F-Ara-treated AML cells. B: Flow
wo 03/101468 pct/ep03/05753
cytometric analysis of the SSC-image of Pl-negative PBMC. Shown is one representative out of five independent experiments with different blood donors.
Fig 5: F-Ara induces ICAM-1 expression on HMEC, protective effect of Defibrotide (D). Flow cytometric analysis of ICAM-1 positive cells. HMEC were either left untreated or incubated with F-Ara (10 pg/mL, or descending concentrations in B) in the presence or absence of descending concentrations of D. A: Histogram plot of ICAM-1 expression from a representative experiment. Dotted line: Background staining (nil control): thin line: ICAM-1 expression of untreated control cells; thick line: ICAM-1 expression of F-Ara-treated cells. B: Dose-dependent induction of ICAM-1 expression by F-Ara. Summary of three independent experiments. Results are given as mean % ICAM-1 positive cells ± standard deviation. *: p=0.075 of F-Ara- versus untreated control cells. C: Dose-dependent inhibition of F-Ara-induced ICAM-1 expression by Defibrotide (D). Results are given as mean % ICAM-1 positive cells ± standard deviation. **: p=0.004 of F-Ara- versus F-Ara+D-treated HMEC.
Fig 6: F-Ara increases the aliogenicity of HMEC for CD8-positive cytotoxic T-lymphocytes (CTL), protective effect of Defibrotide. A: PBMC were stimulated with irradiated HMEC in the presence of interleukin 2 (50 U/mL) for 7 days and subjected to a 51Cr release assay with untreated (Control) and F-Ara (10 pg/mL)-treated HMEC (24 hour-incubation) as target cells, autolog. B-LCL: autologous (effector) EBV-transformed B-lymphoblastoid cells. K 562: target cells for natural killer (NK) cells. Results are given as % specific lysis as described in Materials and Methods. * : % specific lysis of F-Ara-treated HMEC in the presence of anti-MHC class I antibody w6/32. E/T ratio: effector/target ratio. B: Downregulation of F-Ara-induced aliogenicity of HMEC towards CD8-positive CTL by Defibrotide (D). CD8-positive PBMC have been negatively selected (non-CD8+-cell-dep!eted) by magnetic bead separation. For experimental details see legend to Fig 6 A.
Fig 7: F-Ara decreases the aliogenicity of HMEC for NK cells, enhancement of lysis by blockade of MHC class I. NK cells have been negatively selected (non-NK-cell-depleted) by magnetic bead separation and stimulated with irradiated HMEC in the presence of IL-2 (50 U/mL) for 4 days and subsequently subjected to a 5iCr release assay as described for Fig 6. Table below the graph: Flow cytometric analysis
wo 03/101468 pct/ep03/05753
of the effector cell population pre and post stimulation with HMEC. NK cells were characterized as CD3-/CD16+CD56+. * : % specific lysis of K 562 cells at E/T ratio of 20:1.
Table 1: Anti-endothelial CTL elicit a Tc1-like phenotype.
Effector
IFN-y
IL-4
PBMC
319 [±176]
0
CD8+
524 [±174]
0
ELISA for the production of interferon gamma (IFN-y) and interleukin 4 (IL-4) in the supernatants of stimulated effector cells (7 days, irradiated HMEC, 50 U/mL IL-2). PBMC were either left unseparated or negatively selected for CD8+ T cells as given for the experiments in Fig 6. Results are given as mean pg/mL cytokine ± standard deviation of 3 independent experiments.
Examples
METHODS
Cell culture and reagents
The human dermal microvascular endothelial cell line CDC/EU.-HMEC-1 (further referred to as HMEC) was kindly provided by the centres for Disease Control and Prevention (Atlanta, Georgia, USA) and has been established as previously described.19 HMEC were cultured in MCDB131 medium, supplemented with 15% fetal calf serum (FCS), 1 pg/mL hydrocortisone (Sigma, Deisenhofen, Germany), 10 ng/mL epidermal growth factor (Collaborative Biochemical Products, Bedford, MA, USA) and antibiotics. All cell culture reagents have been purchased by Gibco BRL (Karlsruhe, Germany) unless stated otherwise. 2-Fluoroadenine 9-beta-D-arabinofuranoside (F-Ara) was obtained from Sigma, Deisenhofen, Germany, Defibrotide vials were obtained from Prociclide™, Crinos, Como, Italy.
Apoptosis assays
An established method for detecting apoptosis in human endothelial ceils was performed as previously described20 using flow cytometry (FACScan™ and CeliQuest™ software, Becton Dickinson, Heidelberg, Germany). Endothelial and epithelial cells li
wo 03/101468 pct/ep03/05753
were either left untreated or incubated with F-Ara in descending concentrations (range: 10jjg/mL to 0.1 pg/mL) in the presence or absence of Defibrotide for 48 hours. Afterwards, cells were washed in PBS/10% FCS and stained with the necrosis detecting dye propidium iodide (PI, 0.2 jjg/mL, Sigma, Deisenhofen, Germany). Apoptotic cells were identified by a Pl-negative staining and by a characteristic side scatter image distinct from that of non-apoptotic cells. At least three experiments per cell type have been performed.
An alternative method for the detection of apoptosis used microscopic analysis of DNA fluorescence labeled cells. 1x105/plate endothelial cells were seeded in 35mm petri dishes (Nunc, Wiesbaden, Germany). These cells were treated as given above and subsequently fixed with Methanol/Acetone (1:1) for 2 minutes, washed once in PBS and stained with 4,6-Diamidino-2-phenylindole (DAPI) (0.5 ng/mL, Sigma, Deisenhofen, Germany), dissolved in 20% Glycerin/PBS. Samples were mounted and subjected to microscopic analysis. Nuclear condensation as revealed by DAPI staining in the absence of trypan blue uptake is considered characteristic of apoptosis as opposed to necrosis.21 The quantitative analysis included counting the number of apoptotic relative to all identifiable cells from at least 10 microscopic fields, with an average of 70 cells per field.
For the sake of the clarity of the manuscript DAPI stain results are only displayed for the experiments with endothelial cells and HaCaT as well as A 549 cells.
Cell surface analyses
Cell surface expression of ICAM-1 (Becton Dickinson/Pharmingen, Heidelberg, Germany) and MHC class I (w6/32, hybridoma supernatant, ATCC, Manassas, VA, USA) molecules on HMEC was assessed by the indirect immunofluorescence technique and subsequent flow cytometry using the FACScan™ flow cytometer and the Cell-Quest™ analysis program (Becton Dickinson, Heidelberg, Germany). Endothelial cells were treated as given and after incubation harvested with trypsin/EDTA (Gibco), washed once in cold PBS/ 10% FCS and incubated 1 hour on ice with 5 pg/mL of anti-adhesion molecule MoAbs. Cells were washed again and incubated with a goat anti-mouse IgG-FITC conjugated antibody F(ab)2 fragment (Dako, Hamburg, Germany) for 45 minutes on ice. Cells were then washed in PBS/ 10% FCS and subjected to analysis. Viability of the cells was determined by concurrent propidium iodide (0.2 pg/mL, Sigma, Deisenhofen, Germany) staining. Omitting of the first anti-
wo 03/101468 pct/ep03/05753
body served as a negative control to detect unspecific fluorescence. This approach, instead of using isotype control antibodies, was justified by previous observations that endothelial cells lack Fc receptors.22 Therefore, a non-specific binding of antibodies through their Fc portion could be excluded.
Allostimulation of peripheral blood cells with HMEC
Peripheral blood mononuclear cells (PBMC) were derived from heparinized (Novo Nordisk, Mainz, Germany) blood of healthy human volunteers or buffy coats from the Bavarian Red Cross according to a standard protocol using Ficoll hypaque (Pharmacia, Freiburg, Germany) density gradient centrifugation. Cells were then stimulated in a ratio of 1:1 and 2:1 with irradiated (20 Gy) HMEC for 7 days in the presence of In-terleukin 2 (50 U/mL) and 10% human AB serum (Sigma, Deisenhofen, Germany). Alternatively, PBMC were selected for CD8+ T ceils and natural killer (NK) cells using cell isolation kits according to the manufactuer's instructions (MACS™, Miltenyi Biotech, Bergisch-Gladbach, Germany) based on the deletion of non CD8+ and non NK cells, respectively. Stimulation of the selected cells was identical to that of whole PBMC cultures, except for NK cells which were stimulated for only 3 days.
Cytotoxicity assay
T cell- or NK-cell mediated cytotoxicity was assessed according to a well established protocol,23 using a 4h 51Cr radioisotope assay. HMEC that had either been left untreated or incubated with F-Ara (10pg/mL) overnight were used as target cells, to be labeled 0.4 mCi Na25iCrC>4 for 2 hours. After 3 washing steps, target cells were adjusted to 104 cells/mL and coincubated with PBMC, CD8+ or NK effector cells at descending effector to target ratios for another 4 hours. Supernatants were transfered to dry scintillation plates and counted in a y-counter (all from Canberra Packard, Darmstadt, Germany). Autologous (effector) B-Lymphoblastoid cell lines (B-LCL) and K562 as NK sensitive cells were taken as additional control targets. The percentage of specific lysis was calculated as: [(experimental release - spontaneous re-lease)/(maximal release - spontaneous release)] x 100. Spontaneous release in all experiments was always below 20%.
Enzyme linked immunosorbent assays (ELISA)
13
wo 03/101468 pct/ep03/05753
The ELISA for the detection of Interleukin 4 (IL-4, Tc2 response) and Interferon y (IFN-y, TC1 response), IL-1 and IL-10 in the supernatants of allogeneic effector T cells (see below) were performed exactly according to the manufacturer's kit instructions (R&D Systems, Minneapolis, MN, USA).
Statistical analysis
The significance of differences between experimental values was assessed by means of the Student's t-test.
Example 1
F-Ara induces apoptosis (programmed cell death) in human microvascular endothelial cells (HMEC)
In order to assess the influence of F-Ara on the viability of cultured human endothelial cells, HMEC were incubated with descending pharmacologically relevant concentrations (10 pg/mL to 0.1 pg/mL) of 2-Fluoroadenine 9-beta~D-arabiriofuranoside as the metabolized form of fludarabine. The median intracellular level of the active (cytotoxic) fludarabine triphosphate in target cells is 20 pM, representing a concentration 5.8 pg/mL (medac SCHERING, manufacturers's instructions). After 48 hours of incubation HMEC were subjected to apoptosis assays using the detection of cellular granularity of propidium iodide negative cells (side scatter (SSC) image in flow cytometry) and microscopic analyses of DAPI-stained cells, respectively. Independent of the assays system, Fig 1 A and B clearly demonstrate that F-Ara causes apoptosis in HMEC in concentrations of 10 and 5 pg/mL, whereas 1 pg/mL was no longer effective. The critical threshold of the cytotoxicity of F-Ara was between 2 and 3 pg/mL. Apoptosis by F-Ara was already detectable after 24h, though to a lesser extent (data not shown).
Example 2
Defibrotide protects HMEC from the F-Ara induced apoptosis
HMEC had either been left untreated or treated with F-Ara in the presence or absence of varying concentrations of Defibrotide (100 pg/mL to 0.1 pg/mL) and assessed for programmed cell death after 48 hours using flow cytometric analyses of the SSC image as described for Fig 1 A. Fig 2 A (mid contour plot) shows that Defibrotide alone as a second control did not influence endothelial cell viability. The
wo 03/101468 pct/ep03/05753
apoptotic effect of F-Ara is reproduced in Fig 2 A (right contour plot), whereas Fig 2 B shows a dose-dependent protection of F-Ara induced cell death by Defibrotide. In order to exclude unspecific artifical extracellular interaction of F-Ara and Defibrotide in vitro HMEC were pretreated with Defibrotide for 1 hour and subsequently, after 3 washing steps, incubated with F-Ara for another 48 hours and vice versa. Fig 2 C (right contour plot) reveales that pretreatment of HMEC for 1 hour was sufficient to protect cells from F-Ara induced apoptosis. Similarly, pretreatment of HMEC with F-Ara for 1 hour (Fig 2 C, left contour plot) and subsequent incubation with Defibrotide did not lead to endothelial programmed cell death.
Example 3
Effect of F-Ara on different epithelial cell lines, protective effect of Defibrotide
Skin, the gastrointestinal tract (GIT) and most likely the lung are among the primary targets of GvHD. Therefore, it was reasonable to test the influence of F-Ara on cell lines derived from these organs. Cells from keratinocyte (HaCaT), GIT (SW 480), alveolar (A549) and bronchial epithelial (BEAS-2B) ceil lines as well as primary bronchial epithelial cells were incubated with F-Ara (10 jjg/mL) as given for Figs 1 and 2 and assayed in flow cytometric apoptosis analyses 48 hours post treatment. Fig 3 A summarizes that gut and bronchial epithelial cells appeared to be resistant to the apoptotic stimuli of F-Ara, whereas keratinocytes (HaCaT) and alveolar epithelial cells (A549) showed signs of apoptosis, as determined by flow cytometry of the SSC image (34.0 [±1.0] % apoptotic cells for HaCaT and 42.9 [±26.7] % for A549, respectively). Again, the protective potential of Defibrotide (100 pg/mL) was assessed. HaCaT (4.3 [±3.0] %) and A 549 (5.4 [±2.9] %) cells were completely protected from programmed cell death after cotreatment with F-Ara and Defibrotide Fig. 3 A, inserted bar graphs). To confirm these results, DAPI-stain apoptosis assays were performed for HaCAT (Fig 3 B, left columns) and A 549 cells (Fig. 3 B, right columns). As shown for endothelial cells, Defibrotide alone did not influence the number of apoptotic cells in either cell line (data not shown).
Example 4
Defibrotide does not interfere with the anti-leukaemic and anti-PBMC effect of F-Ara
wo 03/101468 pct/ep03/05753
Next to its desirable protective capacity for endothelial and epithelial cells against F-Ara induced apoptosis it was important to investigate whether Defibrotide would also interfere with the anti-leukaemic properties of F-Ara. To address this question, primary peripheral blood derived acute myeloid leukaemic (AML) cells with a blast amount of 70 % were thawed, kept in culture for 24 hours and subsequently treated with F-Ara in the presence or absence of Defibrotide for another 48 hours. Fig 4 A demonstrates that already almost 50 % of the cells died spontaneously of necrotic cell death. However, F-Ara induced cell death in up to 80 % of the cells. In contrast to its effect on endothelial and epithelial cells, Defibrotide was not able to protect the AML cells from the F-Ara mediated toxicity. It is of note that Fig 4 A describes % vitality of the cells, not % apoptotic cells, due to the fact that F-Ara directly caused necrosis, rather than apoptosis in AML cells. This could be observed after as early as 24 hours of incubation. Still, Fig 4 A clearly shows that Defibrotide does not interfere with the desirable toxicity of F-Ara against leukaemic cells. We next asked whether Defibrotide might modulate the effect of F-Ara against normal haematopoetic cells and performed apoptosis assays (SSC-image) with PBMC from normal human blood donors. As could be learned from a representative experiment depicted in Fig 4 B, F-Ara induced apoptosis in 40.1 % of the cells as compared to 5.1 % apoptotic cells in the untreated control. Again, Defibrotide did not interfere with the apoptotic activity of F-Ara against PBMC (43.1 % apoptotic cells), suggesting that the immunosuppress-sive properties of F-Ara are not harmed by cotreatment with Defibrotide.
Example 5
F-Ara upregulates intercellular adhesion molecule 1 (ICAM-1) on HMEC with antagonistic effects of Defibrotide
Based on previous observations that pretransplant conditioning not only damages, but also leads to proinflammatory activation of endothelial cells in terms of adhesion molecule induction,15 we next investigated the expression of ICAM-1 under the influence of F-Ara. As depicted in Fig 5 A and B, flow cytometric analyses demonstrated that F-Ara, after 24 hours of incubation, significantly enhances expression on HMEC in a dose-dependent manner similar to that observed for apoptosis induction. Concentrations down to 1 pg/mL of F-Ara were effective in inducing ICAM-1. We next asked whether Defibrotide would also be functional as an antagonist of F-Ara in this experimental setting. HMEC were treated with F-Ara as given and incubated in the
wo 03/101468 pct/ep03/05753
presence or absence of descending concentrations of Defibrotide. Fig 5 C summarizes 3 independent experiments showing that Defibrotide in fact antagonized the F-Ara induced ICAM-1 expression in concentrations of 100 pg/mL and 10 pg/mL. It is of note that Defibrotide alone did not activate endothelial cells, the ICAM-1 expresssion remained unchanged with every concentration tested (data not shown).
Since a proinflammatory activation of target cells is often associated with increased expression of major histocompatibility antigens (MHC) class I and II, we did further flow cytometric analyses for these antigens after incubation with F-Ara in various concentrations for 24 hours. Despite its well described immunosuppressive properties, F-Ara surprisingly induced MHC class I molecules on HMEC dose-dependently (1.5 fold induction of mean fluorescence intensity at 10 pg/mL, 1.3 fold induction at 5 pg/mL), whereas MHC class II remained unchanged (data not shown).
Example 6
F-Ara increases the antigenicity of endothelial cells towards allogeneic peripheral blood cells, protection by Defibrotide
The induction of MHC class I molecules on HMEC by F-Ara prompted us to examine whether F-Ara would also enhance the capacity of HMEC to stimulate allocytotoxic responses. Peripheral blood mononuclear cells (PBMC) as effectors were either derived from heparinized blood of healthy human volunteers of from buffy coat preparations, stimulated with irradiated (20 Gy) HMEC in the presence of 50 U/mL interleukin 2 (IL-2) for 7 days and subsequently subjected to a standard 51Cr release assay (for details see Materials and Methods). At day -1 fresh HMEC as targets were either left unstimulated or incubated with F-Ara (1 Opg/mL) in the presence or absence of an anti-MHC class I neutralizing antibody (w6/32). Autologous effector Epstein-Barr virus transformed B-lymphoblastoid cell lines (B-LCL) and K562 cells as classical natural killer (NK) cell targets served as controls. Fig 6 A demonstrates that F-Ara indeed increased the antigenicity of HMEC towards allogeneic PBMC at all E/T ratios tested. The lack of specific lysis of K 562 and autologous effector B-LCL verified the involvement of MHC restricted cytotoxic T lymphocytes (CTL). In addition, lysis of either untreated or F-Ara treated HMEC could almost fully be blocked after coincuba-
tion of these ceils with the anti-MHC class I antibody w6/32 (Fig 6 A, * ). To further confirm that CD8+ CTL were responsible for the anti-endothelial cytotoxic activity, PBMC were selected for CD8+ and CD4+ T cells (non-CD8 and non-CD4-depleted
wo 03/101468 pct/ep03/05753
PBMC, respectively) using magnetic bead separation with MACSIM bead kits. Purity of the preparations was > 93% in all cases with a complete absence of the other cell population (not shown). Separated T cells were stimulated with HMEC and IL-2 exactly as described for unselected PBMC (see above). As shown in Fig 6 B, lysis of F-Ara-treated HMEC by CD8+ CTL was , again, significantly higher than that of control HMEC. Furthermore, pretreatment of target HMEC with F-Ara and Defibrotide (F-Ara+D) downregulated specific lysis even below control levels, suggesting that Defibrotide also protects endothelial cells against the lysis of allogeneic effector lymphocytes. HMEC stimulated CD4+ T cells did not show any signs of cytotoxic activity in this experimental setting (data not shown). Flow cytometric analyses of F-Ara versus F-Ara+D treated HMEC resulted in a significant downregulation of MHC class I molecules by Defibrotide, suggesting that MHC class I expression is the critical element in regulating the cytotoxic response induced by F-Ara (data not shown).
Example 7
Anti-endothelial CTL display an Tc1-like phenotype
To gain information about the nature of the anti-endothelial CTL, PBMC and CD8+ T cells were stimulated as given above, and supernatants were collected for the assessment of interferon gamma (IFN-y) and interleukin 4 (IL-4) using ELISA analyses. As depicted in Tab 1, stimulation with HMEC and IL-2 obviously led to the outgrowth of Tc1-like T cells as could be told from the unique expression of IFN-y, whereas no IL-4 was produced.
Example 8
F-Ara downregulates lysis of HMEC by allogeneic NK cells
Another interesting question was how F-Ara induced modulations of the MHC class I expression affects the cytolytic response of natural killer (NK) cells against endothelial cells. PBMC from healthy individuals were negatively selected for NK cells (non-NK cell depleted) and stimulated for 4 days with irradiated HMEC in the presence of IL-2, as it was described for the experiment in Fig 6B. At day 4, HMEC as target cells have either been left untreated or incubated with F-Ara (10 jjg/mL) for 24 hours and subjected to a standard 51Cr release assay with the stimulated NK cells as effectors. Fig 7 demonstrates that F-Ara significantly downregulated the aliogenicity of HMEC towards NK cells. As a positive control for NK cell activity, lysis of MHC class I nega-
wo 03/101468 pct/ep03/05753
tive K 562 cells could be observed (Fig 7, * ). Pretreatment of F-Ara stimulated
HMEC with the anti-MHC class I antibody w6/32 completely abrogated the effect of F-Ara and led to almost 100 % specific lysis of HMEC (Fig 7), suggesting that MHC class I on the surface of HMEC is, again, the critical switch for the regulation of the cytotoxic response of NK cells. The role of killer cell inhibitory receptors (KIR) that have been found to be negatively regulated by high expression levels of MHC class I molecules24 might be responsible for the the decreased cytolytic response of NK cells. '
DISCUSSION
Clinical results with fludarabine containing reduced intensity conditioning (RIC) regimens obtained so far show a clear downregulation of conditioning-related toxicity without affecting immune reconstitution.25 The incidence of acute GvHD in patients receiving RIC is comparable or even less than in those patients receiving the classical conditioning regimen.26 However, reports on equally severe or even increased late effects like osteonecrosis,27 pulmonal complications 28 and more cases of chronic GvHD arise.29 Despite its well documented immunosuppressive properties fludarabine, in our study, has turned out to activate and damage endothelial and epithelial cells. This observation might, at least in part, explain the undesired clinical side effects described above, since osteonecrosis is an expression of endothelial dysfunction, and fludarabine appears to be toxic for alveolar epithelial cells. It is interesting to note that the harmful effects of fludarabine on lung cells seem to be compartment-specific, as bronchial epithelial cells did not undergo apoptosis in response to this immunosuppressant. The fact that a keratinocyte cell line (HaCaT) was also sensitive to fludarabine suggest that it might also be involved in cutaneous disorders post SCT. As the pathogenesis of late complications is multifactorial and might also be influenced by increasing age of the SCT patients and the use of peripheral stem cells further evaluation in clinical analyses of pulmonal and dermatological complications is needed.
Since in many pre-transplant protocols fludarabine is used in combination with ionizing radiation it was important to test whether these two compounds would cooperate in affecting endothelial cells. Interestingly, we could not find any enhancement of radiation induced cell death by fludarabine or vice versa (data not shown). This sug-
wo 03/101468 pct/ep03/05753
gests differential mechanisms of how the apoptotic death signal is transfered to endothelial cells.
The precise mechanism how fludarabine induces apoptosis in endothelial and epithelial cells remains to be elucidated. It is likely that fludarabine - as a purin analogue -integrates into the DNA and thus causes mutations that lead to gene deletion like reported previously.30 It has also been suggested that fludarabine can cooperate with cytochrome c and apoptosis protein-activating factor-1 (APAF-1) in triggering the apoptotic caspase pathway.31
Fludarabine increases the aliogenicity of endothelial cell targets for CD8+ T cells. In contrast, Fludarabine significantly downmodulates the endothelial lysis by allogeneic NK cells. The MHC class I expression seems to be critical for the regulation of any of these immune responses, since a blockade of class I fully abrogated CTL lysis and tremendously upregulated lysis by NK cells. These opposing effects of fludarabine, taken together with the clinical observation that fludarabine shows less acute and equal or even more chronic toxicity than the classical conditioning regimen raises the speculation that NK cells and CTL might be active in different phases of GvHD pathophysiology, i.e. NK cells would primarily act in the earlier (suppressed by fludarabine), and CTL in the later phase (enhanced by fludarabine) post transplant.
With regard to the nature of the anti-endothelial CTL it is an interesting question whether these CTL are endothelial- or simply allo-specific. The existence of endothe-lial-specific effector lymphocytes has been described previously.32 In contrast to the CTL we characterized as displaying a Tc1-like phenotype, many of the CTL clones reported show little, if any, IFN-y and unusually express CD40 ligand at rest what might enhance cytolytic activity 33 But these data do not rule out the existence of additional allogeneic CTL with a specificity for non-hematopoetic targets.
Defibrotide is a well tolerated drug successfully used for the treatment of veno-occlusive disease as one major hepatic complication post SCT.34 In addition, there is an increasing number of pre-clinical and clinical reports showing its efficacy in treating ischemia/reperfusion injury and atherosclerosis, as well as recurrent thrombotic thrombocytopenic purpura.35"37 Defibrotide is known to act directly on endothelial cells without further metabolism required38 and could, therefore, be used in our in vitro studies. Defibrotide fully protected endothelial and epithelial cells from fludarabine mediated apoptosis. Additional experimentation is needed to assess the precise mechanism of protection by which Defibrotide antagonizes fludarabine, but one can
wo 03/101468 pct/ep03/05753
imagine a role for Defibrotide in an inhibition of DNA integration of fludarabine or the aforementioned caspase activation. Besides its anti-apoptotic effects, Defibrotide was able to downregulate anti-endothelial CTL responses by regulating MHC class I expression. In contrast, Defibrotide did not affect the desirable anti-leukemic effect of fludarabine, as shown by the lack of protection of AML cells. Another important observation was that Defibrotide could not block the fludarabine-mediated apoptosis of PBMC. This suggests that the immunosuppressant effect of fludarabine mandatory for conditioning is not influenced by a co-treatment with defibrotide.
It is of note that Defibrotide was not protective against radiation induced endothelial cell damage, suggesting its effect to be specific for fludarabine mediated cellular changes (data not shown).
Based on these results and with respect to its little, if any, side effects,39 we conclude from our study that Defibrotide is a good candidate used in combination with fludarabine during conditioning prior to SCT, especially in patients at risk for VOD. Studies analyzing endothelial protection against further conditioning agents should help to clarify whether Defibrotide can be used as a broad protective agent.
wo 03/101468 pct/ep03/05753
REFERENCES
1. Holler E, Kolb HJ, Moller A et al. Increased serum levels of tumor necrosis factor a precede major complications of bone marrow transplantation. Blood. 1990;75:1011-1016.
2. Antin JH, Ferrara JLM. Cytokine dysregulation and acute graft-versus-host disease. Blood. 1992;80:2964-2968.
3. Ferrara JL, Levy R, Chao NJ. Pathophysiological mechanisms of acute graft-vs.-host disease. Biol Blood Marrow Transplant. 1999;5:347-356.
4. Xun CQ, Brown BA, Jennings CD, Henslee-Downey PJ, Thompson JS. Acute graft-versus-host-like diseases induced by transplantation of human activated natural killer cells into SCID mice. Transplantation. 1993;56:409-417.
. Weiner RS, Bortin MM, Gale RP et al. Interstitial pneumonitis after bone marrow transplantation. Assessment of risk factors. Ann Intern Med. 1986;104:168-175.
6. Weiss MA. Novel treatment strategies in chronic lymphocytic leukemia. Curr Oncol Rep. 2001;3:217-222.
7. Wasch R, Reisser S, Hahn J et al. Rapid achievement of complete donor chimer-ism and low regimen-related toxicity after reduced conditioning with fludarabine, carmustine, melphalan and allogeneic transplantation. Bone Marrow Transplant. 2000;26:243-250.
8. Carella AM, Champlin R, Slavin S, McSweeney P, Storb R. Mini-allografts: ongoing trials in humans. Bone Marrow Transplant. 2000;25:345-350.
9. Slavin S, Nagler A, Naparstek E et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marror transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood. 1998;91:756-763.
.Holler E, Kolb HJ, Hiller E et al. Microangiopathy in patients on cyclosporine prophylaxis who developed acute graft-versus-host disease after HLA-identical bone marrow transplantation. Blood. 1989;73:2018-2024.
H.Eissner G, Kohlhuber F, Grell M et al. Critical involvement of transmembrane TNF-a in endothelial programmed cell death mediated by ionizing radiation and bacterial endotoxin. Blood. 1995;86:4184-4193.
12. Lindner H, Holler E., ErtI B et al. Peripheral blood mononuclear cells induce programmed cell death in human endothelial ceils and may prevent repair - role of cytokines. Blood. 1997;89:1931-1938.
22
wo 03/101468 pct/ep03/05753
13.Haimovitz-Friedman A, Balaban N, Mcloughlin M et al. Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res. 1994;54:2591-2597.
14.Fuks Z, Persaud RS, Alfieri A et al. Bacic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res. 1994;54:2582-2590.
.Eissner G, Lindner H, Behrends U et al. Influence of bacterial endotoxin on radiation-induced activation of human endothelial cells in vitro and in vivo, protective role of IL-10. Transplantation. 1996;62:819-827.
16. Lindner H, Holler E, GerbitzA, Johnson JP, Bornkamm GW, EissnerG. Influence of bacterial endotoxin on radiation-induced activation of human endothelial cells in vitro and in vivo: 2. IL-10 protects against transendothelial migration. Transplantation. 1997;64:1370-1973.
17.Beelen DW, Haralambie E, Brandt H et al. Evidence that sustained growth suppression of intestinal anaerobic bacteria reduces the risk od acute graft-versus-host disease after sibling marrow transplantation. Blood. 1992;80:2668-2676.
18.Eissner G, Multhoff G, Holler E. Influence of bacterial endotoxin on the aliogenicity of human endothelial cells. Bone Marrow Transplant. 1998;21:1286-1287.
19.Ades EW, Candal FJ, Swerlick RA et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 1992;99:683-690.
.Cotter TG, Lennon SV, Glynn JM, Green DR. Microfilament-disrupting agents prevent the formation of apoptotic bodies in tumor cells undergoing apoptosis. Cancer Res. 1992;52:997-1005.
21 .Lee A, Whyte MK, Haslett C. Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol. 1993;54:283-288.
22.Westphal JR, Tax WJ, Willems HW, Koene RA, Ruiter DJ, De-Waal RM. Accessory function of endothelial cells in anti-CD3-induced T-ceil proliferation: synergism with monocytes. Scand J Immunol. 1992;35:449-457.
23.MacDonald HR, Engers HD, Cerrottini JC, Brunner KT. Generation of cytotoxic T lymphocytes in vitro. J Exp Med. 1974;140:718-722.
24. Long E. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol. 1999;17:875-904.
wo 03/101468 pct/ep03/05753
.Nagler A, Aker M, Or R et al. Low-interisity conditioning is sufficient to ensure en-graftment in matched unrelated bone marrow transplantation. Exp Hematol. 2001;29:362-370.
26.Michallet M, Bilger K, Garban F et al. Allogeneic hematopoietic stem-cell tran-plantation after nonmyeloablative preparative regimens: impact of pretransplanta-tion and posttransplantation factors on outcome. J Clin Oncol. 2001 ;19:3340-3349.
27. Holler E, personal communication
28.Hildebrandt G, Bertz H, Mestan A et al. Analysis of pulmonary function after allogeneic bone marrow trasplantation (BMT) or blood stem cell transplantation (PBSCT) using conditioning regimens with total body irradiation (TBI) and conventional intensity compared to regimens without TBI with reduced intensity [abstract]. Bone Marrow Transplant. 2001 ;27 (Suppl. 1):S216.
29.Bornhauser M, Thiede C, Schuler U et al. Dose-reduced conditioning for allogeneic blood stem cell transplantation: durable engraftment without antithymocyte globulin. Bone Marrow Transplant. 2000;26:119-125.
. Huang P, Siciliano MJ, Plunkett W. Gene deletion, a mechanism of induced mutation by arabinosyl nucleosides. Mutat Res. 1989;210:291-301.
31.Genini D, Budihardjo I, Plunkett W et al. Nucleotide requirements for the in vitro activation of the apoptosis protein-activating factor-1-mediated caspase pathway. J Biol Chem. 2000;275:29-34.
32.Biederman BC, Pober JS. human vascular endothelial cells favor clonal expansion of unusual alloreactive CTL. J Immunol. 1999;162:7022-7030.
33. Briscoe DM, Alexander Al, Lichtman AH. Interactions between T lymphocytes and endothelial cells in allograft rejection. Curr Op Immunol. 1998;10:525-531.
34.Pegram AA, Kennedy LD. Prevention and treatemnt of veno-occlusive disease. Ann Pharmacother. 2001 ;35:935-942.
. Rossini G, Pompilio G, Biglioli P et al. Protectant activity of defibrotide in cardioplegia followed by idchemia/(repersusion injury in the isolated rat heart. J Card Surg. 1999;14:334-341.
36. Rossini G, Berti F, Trento F et ai. Defibrotide normalizes cardiovascular function hampered by established atherosclerosis in the rabbit. Thromb Res. 2000;97:29-38.
24
wo 03/101468 pct/ep03/05753
37.Pogliani EM, Perseghin P, Parma M, Pioltelli P, Corneo G. Defibrotide in recurrent thrombotic thrombocytopenic purpura. Clin Appl Thromb Hemost. 2000;6:69-70.
38.San T, Moini H, Emerk K, Bilsel S. Protective effect of defibrotide on perfusion induced endothelial damage. Throm Res. 2000;99:335-341.
39. Chopra R, Eaton JD, Grassi A et al. Defibrotide for the treatment of hepatic veno-occlusive disease: results of the European compassionate-use study. Br J Haematol. 2000; 111:1122-1129.
Claims (22)
1. Use of a protective oligodeoxyribonucleotide for the manufacture of a medicament for protecting epithelial and/or endothelial cells from apoptosis and/or activation induced by the administration of an immunosuppressant in the treatment of a malignancy, wherein said protective oligodeoxyribonucleotide is selected from: • a polydeoxyribonucleotide corresponding to the following formula of random sequence: P1-5, (dAp) 12-24, (dGp) 10-20, (dTp) 13-26, (dCp) 10-20, wherein P=phosphoric radical, dAp=deoxyadenylic monomer, dGp=deoxyguanylic monomer, dTp=deoxythymidylic monomer, dCp=deoxycytidylic monomer; or • an oligodeoxyribonucleotide having the following physico-chemical and chemical characteristics: molecular weight 4000-10000 Da; hyperchromicity parameter: < 10; A + T/C + G: 1.100-1.455; A + G/C + T: 0.800-1.160; specific rotation: +30 ± 48.
2. Use according to claim 1 wherein the immunosuppressant is a nucleoside.
3. Use according to claim 1 wherein the immunosuppressant is selected from the group comprising fludarabine, cyclophosphamide, bischloroethylnitrosurea, melphalan.
4. Use according to claim 1 wherein the immunosuppressant is fludarabine.
5. Use according to any one of claims 1 to 4 wherein the protective oligodeoxyribonucleotide is defibrotide.
6. Use according to any one of claims 1 to 5 wherein the medicament comprising the protective oligodeoxyribonucleotide is adapted for administration concomitantly, simultaneously, after or before treatment with an immunosuppressant. 26 11^ I iMbb OFFICE OF N.2. 1 2 0 JUN 2008 7 r E I VED
7. Use according to claim 6 wherein the medicament comprising the protective oligodeoxyribonucleotide is adapted for administration after treatment with an immunosuppressant.
8. Use according to claim 7 wherein the medicament comprising the protective oligodeoxyribonucleotide is adapted for administration from one hour to two weeks after treatment with an immunosuppressant.
9. Use according to claim 8 wherein the medicament comprising the protective oligodeoxyribonucleotide is adapted for administration from two days to seven days after treatment with an immunosuppressant.
10. Use according to claim 6 wherein the medicament comprising the protective oligodeoxyribonucleotide is adapted for administration before treatment with an immunosuppressant.
11. Use according to claim 10 wherein the medicament comprising the protective oligodeoxyribonucleotide is adapted for administration from one hour to two weeks before treatment with an immunosuppressant.
12. Use according to claim 11 wherein the medicament comprising the protective oligodeoxyribonucleotide is adapted for administration from two hours to two days before treatment with an immunosuppressant.
13. Use according to claim 5 wherein the dose of defibrotide in the medicament is chosen so as to reach a blood level from 100 pg/mL to 0.1 pg/mL.
14. Use according to claim 13 wherein the dose of defibrotide in the medicament is chosen so as to reach a blood level from 10 pg/mL to 100 pg/mL.
15. Use according to claim 13 or claim 14 wherein the dose of defibrotide in the medicament is chosen so as to reach a blood level of 10 pg/mL.
16. Use according to claim 5 wherein the dose of defibrotide in the medicament is from 100 mg/kg body weight of a patient to 0.01 mg/kg body weight. 27 INTELLECTUAL PROPERTY OFFICE OF N.Z 2 0 JUN 2008 received
17. Use according to claim 16 wherein the dose of defibrotide in the medicament is from 20 mg/kg body weight of the patient to 0.1 mg/kg body weight.
18. Use according to claim 16 or claim 17 wherein the dose of defibrotide in the medicament is from 15 mg/kg body weight of the patient to 1 mg/kg body weight.
19. Use according to any one of claims 16 to 18 wherein the dose of defibrotide in the medicament is 12 mg/kg body weight of the patient.
20. Use according to any one of claims 1 to 19 wherein the activation includes enhanced expression of ICAM-1.
21. Use according to any one of claims 1 to 20 wherein the treatment with an immunosuppressant occurs during stem cell transplantation.
22. Use according to any one of claims 1 to 21 wherein said polydeoxyribonucleotide of formula: P1-5, (dAp) 12-24, (dGp)i0-2o, (dTp)i3-26, (dCp)i0-2o, has the following chemico-physical properties: electrophoresis=homogenous anodic mobility; extinction coefficient, Eicm1% at260±1 nm=220±10°; extinction reaction, E23o/E26o=0.45±0.04; coefficient of molar extinction (referred to phosphorus); (P)=7.750±500; rotary power reversible hyperchromicity, indicated as % in native DNA; h=15±0.5; a purine:pyrimidine ratio of 0.95±0.5. 28
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38411402P | 2002-05-31 | 2002-05-31 | |
US38743802P | 2002-06-11 | 2002-06-11 | |
PCT/EP2003/005753 WO2003101468A1 (en) | 2002-05-31 | 2003-06-02 | Method for the protection of endothelial and epithelial cells during chemotherapy |
Publications (1)
Publication Number | Publication Date |
---|---|
NZ536864A true NZ536864A (en) | 2008-08-29 |
Family
ID=29715309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NZ536864A NZ536864A (en) | 2002-05-31 | 2003-06-02 | Use of oligodeoxyribonucleotides for the protection of endothelial and epithelial cells during chemotherapy |
Country Status (16)
Country | Link |
---|---|
EP (1) | EP1509235A1 (en) |
JP (1) | JP2005527636A (en) |
CN (1) | CN1304011C (en) |
AU (1) | AU2003238189A1 (en) |
CA (1) | CA2487171A1 (en) |
EA (1) | EA008213B1 (en) |
HR (1) | HRP20041213A2 (en) |
IL (1) | IL165353A0 (en) |
IS (1) | IS7548A (en) |
MX (1) | MXPA04011941A (en) |
NO (1) | NO20045655L (en) |
NZ (1) | NZ536864A (en) |
PL (1) | PL374402A1 (en) |
RS (1) | RS102504A (en) |
UA (1) | UA83628C2 (en) |
WO (1) | WO2003101468A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20031714A1 (en) * | 2003-09-05 | 2005-03-06 | Gentium Spa | FORMATIONS FOR ANTITUMORAL ACTION. |
AU2010363814B2 (en) | 2010-11-12 | 2016-05-19 | Gentium S.R.L. | Defibrotide for use in prophylaxis and/or treatment of Graft versus Host Disease (GVHD). |
KR20150044877A (en) | 2012-06-22 | 2015-04-27 | 젠티엄 에스피에이 | Euglobulin-based method for determining the biological activity of defibrotide |
EP3026122A1 (en) * | 2014-11-27 | 2016-06-01 | Gentium S.p.A. | Cellular-based method for determining the potency of defibrotide |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998048843A1 (en) * | 1997-04-28 | 1998-11-05 | Arsinur Burcoglu | Method of treating hiv infection and related secondary infections thereof |
-
2003
- 2003-06-02 RS YU102504A patent/RS102504A/en unknown
- 2003-06-02 AU AU2003238189A patent/AU2003238189A1/en not_active Abandoned
- 2003-06-02 CN CNB038125013A patent/CN1304011C/en not_active Expired - Fee Related
- 2003-06-02 WO PCT/EP2003/005753 patent/WO2003101468A1/en active Application Filing
- 2003-06-02 JP JP2004508823A patent/JP2005527636A/en active Pending
- 2003-06-02 PL PL03374402A patent/PL374402A1/en not_active Application Discontinuation
- 2003-06-02 EA EA200401448A patent/EA008213B1/en not_active IP Right Cessation
- 2003-06-02 MX MXPA04011941A patent/MXPA04011941A/en unknown
- 2003-06-02 UA UA20041109654A patent/UA83628C2/en unknown
- 2003-06-02 NZ NZ536864A patent/NZ536864A/en unknown
- 2003-06-02 EP EP03735516A patent/EP1509235A1/en not_active Withdrawn
- 2003-06-02 CA CA002487171A patent/CA2487171A1/en not_active Abandoned
-
2004
- 2004-11-23 IL IL16535304A patent/IL165353A0/en unknown
- 2004-11-24 IS IS7548A patent/IS7548A/en unknown
- 2004-12-27 NO NO20045655A patent/NO20045655L/en not_active Application Discontinuation
- 2004-12-27 HR HR20041213A patent/HRP20041213A2/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
RS102504A (en) | 2006-12-15 |
WO2003101468A1 (en) | 2003-12-11 |
HRP20041213A2 (en) | 2006-04-30 |
EP1509235A1 (en) | 2005-03-02 |
EA008213B1 (en) | 2007-04-27 |
PL374402A1 (en) | 2005-10-17 |
NO20045655L (en) | 2004-12-27 |
IS7548A (en) | 2004-11-24 |
IL165353A0 (en) | 2006-01-15 |
CN1655801A (en) | 2005-08-17 |
JP2005527636A (en) | 2005-09-15 |
EA200401448A1 (en) | 2005-06-30 |
CA2487171A1 (en) | 2003-12-11 |
UA83628C2 (en) | 2008-08-11 |
AU2003238189A1 (en) | 2003-12-19 |
MXPA04011941A (en) | 2005-07-26 |
CN1304011C (en) | 2007-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mulder et al. | Therapeutic targeting of trained immunity | |
Eissner et al. | Fludarabine induces apoptosis, activation, and allogenicity in human endothelial and epithelial cells: protective effect of defibrotide | |
KR102102677B1 (en) | Compositions of phorbol esters | |
IL271946B (en) | Combination cancer therapy | |
SK11572002A3 (en) | Nucleoside analogs with carboxamidine-modified bicyclic base | |
AU2016324920B2 (en) | Dactinomycin compositions and methods for the treatment of acute myeloid leukemia | |
EP0994702B1 (en) | Medicament comprising adenosine | |
US20050215498A1 (en) | Method for the protection of endothelial and epithclial cells during chemotherapy | |
US20150110774A1 (en) | S100 protein inhibitors for treating leukemia | |
NZ536864A (en) | Use of oligodeoxyribonucleotides for the protection of endothelial and epithelial cells during chemotherapy | |
US20090082304A1 (en) | Methods of Treating Hematological Malignancies with Nucleoside Analog Drugs | |
ZA200409558B (en) | Method for the protection of endothelial and epithelial cells during chemotherapy. | |
JP7535285B2 (en) | Tumor-associated macrophage activating agent | |
KR20050024299A (en) | Method for the protection of endothelial and epithelial cells during chemotherapy | |
JP2022524047A (en) | Method for determining efficacy | |
JP7414230B2 (en) | Antihematologic malignant tumor drug | |
JP7217875B2 (en) | Preventive and/or therapeutic agent for blood cancer | |
WO2024211398A2 (en) | Combination treatment for ovarian cancer | |
AU2022211008A1 (en) | Combination therapy schedules to treat cancer | |
WO2024201385A1 (en) | Compositions, systems, and methods for treating cancer using tumor treating fields and killer cells | |
JPH10505323A (en) | Treatment of inflammatory bowel disease with 2-halo-2'-deoxyadenosine | |
Van de Plas et al. | A PILOT STUDY ON SUBLINGUAL AND RECTAL ADMINISTRATION OF TACROLIMUS: 1219 | |
Wang et al. | STUDY EVALUATING A NEW GENERATION OF RABBIT ANTI-HUMAN LEUKOCYTE POLYCLONAL ANTIBODY IN COMBINATION WITH ANTI-CD20 RITUXIMAB IN A NONHUMAN PRIMATE MODEL OF SKIN ALLOTRANSPLANTATION: 1217 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RENW | Renewal (renewal fees accepted) | ||
PSEA | Patent sealed |