NZ282616A - Improving pulp brightness by rapid displacement heating and alkali charge pretreatment - Google Patents

Improving pulp brightness by rapid displacement heating and alkali charge pretreatment

Info

Publication number
NZ282616A
NZ282616A NZ282616A NZ28261695A NZ282616A NZ 282616 A NZ282616 A NZ 282616A NZ 282616 A NZ282616 A NZ 282616A NZ 28261695 A NZ28261695 A NZ 28261695A NZ 282616 A NZ282616 A NZ 282616A
Authority
NZ
New Zealand
Prior art keywords
liquor
cooking
black liquor
hot
rdh
Prior art date
Application number
NZ282616A
Inventor
Nam Hee Shin
Original Assignee
Beloit Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beloit Technologies Inc filed Critical Beloit Technologies Inc
Publication of NZ282616A publication Critical patent/NZ282616A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0021Introduction of various effluents, e.g. waste waters, into the pulping, recovery and regeneration cycle (closed-cycle)
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/06Pretreatment of the finely-divided materials before digesting with alkaline reacting compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/22Other features of pulping processes

Landscapes

  • Paper (AREA)
  • Pens And Brushes (AREA)
  • Glass Compositions (AREA)
  • Secondary Cells (AREA)
  • Dental Preparations (AREA)
  • Primary Cells (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A method for improving pulp brightness utilizes a combination of a distributed total white liquor charge during the warm fill, hot fill and cooking stages of a batch cooking process and low cooking temperatures during the cooking stage. The high total white liquor charge ranges between 15 % AA &tilde& 35 % AA, while the cooking temperatures range between 150 &tilde& 168 DEG C._________________________

Description

<div class="application article clearfix" id="description"> <p class="printTableText" lang="en">New Zealand No. 282616 International No. PCT/US95/02719 <br><br> Priority <br><br> Complete Specification Fll«d: <br><br> CJftas: (6) 3?a.ica|.^;.."3?.a\c.u./.fie; <br><br> Publication Date: 2.J&amp;..MAY..139Z. <br><br> P.O. Journal No: J.Wr.!.W. <br><br> NEW ZEALAND PATENTS ACT 1953 COMPLETE SPECIFICATION <br><br> Title of Invention: <br><br> Impact of temperature and alkali charge on pulp brightness <br><br> Name, address and nationality of applicant(s) as in international application form: <br><br> BELOIT TECHNOLOGIES, INC., of Suite 3001, 3513 Concord Pike, Wilmington, Delaware 19803-3001, United States of America <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 28261 <br><br> 6 <br><br> TITLE; <br><br> "IMPACT OF TEMPERATURE AND ALKALI CHARGE ON PULP BRIGHTNESS" <br><br> BACKGROUND OF THE INVENTION <br><br> The present invention relates to a process for improving the final brightness of pulp. More particularly, the present invention relates to modifications in both the cooking temperature and white liquor charge for a rapid displacement heating cooking system. <br><br> Rapid Displacement Heating ("RDH") is a low energy batch cooking process for producing kraft pulp. Combining the inherent advantages of batch cooking with the energy efficiencies of a continuous digester, RDH reuses the spent black liquors that are displaced from a cooked digester to pretreat the wood chips in a consequent cook. Thus, both the chemicals and the heat in these spent liquors are recycled to a consequent cook. The pretreatment of fresh wood chips in a consequent cook begins with lower temperature liquors (approximately 80 ~ 130°C), and is followed by high temperature liquors (approximately 130° to 165°C) which heat the digester to the highest possible temperature before raising the temperatures to the final cooking temperature (3170°C) with steam. <br><br> RDH and other alkaline cooking processes produce pulp that is relatively dark in color. Greater contrast is usually needed for the many uses of pulp and paper, so pulp is usually bleached to a high brightness in order to make white pulp for writing and printing papers and paperboard. Pulp color arises from changes in the iignin component of the raw material which occur in the pulping process. Unfortunately, with the use of high cooking temperatures and low black liquor strength in the RDH process, low bleachabiiity problems have <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 2 <br><br> occurred following the use of conventional, ECF and TCF bleaching processes. High cooking temperatures and low black liquor strength seem to accelerate condensation reactions, resulting in the condensation of lignin with lignin and other wood extractives. As a result, the bleachability of pulp decreased. <br><br> An alternative method is, therefore, needed in the RDH cooking process to eliminate such adverse side reactions and improve pulp bleachability. <br><br> SUMMARY QF THE INVENTION <br><br> The present invention provides a method for improving pulp brightness. Based on modifications to a batch cooking process utilizing rapid displacement heating, the method of the present invention combines the steps of adding white liquor solution (% active alkalinity (AA) or effective alkalinity (EA» or NaOH to both the warm fill and initial hot fill stages and cooking wood chips at lower temperatures than previously used in a batch type operation to produce pulp that has improved bleachability. In this regard, a total white liquor charge ranging from 15% AA - 35% AA is distributed over the warm, hot and cooking stages in a predetermined amount. If a cool pad is used in practicing the invention, cool white liquor is also added to the black liquor that is released from the cool liquor accumulator. Essentially, white liquor is added to every stage of the batch cooking process prior to the actual cook. <br><br> During the cooking of the chips, white and black liquors are present in the digester. Cooking temperatures are low, ranging from 150° - 167°C. With the combination of a high AA or EA white liquor charge and low cooking temperatures, final brightness of pulp is improved. As a result, pollutants and bleaching chemical usage are decreased in pulp mill operations. <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 3 <br><br> BRIEF DESCRIPTION QF THE DRAWINGS <br><br> FIG. 1 illustrates a schematic view of a digested and its associated equipment used in the current RDH cooking system. <br><br> FIGS. 2A, 2B and 2C each illustrate white liquor profiling or the addition of white liquor at various stages of the RDH cooking process. In FIG. 2A, plot A represents the addition of a small amount of white liquor at the beginning of the warm fill mode. Plot B represents the cooking stage and illustrates the presence of white liquor in the digester during the actual cooking of the chips. <br><br> FIG. 2B illustrates the continuous addition of white liquor to the black liquor at each stage of the RDH cooking process, beginning with the warm fill and continuing through the end of the hot fill. White liquor, as shown, is also present in the digester during the actual cook. <br><br> FIG. 2C illustrates the continuous addition of white liquor at each RDH stage including the addition of white liquor to the washer filtrate from the displacerr »nt tank. <br><br> FIG. 3 illustrates a Stage 3 RDH system without white liquor addition during the warm and hot fill modes. <br><br> FIG. 4 illustrates a Stage 3 RDH system with the addition of white liquor during the warm and hot fill modes. <br><br> FIG. 5 illustrates a plot of D1-brightness versus total (D100 + D1) available chlorine charge for the best case and baseline case RDH pulps. Plot A represents RDH pulp R3 (0.225 Kappa factor). Plot B represents RDH pulp R4 (0.27 Kappa factor). Plot C represents RDH pulp R7 (0.225 Kappa factor). Plot D represents RDH pulp R8 (0.27 Kappa factor). <br><br> WO 95/23891 <br><br> PCT/U S95/02719 <br><br> 4 <br><br> FIG. 5A illustrates a plot of D1-brightness versus D1-chlorine dioxide charge. Plot A represents RDH pulp R3 (0.225 Kappa factor). Plot B represents RDH pulp R4 (0.27 Kappa factor). Plot C represents RDH pulp R7 (0.225 Kappa factor). Plot D represents RDH pulp R8 (0.27 Kappa factor). <br><br> FIG. 6 illustrates the D1-brightness versus the total available chlorine charge in the D100- and D1 -stages for all 0.225 Kappa factor bleaches. Plot A represents RDH pulp R3. Plot B represents RDH pulp R12. Plot C represents RDH pulp R7. <br><br> FIG. 6A illustrates the D1-brightness versus the D1-stage chlorine dioxide charges. Plot A represents RDH pulp R3 (0.225 Kappa factor). Plot B represents RDH pulp R12 (0.225 Kappa factor). Plot C represents RDH pulp R7 (0.225 Kappa factor). <br><br> FIG. 7 illustrates the D1-brightness versus the total available chlorine charge in the D100- and D1-stages for all 0.27 Kappa factor bleaches. Plot A represents RDH pulp R4. Plot B represents RDH pulp R12. Plot C represents RDH pulp R8. <br><br> FIG. 7A illustrates the D1-brightness versus the D1-stage chlorine dioxide charges. Plot A represents RDH pulp R4 (0.27 Kappa factor). Plot B represents RDH pulp R12 (0.27 Kappa factor). Plot C represents RDH pulp R8 (0.27 Kappa factor). <br><br> DETAILED DESCRIPTION QF THE PRESENTLY PREFERRED EMBODIMENTS <br><br> The present invention provides a method for improving pulp bleachability, which is based on modifications to the existing RDH Cooking System for the <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 5 <br><br> digestion of wood chips. More specifically, the method involves the addition of a white liquor charge commencing at the start of the RPH cooking cycle and continuing until the time to temperature stage of the process, at which time the actual cook begins. The method of the present invention is also predicated on the use of somewhat lower cooking temperatures for the actual cook as compared to cooking temperatures commonly used in the RDH pulping process. <br><br> In accordance with the present invention, a total white liquor charge ranging between approximately 15%AA ~ 35%AA is distributed over the warm black liquor, initial hot black liquor and cooking stages. When used, the cool pad or cool liquor accumulator also receives a white liquor charge. In addition to the use of a distributed white liquor charge, the present invention utilizes lower cooking temperatures ranging between approximately 150°C - 167°C. As a result, pulp is produced which, upon bleaching with any combination of bleaching chemicals, is improved in final brightness. <br><br> The operational stages for a typical RDH Cooking System are as follows: (1) chip fill; (2) cool black liquor fill; (3) warm black liquor fill; (4) hot black liquor fill; (5) time to temperature; (6) time at temperature; (7) displacement; and (8) pump out. The basic principles of RDH operation are described in U.S. Patent No. 4,578,149 (issued March 25,1986), the entire contents of which are hereby incorporated by reference into this disclosure. Accordingly, details of RDH operations will be discussed only to the extent necessary for one of ordinary skill in the art to appreciate the modifications in the RDH cooking system, which produce the bleachable grade pulp described herein. <br><br> FIG. 1 schematically illustrates the type of apparatus for RDH that is used for the digestion of pulp. It should be understood that this figure illustrates very general features of the cooking apparatus, and modifications and <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 6 <br><br> variations in this system are indeed made as will be discussed in greater detail below. Many instrumentalities such as gauges, pressure vents, pumps and valves have been eliminated from the figures disclosed herein for reasons of simplicity. FIG. 1 is used to illustrate the existing RDH cooking process and to facilitate an understanding of the improvements to the process in accordance with the principles of the present invention. <br><br> Referring to FIG. 1, a digester is illustrated at 10 of the type generally used in the chemical digestion of wood chips. The digester 10 has a truncated bottom 12. An inlet valve 14 controls the entry of various reactive liquors into digester 10. Although not shown, the contents of digester 10 can be heated to a final cooking temperature by pumping cooking liquor through a heat exchanger or steam sparger which is connected to digester 10 by a valve-controlled line. <br><br> After the wood chips are added to digester 10, cool black liquor (temperature around 70°-95°C) from the cool liquor accumulator (A tank) 16 is pumped by means of pump 18 through line 20 which is controlled by a valve 22 into the bottom of the digester 10 through an inlet valve 14. Next, warm black liquor (temperature between approximately 90°-150°C) from the warm liquor accumulator 24 is pumped out by means of a pump 18 through a valve 22 and through valve 14 into the bottom of digester 10. During this warm liquor fill, some black liquor is displaced from the digester 10 and then returned by a line 26 to the cool liquor accumulator 16. Hot black liquor (temperature between 150°-168°C) is then pumped from the hot liquor accumulator (C tank) 28 by means of a pump 30 which is controlled by a valve 32 into the bottom of the digester 10 utilizing valve 14. During the hot fill, black liquor is displaced from the digester 10 and returned to the warm liquor accumulator 24 and hot liquor accumulator 28 through lines 34 and 36, respectively. During the middle bf the hot fill, hot white liquor stored in the hot white liquor accumulator 38 is pumped <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 7 <br><br> out by means of a pump 30 where it combines with the hot black liquor leaving the hot liquor accumulator 28, the combined liquors thgn passing through a valve 32 and into the base of the digester 10. <br><br> After the hot fill is completed, the inlet and outlet valves to the digester 10 are closed as the time to temperature stage commences. Steam is injected into the digester 10 and the temperature is increased to the cooking temperature, which averages approximately 170°C. The temperature of the digester is maintained at about this temperature until the wood chips are digested, depending on white liquor charge and H-factor. <br><br> Upon completion of the cooking stage, washer filtrate (temperature approximately 70 ~ 85°C) stored in a displacement tank (D tank) 40 is pumped into the digester 10, utilizing pump 42 and valve 44. The contents are washed and the digester 10 is cooled. As the washer filtrate is added to the digester 10, the spent liquors are displaced and returned to the warm liquor accumulator 24 and the hot liquor accumulator 28 by lines 46 and 48, respectively. The displacement mode is concluded when all washer filtrate is used, which is based on the dilution factor of the washer. After displacement is completed, the digested pulp is then pumped out of the digester 10 to a discharge tank using pump 50. <br><br> With the current RDH cooking system, cooking temperatures of greater than 170°C are used for rapid cooking, resulting in the acceleration of condensation reactions. As a result, bleachability problems occurred when the pulp was subjected to conventional, ECF and TCF bleaching processes. The present invention overcomes these problems and improves pulp bleachability by modifying the cooking process for wood chips. This improved RDH process utilizes a combination of higher alkalinity (or white liquor charge) and lower cooking temperatures. More specifically, white liquor is added during the warm <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 8 <br><br> and initial hot fill stages. This is in contrast to the existing RDH cooking process, wherein white liquor is added only during thedniddle of the hot fill mode. Further, when a cool pad is used in the present invention, white liquor is added to the cool black liquor leaving the cool liquor accumulator (or A tank). Thus, from the beginning of the RDH cooking process until the time to temperature stage, white liquor is added during each stage to the black liquor. The addition of white liquor at every stage, also called white liquor profiling, is illustrated in greater detail below in FIGS. 2A, 2B and 2C. <br><br> In FIG. 2A, plot A illustrates the addition of a small amount of white liquor at the beginning of the warm fill mode when warm black liquor leaves the B tank or warm liquor accumulator and flows to the digester. White liquor can also be added to the A tank or cool pad when used. At the end of the hot fill mode, which utilizes two hot liquor accumulators C1 and C2, the mixture of white and black liquors remains in the digester. Plot B represents the cooking stage and illustrates the presence of white liquor in the digester during the actual cooking of the chips. Black liquor is also present during the cook. <br><br> FIG. 2B illustrates the continuous addition of white liquor to black liquor at each stage of the cooking process, beginning with the warm fill through the end of the hot fill mode. <br><br> FIG. 2C illustrates the continuous addition of white liquor throughout the various stages, including the addition of white liquor to the washer filtrate from the displacement tank. <br><br> The concentration of dissolved organic material in the initial hot fill operation (C1 and C2 tanks containing black liquor) was compared with and without white liquor addition during the warm and hot fill operations. FIG. 3 illustrates a Stage 3 RDH system where no white liquor is added during the <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 9 <br><br> warm and hot fill modes. Only warm black liquor is leaving the warm liquor accumulator (B tank) 24 to flow through line 56 during&lt;£he warm fill mode and into line 20, which then empties into the digester 10. Although this RDH system contains two hot liquor accumulators 28 (C1 tank) and 58 (C2 tank), respectively, there are RDH pulping processes which utilize only one hot liquor accumulator. In practicing the present invention, it is contemplated that the process of white liquor profiling can be applied to systems having any number of black liquor accumulators. <br><br> As shown in FIG. 3, during the initial hot fill mode, hot black liquor leaves the hot liquor accumulators 28 and 58 by lines 60 and 62, respectively, and flows to the digester 10 through lines 64 and 20. During the middle of the hot fill, hot white liquor from the hot white liquor accumulator 38 mixes with the hot black liquor leaving hot liquor accumulator 58 by line 66. The mixture then flows through lines 64 and 20 and into the digester 10. <br><br> FIG. 4 illustrates a Stage 3 RDH System with the addition of white liquor during the warm and hot fill modes. First, during the warm fill, white liquor is added to the warm black liquor leaving the warm liquor accumulator 24 by line 70. The warm fill flows through lines 56 and 20 into the digester 10. Either cool or hot white liquor may be used during the warm fill mode. During the initial hot fill mode, hot white liquor from +he hot white liquor accumulator 38 is mixed with black liquor leaving hot liquor accumulator 28 by line 72, and is further mixed with the biack liquor exiting 'the second hot liquor accumulator 58 by lines 62 and 66. The mixture of hot white and black liquors flows from the two hot liquor accumulators 28 and 58 through lines 64 and 20 into the digester 10. <br><br> The results of the comparison are as follows: <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 10 <br><br> Without White Liquor Addition at Warm and Hot Fill Operations (FIG. 3) <br><br> Initial Hot Fill Operation Total Flow, aal/cook Dissolved Organic. % <br><br> C1 black liquor 20799 13.1 <br><br> C2 black liquor 8709 14.9 <br><br> With White Liquor Addition at Warm and Hot Fill Operations (FIG. 4) <br><br> White Liquor charges: 1.5% AA at C1 black liquor <br><br> 1.5% AA at C2 black liquor <br><br> Initial Hot Fill Operation Total Flow, gal/cook Dissolved Organic. % <br><br> C1 Black liquor 19877 10.1 <br><br> C2 black liquor 797'I 9.8 <br><br> This case study clearly demonstrates that the concentration of dissolved organic compounds at initial hot fill operation can be adjusted by adding white liquor to the hot fill line. The concentration of dissolved organic compounds in the C1 black liquor and in the C2 black liquor decreases from 13.1% to 10.1% and 14.9% to 9.8%, respectively. <br><br> In order to maximize bleachability benefits and extend delignification for the RDH process, warm black liquor (temperatures between approximately 70° and 150°C and its strength between 3 and 20 g/l AA) and hot black liquor (temperatures between approximately 100° and 168°C and its strength between 8 and 30 g/l AA) should be reinforced with any combination of white liquor or NaOH solution. <br><br> As shown in the figures presented above, warm and hot black liquor can be modified using white liquor profiling. These liquors can also be modified by sodium hydroxide (NaOH) profiling. The addition of white liquor or NaOH <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 11 <br><br> controls the total dissolved solids (TDS) concentration and black liquor strength using any combination of black liquor, white liquor an&amp; NaOH. The washer filtrate displacement stage, in which the black liquor temperature is held between approximately 50° and 105°C and black liquor strength between 1 and 18 g/l AA, can be reinforced with any combination of white liquor or NaOH solution. <br><br> By way of example, and not limitation, the following examples serve to further illustrate the present invention in its preferred embodiments. <br><br> As shown below, Tables 1,1A, 2, 2A, 3 and 3A provide the pulping results and conditions for a number of cooks used in preparing the RDH pulps for subsequent bleaching studies. A summary of the pulping results is provided in Table 3B. <br><br> TABLE 1 <br><br> RDH Pulping Conditions and Results - "Best Case" <br><br> Cook Number <br><br> R1 <br><br> Post R1 <br><br> R2 <br><br> Post R2 <br><br> R3 <br><br> Post R3 <br><br> R4 <br><br> Post R4 <br><br> H factor <br><br> 937 <br><br> 532 <br><br> 475 <br><br> 452 <br><br> AA(TAPPI) to Hot Fill, % <br><br> 16.0 <br><br> 16.0 <br><br> 16.0 <br><br> 16 <br><br> Sulfidity (TAPPI),% on AA <br><br> 30.4 <br><br> 30 <br><br> 30.3 <br><br> 30. 2 <br><br> Maximum temp, C <br><br> 160 <br><br> 160 <br><br> 160 <br><br> 160 <br><br> Time to max, min <br><br> 16 <br><br> 20 <br><br> 17 <br><br> 19 <br><br> Time at max, min <br><br> 130 <br><br> 37 <br><br> 60. <br><br> 57 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 12 <br><br> Kappa, unscreened <br><br> 7.2 <br><br> , 8.9 <br><br> 1 <br><br> 9.2 <br><br> 9.8 <br><br> Kappa, screened <br><br> 7.1 <br><br> 8.2 <br><br> 8.8 <br><br> o <br><br> 9.3 <br><br> Total yield,% <br><br> 46.3 <br><br> 47.3 <br><br> 48.2 <br><br> 1.7 <br><br> Total rejects,% <br><br> 0.9 <br><br> 1.2 <br><br> 1.4 <br><br> 1.7 <br><br> Screened yield,% <br><br> 45. i <br><br> 46.1 <br><br> 46.8 <br><br> 46. <br><br> 9 <br><br> Viscosity,0 .5% CED, cp <br><br> 26 <br><br> 39 <br><br> 40.7 <br><br> 44. <br><br> 9 <br><br> End of Cook R«aidual: <br><br> AA(Na20), g/L <br><br> 28.2 <br><br> 31.6 <br><br> 32. 9 <br><br> 31. 6 <br><br> EA (Na20), g/L <br><br> 21.1 <br><br> 24.2 <br><br> 24.2 <br><br> 24. <br><br> 2 <br><br> N&amp;2S <br><br> (Na20), g/L <br><br> 14.3 <br><br> 14.9 <br><br> 17.4 <br><br> 14. 9 <br><br> TTA(Na20),g /L <br><br> • <br><br> Solids,% <br><br> 14.8 <br><br> 15.9 <br><br> 16.7 <br><br> 16. 8 <br><br> Solids.g/L <br><br> 161 <br><br> * <br><br> 173 <br><br> 183 <br><br> 185 <br><br> Sulfidity % on A.A. <br><br> 51 <br><br> 47.1 <br><br> 52.9 <br><br> 47. <br><br> 1 <br><br> HOT FILL: <br><br> Hot liquor charge, L <br><br> 18 <br><br> 18 <br><br> 18 <br><br> 18 <br><br> Charge time, min <br><br> 13 <br><br> 14 <br><br> 13 <br><br> 13 <br><br> Temperature , C <br><br> Top <br><br> 130 <br><br> 127 <br><br> 127 <br><br> 128 <br><br> Bottom <br><br> 145 <br><br> 141 <br><br> 141 <br><br> 141 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 13 <br><br> Chamicvil Conditions in Accumulator: <br><br> AA(Na20), g/L <br><br> 22.9 <br><br> 20.6 <br><br> 25.7 <br><br> 21.7 <br><br> 29.2 <br><br> «24.6 <br><br> 27. 3 <br><br> 23.6 <br><br> EA (Na20), g/L <br><br> 16.1 <br><br> 15.1 <br><br> 18.1 <br><br> 16.1 <br><br> 20.2 <br><br> IS.3 <br><br> 19. 8 <br><br> 17.9 <br><br> Na2S <br><br> (Nfi20) , g/L <br><br> 13.7 <br><br> 11 <br><br> 15.2 <br><br> 11.2 <br><br> 18 <br><br> 12.7 <br><br> 14. 9 <br><br> 11.4 <br><br> TTA (Na20), g/L <br><br> • <br><br> ** <br><br> - <br><br> " <br><br> "* <br><br> - <br><br> Sulfidity, k on A.A. <br><br> 59.4 <br><br> 53.4 <br><br> 59.1 <br><br> 51.6 <br><br> 61.6 <br><br> 51.2 <br><br> 54. 9 <br><br> 48.3 <br><br> Solids,V <br><br> 9.5 <br><br> 10.5 <br><br> 11.1 <br><br> 11.9 <br><br> 11.9 <br><br> 13.6 <br><br> 12. 7 <br><br> 13.6 <br><br> Solids, g/L <br><br> 99.8 <br><br> 111 <br><br> 118 <br><br> 127 <br><br> 127 <br><br> 146 <br><br> 137 <br><br> 146 <br><br> Total elapsed time, min* <br><br> 45 <br><br> 43 <br><br> 41 <br><br> 42 <br><br> * includes heating time to 145C and time at 145C after initial hot black liquor injection and final hot B/L with W/L mix. <br><br> TABLE1A <br><br> RDH Pulping Conditions and Results - "Best Case" <br><br> Cook Number <br><br> R1 <br><br> Post R1 <br><br> R2 <br><br> Post R2 <br><br> R3 <br><br> Post R3 <br><br> R4 <br><br> Post R4 <br><br> WHITE <br><br> I.TOTTOR ? <br><br> White liquor charge,L <br><br> 6.04 <br><br> 5.65 <br><br> 5.53 <br><br> 5.52 <br><br> Hot B/L,L <br><br> 5 <br><br> 4.13 <br><br> 5.5 <br><br> 5.8 <br><br> Charge time, min <br><br> 11 <br><br> 11 <br><br> 9 <br><br> 9 <br><br> Temperatur e, C <br><br> Top <br><br> 140 <br><br> 139 <br><br> 140 <br><br> 139 <br><br> Bottom <br><br> 141 <br><br> 141 <br><br> 144 <br><br> 143 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 14 ' <br><br> Chemical condltlona In accumulator: (TAPPI) <br><br> AA (Na2o), g/L <br><br> 98 <br><br> 99.2 <br><br> 10* . 2 <br><br> • <br><br> 101. 5 <br><br> EA(Na20) g/L <br><br> 83.1 <br><br> 84.3 <br><br> 85.8 <br><br> 86.2 <br><br> Na2S (Na20), g/L <br><br> TTA <br><br> (Na20) , g/L <br><br> Sulfidity, Von AA <br><br> 30.4 <br><br> 30 <br><br> 30.3 <br><br> 30.2 <br><br> CHIP CHARGE &amp; LIQUOR PACKIUGi <br><br> Chip charge, g <br><br> 3,700 <br><br> 3,500 <br><br> 3,50 0 <br><br> 3,SO 0 <br><br> Chip <br><br> Moisture, * <br><br> 37-. 3 <br><br> 37.3 <br><br> 37.3 <br><br> 37.3 <br><br> O.D. <br><br> Solids, % <br><br> S2.7 <br><br> 62.7 <br><br> 62.7 <br><br> 62.7 <br><br> WXRM FIT,!,! <br><br> Warm Liquor charge, L <br><br> 24.7 <br><br> 24 <br><br> 24 <br><br> 24 <br><br> Exit pH, initial <br><br> 12.8 <br><br> 13.5 <br><br> 13.3 <br><br> 13.3 <br><br> Charge time, min <br><br> 15 <br><br> 15 <br><br> 15 <br><br> 15 <br><br> Temperatur e, C <br><br> Top <br><br> 100 <br><br> 104 <br><br> 102 <br><br> 100 <br><br> Bottom <br><br> 113 <br><br> 112 <br><br> 111 <br><br> 112 <br><br> Chemical condltlona <br><br> In Accumulatori <br><br> AA(Na20), g/L <br><br> 23.6 <br><br> 16.4 <br><br> 26.4 <br><br> 17.7 <br><br> 25.7 <br><br> 19.2 <br><br> 28.5 <br><br> 21.1 <br><br> EA (Na20), g/L <br><br> 16.4 <br><br> 10.5 <br><br> 17.4 <br><br> 11.5 <br><br> 18 <br><br> 12.4 <br><br> 18.6 <br><br> 13.6 <br><br> Na2S (Na20), g/L <br><br> 14.3 <br><br> 11.8 <br><br> 18 <br><br> 12.4 <br><br> 15.5 <br><br> 13.6 <br><br> 19.8 <br><br> 14.9 <br><br> TTA <br><br> (Na20), g/L <br><br> Sulfidity, % on A.A. <br><br> 60.8 <br><br> 71.7 <br><br> 68.3 <br><br> 70.2 <br><br> 60.3 <br><br> 71 <br><br> 69.5 <br><br> 70.6 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 15 <br><br> Solids,% <br><br> 9 <br><br> 9.25 <br><br> 13.6 <br><br> 12.4 <br><br> 14.3 <br><br> 13.1 <br><br> 14.1 <br><br> 13.1 <br><br> Solids, g/L <br><br> 94.3 <br><br> 96.4 <br><br> 147 <br><br> 131 <br><br> 155 <br><br> 141 e <br><br> 152 <br><br> 141 <br><br> Total elapsed time, min* <br><br> 40 <br><br> 31 <br><br> 34 <br><br> 33 <br><br> DISPLACEMENT: <br><br> Displaceme nt Volume, L <br><br> 32 <br><br> 32 <br><br> 32 <br><br> 32 <br><br> Charge time, min <br><br> 26 <br><br> 26 <br><br> 26 <br><br> 26 <br><br> Chemical Con ditlona in accumulator» (TAPPI) <br><br> AA (Na20), g/L <br><br> 9.S <br><br> 10.1 <br><br> 9 <br><br> 10.1 <br><br> EA (Na20), g/L <br><br> 9.5 <br><br> 10.1 <br><br> 9 <br><br> 10.1 <br><br> Na2S (Na20), g/L <br><br> TTA <br><br> (Na20), g/L <br><br> . <br><br> Sulfidity, % on A.A. <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> * includes fill time, heating time to 120C and time at 120C after warm fill. <br><br> TABLE 2 <br><br> RDH Pulping Conditions and Results - "Baseline Casft" <br><br> Cook Number <br><br> R5 <br><br> Post R5 <br><br> R6 <br><br> Post R6 <br><br> R7 <br><br> Post R7 <br><br> R8 <br><br> Post R8 <br><br> H factor <br><br> 116 1 <br><br> 765 <br><br> 831 <br><br> 832 <br><br> AA <br><br> (TAPPI) to Hot Fill, % <br><br> 10. 0 <br><br> 10.0 <br><br> 10.0 <br><br> 10.0 <br><br> Sulfidity (TAPPI), % on AA <br><br> 30. 2 <br><br> 30.3 <br><br> 30.3 <br><br> 30.2 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 16 <br><br> Maximum temp, C <br><br> 170 <br><br> 170 <br><br> 170 <br><br> 170 <br><br> Time to max, min <br><br> 23 <br><br> 27 <br><br> 21 <br><br> O <br><br> 21 <br><br> Time at rr x, min <br><br> 62 <br><br> 35 <br><br> 41 <br><br> 42 <br><br> K...h. \ <br><br> unscreene d <br><br> 7.6 <br><br> 9.7 <br><br> 9.5 <br><br> 8.9 <br><br> Kappa, screened <br><br> 7.2 <br><br> 9.1 <br><br> 8.9 <br><br> 8.8 <br><br> Total yield,% <br><br> 47. 3 <br><br> 48.3 <br><br> 48.6 <br><br> 49.1 <br><br> Total rejects, % <br><br> 1.1 <br><br> 1.6 <br><br> 1.7 <br><br> 1.4 <br><br> Screened yield, % <br><br> 46. 2 <br><br> 46.7 <br><br> 46.9 <br><br> 47.7 <br><br> Viscosity, 0.5% CED, cp <br><br> 19. 5 <br><br> 33.2 <br><br> 33.3 <br><br> 32.2 <br><br> End of Cook Residual: <br><br> AA(Na20) , g/L <br><br> CM <br><br> 25.4 <br><br> 26 <br><br> 25.4 <br><br> EA <br><br> (Na20), g/L <br><br> 19. 2 <br><br> 18 <br><br> 17.4 <br><br> 17.4 <br><br> Na2S <br><br> (Na20), <br><br> g/L <br><br> 17. 4 <br><br> 14.9 <br><br> 17.4 <br><br> 16 <br><br> TTA(Na20 ), g/L <br><br> Solids, % <br><br> 19 <br><br> 19.1 <br><br> 19.2 <br><br> 19.1 <br><br> Solids,g/L <br><br> 210 <br><br> 211 <br><br> 213 <br><br> 210 <br><br> Sulfidity % on A.A. <br><br> 62. 4 <br><br> 58.3 <br><br> 66.2 <br><br> 63 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 17 <br><br> HOT FILL: <br><br> Hot liquor charge, L <br><br> 18 <br><br> 18 <br><br> 18 <br><br> • <br><br> 18 <br><br> Charge time, min <br><br> 12 <br><br> 13 <br><br> 12 <br><br> 13 <br><br> Temperatu re, C <br><br> Top <br><br> 135 <br><br> 137 <br><br> 137 <br><br> 135 <br><br> Bottom <br><br> 153 <br><br> 153 <br><br> 154 <br><br> 155 <br><br> Chemical conditions in Accumulator: <br><br> AA(Na20) , g/L <br><br> 30. 4 <br><br> 23.6 <br><br> 26 <br><br> 21.1 <br><br> 26.7 <br><br> 20.5 <br><br> 26.4 <br><br> 20.5 <br><br> EA <br><br> (Na20), g/L <br><br> 22. 3 <br><br> 16.2 <br><br> 18.6 <br><br> 14.3 <br><br> 18 <br><br> 13.6 <br><br> 18.3 <br><br> 13.6 <br><br> Na2S <br><br> (Na20), <br><br> g/L <br><br> 16. 1 <br><br> 14.9 <br><br> 14.9 <br><br> 13.6 <br><br> 17.4 <br><br> 13.6 <br><br> 16.1 <br><br> 13.6 <br><br> TTA <br><br> (Na20), <br><br> g/L <br><br> Sulfidity, % on A.A. <br><br> 53. 3 <br><br> 63.6 <br><br> 56.9 <br><br> 64.5 <br><br> 65.2 <br><br> 67.3 <br><br> 61.4 <br><br> 67.3 <br><br> Solids,% <br><br> 16. 7 <br><br> 17 <br><br> 17.2 <br><br> 17.1 <br><br> 17 <br><br> 17.3 <br><br> 17 <br><br> 16.9 <br><br> Solids, g/L <br><br> 183 <br><br> 185 <br><br> 189 <br><br> 187 <br><br> 187 <br><br> 189 <br><br> 186 <br><br> 184 <br><br> Total elapsed time, min* <br><br> 46 <br><br> 44 <br><br> 45 <br><br> 44 <br><br> * includes heating time to 1S5C and time at 1S5C after Initial hot black liquor injection and final hot B/L with W/L mix. <br><br> WO 95/23891 PCT/US95/02719 <br><br> 18 TABLE 2A <br><br> RDH Pulping Conditions and Results - "Baseline Case" <br><br> Cook Number <br><br> R5 <br><br> Post R5 <br><br> R6 <br><br> Post R6 <br><br> R7 <br><br> Post R7 <br><br> R8 <br><br> Post R8 <br><br> WHITE LIQUOR* <br><br> White liquor charge,L <br><br> 3.47 <br><br> 3.45 <br><br> . 3.46 <br><br> 3.47 <br><br> Hot B/L, L <br><br> 5.4 <br><br> 7 <br><br> 5.6 <br><br> 5 <br><br> Charge time, <br><br> min <br><br> 9 <br><br> 9 <br><br> 9 <br><br> 9 <br><br> Temperature , C <br><br> Top <br><br> 151 <br><br> 152 <br><br> 151 <br><br> 151 <br><br> Bottom <br><br> 149 <br><br> 147 <br><br> 145 <br><br> 144 <br><br> Chemical oonditlons in acouaulator: (TAPPI) <br><br> AA <br><br> (Na20), g/L <br><br> 100.8 <br><br> 101.4 <br><br> 101.2 <br><br> 100. 8 <br><br> EA(Na20) g/L <br><br> 85.6 <br><br> 86 <br><br> 85. 9 <br><br> 85.6 <br><br> Na2S (Na20), g/L <br><br> TTA <br><br> (Na20), g/L <br><br> 121.6 <br><br> 122.8 <br><br> 123.1 <br><br> 120. 6 <br><br> Sulfidit y, * on AA <br><br> 30.2 <br><br> 30.3 <br><br> 30.3 <br><br> 30.2 <br><br> chtp chahqb £ liotor packtwai <br><br> Chip charge, <br><br> g <br><br> 3,500 <br><br> 3,500 <br><br> 3,500 <br><br> 3,50 0 <br><br> Chip <br><br> Moisture , * <br><br> 37.3 <br><br> 37.3 <br><br> 37.3 <br><br> 37.3 <br><br> O.D. <br><br> Solids, <br><br> V <br><br> 62.7 <br><br> 62.7 <br><br> 62.7 <br><br> 62.7 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 19 <br><br> WARM FILL: <br><br> Warm Liquor charge, L <br><br> 24.4 <br><br> 25 <br><br> 25.2 <br><br> » <br><br> 24 <br><br> Exit pH, initial <br><br> 13.1 <br><br> 13.3 <br><br> 13.5 <br><br> 13.3 <br><br> Charge time, <br><br> min <br><br> 15 <br><br> 15 <br><br> 15 <br><br> 15 <br><br> Temper-a ture, C <br><br> Top <br><br> 109 <br><br> 109 <br><br> 106 <br><br> 106 <br><br> Bottom <br><br> 121 <br><br> 120 <br><br> 118 <br><br> 116 <br><br> Chemical condltlona in Accumulator: (TAPPI) <br><br> AA(Na20) , g/L <br><br> 28.1 <br><br> 19.2 <br><br> 27.9 <br><br> 18.6 <br><br> . 26.7 <br><br> 19.2 <br><br> 26.7 <br><br> 19.7 <br><br> EA <br><br> (Na20), g/L <br><br> 18.3 <br><br> 12.4 <br><br> 18 <br><br> 11.2 <br><br> 18 <br><br> 11.8 <br><br> 18.6 <br><br> 12.1 <br><br> Na2S (Na20), g/L <br><br> 19.6 <br><br> 13.6 <br><br> 19.8 <br><br> 14.9 <br><br> 17.4 <br><br> 14.9 <br><br> 16.1 <br><br> 15.1 <br><br> Sulfidit y, V on A.A. <br><br> 69.8 <br><br> 70.8 <br><br> 71 <br><br> 79.6 <br><br> 65.2 <br><br> 77.1 <br><br> 60.7 <br><br> 77.2 <br><br> Solids, % <br><br> 14.5 <br><br> 15,4 <br><br> 15 <br><br> 16 <br><br> 14.7 <br><br> 15.5 <br><br> 14.6 <br><br> 15.9 <br><br> Solids, g/L <br><br> 157 <br><br> 167 <br><br> 164 <br><br> 173 <br><br> 159 <br><br> 168 <br><br> 158 <br><br> 172 <br><br> Total elapsed time, min* <br><br> 35 <br><br> 33 <br><br> 31 <br><br> 30 <br><br> Displace -ment Volume, <br><br> L <br><br> 32 <br><br> 32 <br><br> 32 <br><br> 32 <br><br> Charge time, <br><br> min <br><br> 26 <br><br> 26 <br><br> 26 <br><br> 26 <br><br> Chemical Condltlona in accumulator: <br><br> AA <br><br> (Na20), g/L <br><br> 4.3 <br><br> 4.31 <br><br> 4.3 <br><br> 4.3 <br><br> EA <br><br> (Na20), g/L <br><br> 3.7 <br><br> 3.7 <br><br> 3.7 <br><br> 3.5 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 20 <br><br> Na2S (Na20), g/L <br><br> 1.24 <br><br> 1.24 <br><br> 1.24 <br><br> 9 <br><br> 1.74 <br><br> Sulfidit y, * on A.A. <br><br> 27.9 <br><br> 27.9 <br><br> 27.9 <br><br> 27.9 <br><br> Solids, * <br><br> 9.7 <br><br> 10.6 <br><br> 10.4 <br><br> 10.3 <br><br> Solids, g/L <br><br> 102 <br><br> 112 <br><br> 109 <br><br> 108 <br><br> 4 includes fill time, heating time to 120C and time at 120C after warm fill. <br><br> TABLE 3 <br><br> RDH Pulping Conditions and Results - "Best Do-able Case" <br><br> Cook Number <br><br> R9 <br><br> Post R9 <br><br> R10 <br><br> Post R10 <br><br> Rll <br><br> Post Rll <br><br> R12 <br><br> Post R12 <br><br> H factor <br><br> 484 <br><br> 558 <br><br> 483 <br><br> 494 <br><br> AA(TAPPI) to Hot Fill, % <br><br> 18.9 <br><br> 16.0 <br><br> 16.0 <br><br> 16 <br><br> Sulfidity (TAPPI),% on AA <br><br> 30.6 <br><br> 30.2 <br><br> 29.8 <br><br> 30.4 <br><br> Maximum temp, C <br><br> 160 <br><br> 160 <br><br> 160 <br><br> 160 <br><br> Time to max, min <br><br> 20 <br><br> 20 <br><br> 18 <br><br> 16 <br><br> Time at max, min <br><br> 60 <br><br> 72 <br><br> 62 <br><br> 63 <br><br> Kappa, unscreened <br><br> 9.1 <br><br> 8.9 <br><br> 9.6 <br><br> 10 <br><br> Kappa, screened <br><br> 8.1 <br><br> 8.5 <br><br> 9.2 <br><br> 9.3 <br><br> Total yield,% <br><br> 48.1 <br><br> 48.1 <br><br> 49.1 <br><br> 49.1 <br><br> Total rejects,V <br><br> 1.1 <br><br> 1.2 <br><br> 1.5 <br><br> 1.3 <br><br> Screened yield,% <br><br> 47 <br><br> 46.9 <br><br> 47.6 <br><br> 47.8 <br><br> Viscosity,0 .5V CED, cp <br><br> 33.5 <br><br> 33 <br><br> 39.3 <br><br> 32.1 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 21 <br><br> End of Cook Residual <br><br> : <br><br> AA(Na20), g/L <br><br> 37.6 <br><br> 32.8 <br><br> 34.1 <br><br> • <br><br> 33.5 <br><br> EA (Na20), g/L <br><br> 28.6 <br><br> 25.3 <br><br> 25.9 <br><br> 25.3 <br><br> Na2S <br><br> (Na20), g/L <br><br> 17.9 <br><br> 15.2 <br><br> 16.4 <br><br> 16.4 <br><br> Solids,% <br><br> 18.8 <br><br> 19.1 <br><br> 19.2 <br><br> 19.3 <br><br> Solids, g/L <br><br> 210 <br><br> 212 <br><br> 215 <br><br> 214 <br><br> Sulfidity % on A.A. <br><br> 47. 9 <br><br> 45.7 <br><br> • <br><br> 48.1 <br><br> 49 <br><br> HOT FILL: <br><br> Hot liquor charge, L <br><br> 18 <br><br> 18 <br><br> 18 <br><br> 18.7 <br><br> Charge time, min <br><br> 13 <br><br> 13 <br><br> 13 <br><br> 13 <br><br> Temperature <br><br> . c <br><br> Top <br><br> 129 <br><br> 132 <br><br> 132 <br><br> 132 <br><br> Bottom <br><br> 145 <br><br> 147 <br><br> 147 <br><br> 145 <br><br> Chamical conditions in Accumulator: <br><br> AA(Na20), g/L <br><br> 27.8 <br><br> 25.9 <br><br> 27.3 <br><br> 25.3 <br><br> 27.1 <br><br> 24.6 <br><br> 26.5 <br><br> 23.4 <br><br> EA (Na20), g/L <br><br> 19.9 <br><br> 18.9 <br><br> 19.9 <br><br> 18.3 <br><br> 20.2 <br><br> 18.3 <br><br> 19.5 7 <br><br> 17 <br><br> Na2S <br><br> (Na20), g/L <br><br> 15.8 <br><br> 13.4 <br><br> 14.9 <br><br> 13.9 <br><br> 13.9 <br><br> 12.6 <br><br> 13.9 <br><br> 12.6 <br><br> TTA (Na20), g/L <br><br> - <br><br> - <br><br> - <br><br> ** <br><br> - <br><br> • <br><br> - <br><br> Sulfidity, V on A.A. <br><br> 56.8 <br><br> 54.1 <br><br> 54.2 <br><br> 55.3 <br><br> 50.9 <br><br> 51.2 <br><br> 52.3 <br><br> 54.7 <br><br> Solids,V <br><br> 16.2 <br><br> 16.1 <br><br> 16.7 <br><br> 16.7 <br><br> 17 <br><br> 17.2 <br><br> 17.3 <br><br> 17 <br><br> Solids, g/L <br><br> 177 <br><br> 176 <br><br> 182 <br><br> 183 <br><br> 187 <br><br> 189 <br><br> 190 <br><br> 186 <br><br> Total elapsed time, min* <br><br> 42 <br><br> 42 <br><br> 42 <br><br> 39 <br><br> * includes heating time to 145C and time at 145C after initial hot black liquor injection and final hot B/L with W/L mix. <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 22 TABLE 3A <br><br> RDH Pulping Conditions and Results - "Best Do-able Case" <br><br> © <br><br> Cook Number <br><br> R9 <br><br> Post R9 <br><br> R10 <br><br> Post R10 <br><br> Rll <br><br> Post Rll <br><br> R12 <br><br> Post R12 <br><br> WHITE LIQUOR&lt; <br><br> White liquor charge,L <br><br> 6.17 <br><br> 5.81 <br><br> 5.79 <br><br> 5.6 <br><br> Hot B/L,L <br><br> 4.8 <br><br> 5.2 <br><br> 5.0 <br><br> 6.4 <br><br> Charge time, <br><br> min <br><br> 10 <br><br> 10 <br><br> 10 <br><br> 9 <br><br> Temperature , C <br><br> Top <br><br> 139 <br><br> 140 <br><br> 139 <br><br> 141 <br><br> Bottom <br><br> 139 <br><br> 145 <br><br> 140 <br><br> 144 <br><br> Chemical conditions in accumulatort (TAPPI) <br><br> AA <br><br> (Na20), g/L <br><br> 107.3 <br><br> 96.4 <br><br> 96.7 <br><br> 100 <br><br> EA(Na20) g/L <br><br> 90.8 <br><br> 81.8 <br><br> 82.3 <br><br> 84.8 <br><br> TTA <br><br> (Na20), g/L <br><br> 125.8 <br><br> 115.6 <br><br> 117.8 <br><br> 120. 9 <br><br> Sulfidit y, V on AA <br><br> 30.6 <br><br> 30.2 <br><br> 29.8 <br><br> 30.4 <br><br> CHIP CHARGE &amp; I.TOTTOR PACKING) I <br><br> Chip charge, <br><br> g <br><br> 3,500 <br><br> 3,500 <br><br> 3,500 <br><br> 3,50 0 <br><br> Chip <br><br> Moisture , * <br><br> 37.3 <br><br> 37.3 <br><br> 37.3 <br><br> 37.3 <br><br> O.D. <br><br> Solids, % <br><br> 62.7 <br><br> 62.7 <br><br> 62.7 <br><br> 62.7 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 23 <br><br> WARM FILLi <br><br> Warm Liquor charge, L <br><br> 24.5 <br><br> 24.3 <br><br> 23.9 <br><br> 9 <br><br> 24.2 <br><br> Exit pH, initial <br><br> 13.3 <br><br> 13.2 <br><br> 13.2 <br><br> 13 <br><br> Charge time, <br><br> min <br><br> 15 <br><br> 15 <br><br> 15 <br><br> 15 <br><br> Temperature , C <br><br> Top <br><br> 108 <br><br> 106 <br><br> 104 <br><br> 108 <br><br> Bottom <br><br> 121 <br><br> 117 <br><br> 116 <br><br> 118 <br><br> Chemical conditions in Accumulatort (TAPPI) <br><br> AA(Na20) , g/L <br><br> 27.1 <br><br> 21.1 <br><br> 26.5 <br><br> 21.1 <br><br> 26.5 <br><br> 20.8 <br><br> 25.9 <br><br> 20.8 <br><br> EA <br><br> (Na20), g/L <br><br> 20.5 <br><br> 14.5 <br><br> 18.9 <br><br> 14.1 <br><br> 18.3 <br><br> 13.3 <br><br> 17.7 <br><br> 13.3 <br><br> Na2S (Na20), g/L <br><br> 13.3 <br><br> 13.3 <br><br> 15.2 <br><br> 14.1 <br><br> 16.4 <br><br> 15.2 <br><br> 16.4 <br><br> 15.2 <br><br> Sulfidit y, % on A.A. <br><br> 48.7 <br><br> 62.6 <br><br> 57.4 <br><br> 66.4 <br><br> 61.9 <br><br> 72.1 <br><br> 63.3 <br><br> 72.1 <br><br> Solids, V <br><br> 14.3 <br><br> 14.9 <br><br> 14.8 <br><br> 15.8 <br><br> 15.6 <br><br> 16.1 <br><br> 15 <br><br> 15.6 <br><br> Solids, g/L <br><br> 155 <br><br> 161 <br><br> 162 <br><br> 171 <br><br> 170 <br><br> 176 <br><br> 163 <br><br> 170 <br><br> Total elapsed time, min* <br><br> 30 <br><br> 30 <br><br> 31 <br><br> 30 <br><br> dispiacemkmtt <br><br> Displace -ment Volume, <br><br> L <br><br> 32 <br><br> 32 <br><br> 32 <br><br> 32 <br><br> Charge time, <br><br> min <br><br> 26 <br><br> 26 <br><br> 26 <br><br> 26 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 24 <br><br> Chemical Conditions in accumulator: (TAPPI) <br><br> AA <br><br> (Na20), g/L <br><br> 9 5 <br><br> 9.8 <br><br> 8.8 <br><br> » <br><br> 11.4 <br><br> EA <br><br> (Na20), g/L <br><br> 8.2 <br><br> 9.2 <br><br> 8.2 <br><br> 10.7 <br><br> Na2S (Na20), g/L <br><br> 2.5 <br><br> 1.3 <br><br> 1.3 <br><br> 1.3 <br><br> Sulfidit y, V on A.A. <br><br> 31.7 <br><br> 13 <br><br> 14.6 <br><br> 13.1 <br><br> Solids, % <br><br> 10.3 <br><br> 10.6 <br><br> 11.2 <br><br> Solids, g/L <br><br> 109 <br><br> 112 <br><br> 118 <br><br> * includes fill time, heating time to 120C and time at 120C after warm fill. <br><br> TABLE 3B <br><br> PULPING STUDY SUMMARY <br><br> COOK NUMBER <br><br> BEST COOK: NEW RDH COOKING PROCEDURE <br><br> R3 <br><br> R4 <br><br> BASELINE COOK: OLD RDH COOKING PROCEDURE <br><br> R7 <br><br> R8 <br><br> BEST DO-ABLE COOK: MODIFIED NEW RDH COOKING PROCEDURE <br><br> R12 <br><br> COOKING CONDITIONS <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 25 <br><br> R3 <br><br> R4 <br><br> R7 <br><br> R8 <br><br> R12 <br><br> WARM FILL <br><br> EA (g/l) as Na20 <br><br> 18 <br><br> 10 co h <br><br> 18 <br><br> 18.6 <br><br> 3L7.7 <br><br> Solids, % <br><br> 14.3 <br><br> 14.1 <br><br> 14.7 <br><br> 14.6 <br><br> 15 <br><br> HOT FILL <br><br> EA (g/l) Na20 <br><br> 20 <br><br> 19.8 <br><br> 18 <br><br> 18.3 <br><br> 19.6 <br><br> Solids, % <br><br> 11.9 <br><br> 12.7 <br><br> 17 <br><br> 17 <br><br> 17.3 <br><br> COOKING STAGE <br><br> AA Charge, % <br><br> 16 <br><br> 16 <br><br> 10 <br><br> 10 <br><br> 16 <br><br> H-FACTOR <br><br> 475 <br><br> 452 <br><br> 831 <br><br> 832 <br><br> 494 <br><br> MAXIMUM TEMP. DEGREE C <br><br> 160 <br><br> 160 <br><br> 170 <br><br> 170 <br><br> 160 <br><br> DISPLACEMENT <br><br> EA (g/l) as Na20 <br><br> 9 <br><br> h o h <br><br> 3.7 <br><br> 3.5 <br><br> 10.7 <br><br> Solids, % <br><br> 0 <br><br> 0 <br><br> 10.4 <br><br> 10.3 <br><br> 10 <br><br> EXAMPLE 1 <br><br> The following definitive pulps were produced for the bleaching study: <br><br> Case <br><br> Cook No. <br><br> Kappa <br><br> Brightness, TAPPI <br><br> "Best" <br><br> R3 <br><br> 8.8 <br><br> 45.3 <br><br> R4 <br><br> 9.3 <br><br> 45.0 <br><br> "Baseline" <br><br> R7 <br><br> 8.9 <br><br> 40.6 <br><br> R8 <br><br> 8.8 <br><br> 41.3 <br><br> "Best Do-able" <br><br> R10 <br><br> 8.5 <br><br> 41.5 <br><br> R11 <br><br> 9.2 <br><br> 40.8 <br><br> R12 <br><br> 9.3 <br><br> 41.5 <br><br> Five RDH pulps (R3, R4, R7, R8 and R12) were bleached using an (C))(D100)(EO)(D) sequence. However, each of the five RDH pulps were first oxygen delignified in stirred reactors using the conditions shown below in Table 4. <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 26 TABLE 4 <br><br> OXYGEN DEHGNIFICATION CONDITIONS <br><br> Best Case <br><br> Baseline Case <br><br> "Do-able n <br><br> Beat <br><br> Case <br><br> Sample identification <br><br> R3 <br><br> R4 <br><br> R7 <br><br> R8 <br><br> R12 <br><br> Species <br><br> Aspen <br><br> Aspen <br><br> Aspen <br><br> Aspen <br><br> Aspen <br><br> Cook type <br><br> RDH <br><br> RDH <br><br> RDH <br><br> RDH <br><br> RDH <br><br> Kappa <br><br> 8.8 <br><br> 9.2 <br><br> 8.9 <br><br> 8.8 <br><br> 9.3 <br><br> Viscosity, mPa.s <br><br> 40.7 <br><br> 44.9 <br><br> 33.3 <br><br> 32.2 <br><br> 32.1 <br><br> Unbl. <br><br> brightness, % <br><br> 45.3 <br><br> 45 <br><br> 40.6 <br><br> 41.3 <br><br> 41.5 <br><br> O-Stape: 95 nsiq. 99°C. 12% cons*. <br><br> NaOH, V <br><br> 2 <br><br> 2 <br><br> 2 <br><br> 2 <br><br> 2 <br><br> 02 time, min <br><br> 60 <br><br> 60 <br><br> 60 <br><br> 60 <br><br> 60 <br><br> Final pH <br><br> 12.8 <br><br> 12.9 <br><br> 12.5 <br><br> 12.5 <br><br> 12.3 <br><br> Kappa <br><br> 4.7 <br><br> 5.2 <br><br> 4.7 <br><br> 4.5 <br><br> 5 <br><br> Viscosity, mPa.s <br><br> 14.4 <br><br> 13.8 <br><br> 12.6 <br><br> 13.6 <br><br> 12.5 <br><br> Kappa reduction, % <br><br> 46.6 <br><br> 43.5 <br><br> 47.2 <br><br> 48.9 <br><br> 50 <br><br> Yield on raw stock, % <br><br> 95.2 <br><br> 95.8 <br><br> 94.3 <br><br> 98.8 <br><br> 94.4 <br><br> For the bleaching studies, a 0.225 kappa factor was used in calculating the chlorine dioxide charge in the D100-stage for pulps R3, R7 and R12. A 0.27 kappa factor was used for pulps R4, R8 and R12. Tables 5 through 10 below show the (D100) (Eo)(D) bleaching conditions and results on the oxygen delignified pulps from these cooks. The chlorine dioxide solution concentration was adjusted by a 0.92 factor to compensate for losses of chlorine dioxide in charging the reactors and polyethylene bags during bleaching. <br><br> WO 95/23891 PCT/US95/02719 <br><br> 27 <br><br> TABLES <br><br> Bleaching with (OVDIOOVEolD on Optimal RDH Pulp <br><br> Kappa factor = 0.225 <br><br> Sample identification <br><br> R3 <br><br> Species <br><br> Aspen <br><br> Cook type <br><br> RDH <br><br> 02 Pulp Kappa <br><br> 4.7 <br><br> Viscosity, mPa.s <br><br> 14.4 <br><br> D-1 OO-Staga: 30 min. 68°C. 4.^% cons, <br><br> Chlorination factor <br><br> 0.23 <br><br> C102, \ as available CI}* <br><br> 1.06 <br><br> Actual C102, V as avail. CI, <br><br> 1.15 <br><br> Substitution, % <br><br> 100 <br><br> H2S04, % <br><br> 1.5 <br><br> Final pH <br><br> 2 <br><br> Residual, g/L avail. CI, <br><br> 0.14 <br><br> EO-Staae: 60 min. 74°C. 10% com <br><br> L. <br><br> NaOH, % <br><br> 0.8 <br><br> 02 pressure, psig <br><br> 25 <br><br> 02 time, minutes <br><br> 15 <br><br> Final pH <br><br> 12.4 <br><br> K No. (25 Ml) <br><br> 2.3 <br><br> Viscosity, mPa.s <br><br> 13.7 <br><br> Yield on raw stock, % <br><br> 93.5 <br><br> D-Stage: 74°C. 210 min. 10% copp. <br><br> Sample number <br><br> #1 <br><br> #2 <br><br> #3 <br><br> #4 <br><br> #5 <br><br> #6 <br><br> #7 <br><br> #8 <br><br> C102 as C102, V* <br><br> O.X <br><br> 0.3 <br><br> 0.5 <br><br> 0.7 <br><br> 0.9 <br><br> 1.1 <br><br> 0.9 <br><br> 1.1 <br><br> Actual C102, V C102 <br><br> 0.11 <br><br> 0.33 <br><br> 0.54 <br><br> 0.76 <br><br> 0. 98 <br><br> 1.2 <br><br> 0.98 <br><br> 1.2 <br><br> NaOH, * <br><br> 0 <br><br> 0 <br><br> 0.09 <br><br> 0.16 <br><br> 0.25 <br><br> 0.3 <br><br> 0.33 <br><br> 0.42 <br><br> H2S04, V <br><br> 0.1 <br><br> 0.05 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> Final pH <br><br> 4.1 <br><br> 3.4 <br><br> 3.3 <br><br> 3 <br><br> 2.9 <br><br> 2.6 <br><br> 3.6 <br><br> 3.7 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 28 <br><br> Residual as C102, % <br><br> 0.02 <br><br> 0.01 <br><br> l-l o o <br><br> 0.02 <br><br> 0. 02 <br><br> 0.02 <br><br> 0 <br><br> 0 <br><br> Brightness, %ISO <br><br> 89.7 <br><br> 90.4 <br><br> 91.2 <br><br> 91.5 <br><br> 91.6 <br><br> • 92 <br><br> 91.1 <br><br> 91.3 <br><br> Viscosity, mPa.s <br><br> 13.1 <br><br> * <br><br> 11.2 <br><br> "" <br><br> 9.2 <br><br> * Actual CI02 concentration x 0.92 <br><br> TABLE 6 <br><br> Bleachin? with (OMDIOOVEoMDl on Optimal RDH Pulp <br><br> Kappa factor = 0.27 <br><br> Sample identification <br><br> R4 <br><br> Species <br><br> Aspen <br><br> Cook type <br><br> RDH <br><br> 02 Pulp Kappa <br><br> 5.2 <br><br> Viscosity, mPa.s <br><br> 13.8 <br><br> D-100-Stapfi: 30 min. 68°C. 4.2% eons?, <br><br> Chlorination factor <br><br> 0.27 <br><br> C102, % as available Cla* <br><br> 1.4 <br><br> Actual C102, % as avail. <br><br> CI, <br><br> 1.53 <br><br> Substitution, % <br><br> 100 <br><br> H2S04, % <br><br> 2 <br><br> Final pH <br><br> 1.9 <br><br> Residual, g/L avail. CI, <br><br> 0.09 <br><br> EO-Stage: 60 min. 74°C. 10% cons. <br><br> NaOH, % <br><br> 0.8 <br><br> 02 pressure, psig <br><br> 25 <br><br> 02 time, minutes <br><br> 15 <br><br> Final pH <br><br> H to <br><br> U1 <br><br> K No. (25 Ml) <br><br> 2 <br><br> Viscosity, mPa.s <br><br> 13.3 <br><br> Yield on raw stock, % <br><br> 92.8 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 29 <br><br> D-Staae: 74°C. 210 min. 10% cons. <br><br> Sample number <br><br> #1 <br><br> #2 <br><br> #3 <br><br> #4 <br><br> #5 <br><br> #6 • <br><br> #7 <br><br> #8 <br><br> C102 as C102, V* <br><br> 0.1 <br><br> 0.3 <br><br> 0.5 <br><br> 0.7 <br><br> 0.9 <br><br> 1.1 <br><br> 0.9 <br><br> 1.1 <br><br> Actual C102, % C102 <br><br> 0.11 <br><br> 0.33 <br><br> 0.54 <br><br> 0.76 <br><br> 0.98 <br><br> 1.2 <br><br> 0.98 <br><br> 1.2 <br><br> NaOH, % <br><br> 0 <br><br> 0 <br><br> 0.09 <br><br> 0.16 <br><br> 0.25 <br><br> 0.3 <br><br> 0.33 <br><br> 0.42 <br><br> H2S04, t <br><br> 0.1 <br><br> 0 .05 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> Final pH <br><br> 4.3 <br><br> 3.4 <br><br> 3.4 <br><br> 3.2 <br><br> 2.8 <br><br> 2.7 <br><br> 3.7 <br><br> 3.5 <br><br> Residual as C102, % <br><br> 0.01 <br><br> 0.01 <br><br> 0.01 <br><br> 0.02 <br><br> 0.01 <br><br> 0.01 <br><br> 0 <br><br> 0 <br><br> Brightness, VISO <br><br> 89.8 <br><br> 90.5 <br><br> 91.2 <br><br> 91.5 <br><br> 91.8 <br><br> 91.8 <br><br> 91.4 <br><br> 91.5 <br><br> Viscosity, mPa.s <br><br> 12.5 <br><br> • <br><br> - <br><br> 11.6 <br><br> 9.8 <br><br> * Actual CI02 concentration x 0.92 <br><br> TABLE 7 <br><br> Bleaching with rOWDIOMEoVD) on Baseline RDH Pulp <br><br> Kappa factor = 0.225 <br><br> Sample identification <br><br> R7 <br><br> Species <br><br> Aspen <br><br> Cook type <br><br> RDH <br><br> 02 Pulp Kappa <br><br> 4.5 <br><br> Viscosity, mPa.s <br><br> 13.6 <br><br> (D100)-Stage: 30 min. 68°C. 4.2% cons. <br><br> Chlorination factor <br><br> 0.23 <br><br> C102, % as available Cla* <br><br> 1.01 <br><br> Actual C102, % aa avail. CI, <br><br> 1.1 <br><br> Substitution, % <br><br> 100 <br><br> H2S04, % <br><br> 2 <br><br> Final pH <br><br> 2.7 <br><br> Residual, g/L avail. Cla <br><br> 0.01 <br><br> WO 95/23891 <br><br> PCTVUS95/02719 <br><br> 30 <br><br> EO-Staqe: 60 min. 74°C. 10% eonf?, <br><br> NaOH, % <br><br> 0.8 <br><br> P <br><br> 02 pressure, psig <br><br> 25 <br><br> 02 time, minutes <br><br> 15 <br><br> Pinal pH <br><br> 12.3 <br><br> K No. (25 Ml) <br><br> 2.3 <br><br> Viscosity, mPa.s <br><br> 13.3 <br><br> Yield on raw stock, V <br><br> 97 <br><br> D-Statpe: 74°C. 210 min. 10% eo <br><br> DSJL <br><br> Sample number <br><br> #1 <br><br> #2 <br><br> #3 <br><br> #4 <br><br> #5 <br><br> #6 <br><br> C102 as C102, %• <br><br> 0.1 <br><br> 0.3 <br><br> 0.5 <br><br> 0.7 <br><br> 0.9 <br><br> 1.1 <br><br> Actual C102, % C102 <br><br> 0.11 <br><br> 0.33 <br><br> 0.54 <br><br> 0.76 <br><br> 0.98 <br><br> 1.2 <br><br> NaOH, % <br><br> 0 <br><br> 0 <br><br> 0.08 <br><br> 0.2 <br><br> 0.33 <br><br> 0.42 <br><br> H2S04, % <br><br> 0.1 <br><br> 0.05 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> Final pH <br><br> 4 <br><br> 3.5 <br><br> 3.4 <br><br> 3.4 <br><br> 3.4 <br><br> 3.8 <br><br> Residual as C102, % <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> Brightness, %IS0 <br><br> 87.6 <br><br> 88.7 <br><br> 89.7 <br><br> 90.3 <br><br> 90.3 <br><br> 90.6 <br><br> Viscosity, mPa.s <br><br> 12.6 <br><br> - <br><br> - <br><br> 11.4 <br><br> - <br><br> 9.6 <br><br> * Actual CI02 concentration x 0.92 <br><br> TABLE 8 <br><br> Bleaching with fOVDIOOVEoVm on Baseline RDH Pulp Kappa factor ■ 0.27 <br><br> Sample identification <br><br> R8 <br><br> Species <br><br> Aspen <br><br> Cook type <br><br> RDH <br><br> 02 Pulp Kappa <br><br> 4.7 <br><br> Viscosity, mPa.s <br><br> 12.6 <br><br> (D1001-Staae: 30 min. 68°C, 4.2% cons. <br><br> Chlorination factor <br><br> 0.27 <br><br> C102, % as available CI]* <br><br> 1.27 <br><br> Actual C102, % as avail. Cla <br><br> 1.38 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 31 <br><br> Substitution, % <br><br> 100 <br><br> H2S04, % <br><br> 2 <br><br> Final pH <br><br> 1.9 <br><br> &gt; <br><br> Residual, g/L avail. CI, <br><br> 0.07 <br><br> EO-Staae: 60 min. 74°C. 10% co <br><br> NaOH, % <br><br> 0.8 <br><br> 02 pressure, psig <br><br> 25 <br><br> 02 time, minutes <br><br> IS <br><br> Final pH <br><br> 12.2 <br><br> K No. (25 Ml) <br><br> 2.1 <br><br> Viscosity, mPa.s <br><br> 12.6 <br><br> Yield on raw stock, % <br><br> 94.2 <br><br> D-Staae: 74°C. 210 min. 10% co ns. <br><br> Sample number <br><br> #1 <br><br> #2 <br><br> #3 <br><br> #4 <br><br> #5 <br><br> #6 <br><br> C102 as C102, %* <br><br> 0.1 <br><br> 0.3 <br><br> 0.5 <br><br> 0.7 <br><br> 0.9 <br><br> 1.1 <br><br> Actual C102, % C102 <br><br> 0.11 <br><br> 0.33 <br><br> 0.54 <br><br> 0.76 <br><br> 0.98 <br><br> 1.2 <br><br> NaOH, % <br><br> 0 <br><br> 0 <br><br> 0.08 <br><br> 0.2 <br><br> 0.33 <br><br> 0.42 <br><br> H2S04, * <br><br> 0.1 <br><br> 0.05 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> Final pH <br><br> 3.6 <br><br> 3.1 <br><br> 3.1 <br><br> 3.1 <br><br> 3.2 <br><br> 3.6 <br><br> Residual as C102, % <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> Brightness, tISO <br><br> 87 <br><br> 88.7 <br><br> 89/3 <br><br> 90.1 <br><br> 90.5 <br><br> 90.5 <br><br> Viscosity, mPa.s <br><br> 12.2 <br><br> - <br><br> - <br><br> 11.2 <br><br> - <br><br> 9.5 <br><br> * Actual CI02 concentration x 0.92) <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 32 TABLES <br><br> Bleaching with fOttDIOtWEoKDl on Best "Do-able" RDH Pulp Kappa factor = 0.225 <br><br> Sample identification <br><br> R12 <br><br> Species <br><br> Aspen <br><br> Cook type <br><br> RDH <br><br> 02 Pulp Kappa <br><br> 5 <br><br> Viscosity, mPa.s <br><br> 12.5 <br><br> D-100-Staae: 30 min. 68°C. 4.2% cons. <br><br> Chlorination factor <br><br> 0.03 <br><br> C102, V as available CI]* <br><br> 1.13 <br><br> Actual C102, % as avail. CI, <br><br> 1.22 <br><br> Substitution, V <br><br> 100 <br><br> H2S04, % <br><br> 1.5 <br><br> Final pH <br><br> 2 <br><br> Residual, g/L avail. CI, <br><br> 0.04 <br><br> EO-Staae: 60 min. 74°C. 10% co as. <br><br> NaOH, lr <br><br> 0.8 <br><br> 02 pressure, psig <br><br> 25 <br><br> 02 time, minutes <br><br> 15 <br><br> Final pH <br><br> 12.7 <br><br> K No. (25 Ml) <br><br> 2.3 <br><br> Viscosity, mPa.s <br><br> 11.9 <br><br> Yield on raw stock, % <br><br> - <br><br> D-Staae: 74°C. 210 min. 10% co ns. <br><br> Sample number <br><br> #1 <br><br> #2 <br><br> #3 <br><br> #4 <br><br> #5 <br><br> *6 <br><br> C102 as C102, ** <br><br> 0.1 <br><br> 0.3 <br><br> 0.5 <br><br> 0.7 <br><br> 0.9 <br><br> 1.1 <br><br> Actual C102, % C102 <br><br> 0.11 <br><br> 0.33 <br><br> 0.54 <br><br> 0.76 <br><br> 0.98 <br><br> 1.2 <br><br> NaOH, % <br><br> 0 <br><br> 0 <br><br> 0.08 <br><br> 0.2 <br><br> 0.33 <br><br> 0.42 <br><br> H2S04, % <br><br> 0.1 <br><br> 0.05 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> Final pH <br><br> 4.1 <br><br> 3.7 <br><br> 3.4 <br><br> 3.4 <br><br> 3.4 <br><br> 3.3 <br><br> Residual as C102, * <br><br> 0.01 <br><br> 0.01 <br><br> 0.01 <br><br> 0.01 <br><br> O • <br><br> o <br><br> 0.01 <br><br> Brightness, %IS0 <br><br> 68.9 <br><br> 90 <br><br> 90.8 <br><br> 91 <br><br> 91.6 <br><br> 91.8 <br><br> Viscos ity, mPa.s <br><br> 11.9 <br><br> - <br><br> - <br><br> 10.5 <br><br> - <br><br> 9.4 <br><br> * Actual CI02 concentration x 0.92 <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 33 <br><br> TABLE 10 <br><br> Bleaching with (OMDIOOMEoMm on Best "Do-able" RDH Pulp Kappa factor * 0.27 <br><br> Sample Identification <br><br> R12 <br><br> Species <br><br> Aspen <br><br> Cook type <br><br> RDH <br><br> 02 Pulp Kappa <br><br> 5 <br><br> Viscosity, mPa.s <br><br> 12.5 <br><br> D-1 OO-Staae: 30 min. 68°C. 4.2&lt;* <br><br> Chlorination factor <br><br> 0.03 <br><br> C102, % as available Cl3+ <br><br> 1.35 <br><br> Actual C102, % as avail. CI, <br><br> 1.47 <br><br> Substitution, % <br><br> 100 <br><br> H2S04, % <br><br> 2 <br><br> Final pH <br><br> 2.3 <br><br> Residual, g/L avail. Cla <br><br> 0.08 <br><br> EO-Stage: SO min. 74°C. 10% cqr\s. <br><br> NaOH, % <br><br> 0.8 <br><br> 02 pressure, psig <br><br> 25 <br><br> 02 time, minutes <br><br> 15 <br><br> Final pH <br><br> 12.6 <br><br> K No. (25 Ml) <br><br> 2.2 <br><br> Viscosity, mPa.s <br><br> 12.2 <br><br> Yield on raw stock, % <br><br> - <br><br> D-Staae: 74°C. 21 <br><br> 0 min. <br><br> 10% CO <br><br> ns. <br><br> Sample number <br><br> #i <br><br> #2 <br><br> #3 <br><br> *4 <br><br> #5 <br><br> #6 <br><br> C102 as C102, V* <br><br> 0.1 <br><br> 0.3 <br><br> 0.5 <br><br> 0.7 <br><br> 0.9 <br><br> 1.1 <br><br> Actual C102, % C102 <br><br> 0.11 <br><br> 0.33 <br><br> 0.54 <br><br> 0.76 <br><br> 0.98 <br><br> 1.2 <br><br> NaOH, % <br><br> 0 <br><br> 0 <br><br> 0.08 <br><br> 0.2 <br><br> 0.33 <br><br> 0.42 <br><br> H2S04, % <br><br> 0.1 <br><br> 0.05 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> 0 <br><br> Final pH <br><br> 3.9 <br><br> 3 .4 <br><br> 3.3 <br><br> 3.3 <br><br> 3.3 <br><br> 3.2 <br><br> Residual as C102, % <br><br> 0.01 <br><br> r4 O <br><br> o <br><br> 0.01 <br><br> 0.01 <br><br> 0 <br><br> 0.01 <br><br> Brightness, %XSO <br><br> 68.9 <br><br> 90 <br><br> 90.8 <br><br> 91.1 <br><br> 91.5 <br><br> 91.8 <br><br> Viscosity, mPa.s <br><br> 12.4 <br><br> - <br><br> - <br><br> 10.7 <br><br> - <br><br> 9.5 <br><br> * Actual CI02 concentration x 0.92 <br><br> WO 95/23891 <br><br> FCT/US95/02719 <br><br> 34 <br><br> As shown in FIGS. 5 and 5A, the use of a higher kappa factor did not appear to reduce the D1 -stage chlorine dioxide requirements. The best case RDH pulps (R3 and R4) produced 1.5 to 2 points higher brightness than the baseline case RDH pulps (R7 and R8) at equivalent chlorine dioxide charges. <br><br> From FIGS. 6 and 6A, it is shown that the best do-able case RDH pulp (R12) produced intermediate brightness between the best case RDH pulp (R3) and the baseline case RDH pulp (R7). <br><br> FIGS. 7 and 7A show that the best do-able case RDH pulp (R12) gave intermediate brightness between the best case RDH puip (R4) and the baseline case RDH pulp (R8). <br><br> From the pulp bleaching studies, a summary of the results is shown below in Table 11. The easiest pulps to bleach were the best case pulps. The most difficult to bleach were the baseline case pulps with the bleachability of the best do-able case falling between the first two cases. Results indicated that a combination of high alkalinity (white liquor addition at the warm and hot fill mode plus cooking stage, AA charge between 15% AA and 35% AA) and a low cooking temperature (approximately 150°C - 167°C) improves pulp bleachability and, thus, final brightness of puip. It should be noted that the black liquor strength during the RDH cook should be maintained. <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 35 • TABLE 11 <br><br> BLEACHING STUDY SUMMARY <br><br> COOK NUMBER <br><br> BEST COOK: NEW RDH COOKING PROCEDURE <br><br> R3 <br><br> R4 <br><br> BASELINE COOK: OLD RDH COOKING PROCEDURE <br><br> R7 <br><br> R8 <br><br> BEST DO-ABLE COOK: MODIFIED NEW RDH COOKING PROCEDURE <br><br> R12 <br><br> BLEACHING RESULTS <br><br> KAPPA 0.225 IN THE D (100% C/02 SUBSTITUTION) <br><br> FACTO <br><br> R <br><br> FINAL BRIGHTNESS, % ISO <br><br> CI02 CHARGES IN THE LAST D STAGE, % <br><br> 0.1 <br><br> 0.3 <br><br> 0.5 <br><br> 0.7 <br><br> 0.9 <br><br> 1.1 <br><br> R3 <br><br> (BEST COOK) <br><br> 89.7 <br><br> 90.4 <br><br> 91.2 <br><br> 91.5 <br><br> 91.6 <br><br> 92 <br><br> R12 (BEST DOABLE) <br><br> 88.9 <br><br> 90 <br><br> 90.8 <br><br> 91 <br><br> 91.6 <br><br> 91.8 <br><br> R7 <br><br> (BASELINE) <br><br> 87.6 <br><br> 88.7 <br><br> 89.7 <br><br> 00.3 <br><br> 90.3 <br><br> 90.6 <br><br> KAPPA <br><br> FACTOR Q 27IN THE D (10Q% CJQ2 SUBSTITUTION) <br><br> FINAL BRIGHTNESS, %ISO <br><br> WO 95/23891 <br><br> PCT/US95/02719 <br><br> 36 <br><br> CI02 CHARGES IN THE LAST DOTAGE, % <br><br> 0.1 <br><br> 0.3 <br><br> 0.5 <br><br> 0.7 <br><br> 0.9 <br><br> 1.1 <br><br> R4 <br><br> (BEST COOK) <br><br> 89.8 <br><br> 90.5 <br><br> 91.2 <br><br> 91.5 <br><br> 91.8 <br><br> 91.8 <br><br> R12 (BEST DOABLE) <br><br> 88.9 <br><br> 90 <br><br> 90.8 <br><br> 91.1 <br><br> 91.5 <br><br> 91.8 <br><br> R8 <br><br> (BASELINE) <br><br> 87 <br><br> 88.7 <br><br> 89.3 <br><br> 90.1 <br><br> 90.5 <br><br> 90.5 <br><br> It should be understood the various changes and modifications to the presently preferred embodiments described herein will be apparent to those in the art. Such changes and modifications can be made without departing from the spirit and scope of the present invention and without diminishing its attended advantages. It is, therefore, intended that such changes and modifications be covered by the appended claims. <br><br></p> </div>

Claims (11)

<div class="application article clearfix printTableText" id="claims"> <p lang="en"> 282616<br><br> WO 95/2389'!<br><br> PCT/US95/C2719<br><br> I CLAIM:<br><br>
1. A batch digesting process of the type using rapid displacement heating to produce delignified pulp, wherein spent liquor produced in a digester (10) as a result of cooking a mass of cellulosic material with cooking liquor is displaced and collected in accumulators (24.28.58) as hot black liquor and as warm black liquor so as to conserve and utilize the heat of the spent liquor to preheat another mass of cellulosic material in warm black liquor and hot black liquor displacement type pretreatments with progressively hotter spent liquors prior to cooking, characterized in that:<br><br> white liquor is added to the warm black liquor during the warm black liquor pretreatmeni and to the hot black liquor during the hot DlacK liquor pretreatment stages and to the cooking liauor during the cooking stage in the digesting process, the total white liquor aaaed naving a oistriouted charge between approximately 15% active alkaiinity and about 35% active alkalinity: and the temoerature of the cookinc liquor is raised tc between 150' - 155°C for the cooking stage.<br><br>
2. The process of Claim 1. wherein the white iiquor solution is added to the warm black liquor (temperature between 90: and 150°C) and to the hot black liquor (temperature between 150c and 165°C) in a predetermined amount.<br><br>
3. The process of Claim 1, further characterized in that white liquor is added to a cool black liquor (temperature between 70e and 90°C), and the mass of cellulosic material is pretreated with said cool black liquor with white liquor added thereto, before the warm black liquor pretreatment.<br><br> 37/A 28 2<br><br>
4. The process of Claim 1 wherein the preferred total white liquor charge is &gt; 20% AA and &lt; 35% AA.<br><br>
5. The process of Claim 1, wherein the preferred cooking temperature ranges between 155° - 165°C.<br><br>
6. A method for producing bleachable grade pulp according to the process of Claim 1, comprising the steps of:<br><br> 2 3 2 6 2 6<br><br> WO 95/23891 PCT/US95/02719<br><br> 38<br><br> (a) introducing wood chips into a digester (10);<br><br> (b) pretreating the chips with warm black liquor below cooking temperature:<br><br> (c) displacing the warm black liquor from the digester (10) with at least one volume of a hot black liquor;<br><br> (d) increasing the temperature of the digester (10) to a cooking temperature:<br><br> (e) maintaining said temperature until the chips are digested:<br><br> (f) displacing the contents of the digester (10) with a liquid filtrate derived from puio washing: and<br><br> (g) emptying the contents of the digester (10) by applying gas pressure to the interior of the digester (10) or pumping out. cnaracterizec in tnat:<br><br> white iiquo* is added to tne warm black liauor used in the pretreating siec aoditiona! wnite iiquor is added to tne hot black liquor for the disDiacing steo. anc ouring the steos of increasing and maintaining temoeraiure a maximum temperature of aboui 165eC is achieved.<br><br>
7. The method of Claim 5. including the step of pretreating the chips with a mixture of cool black iiquor and white iiquor (or NaOH solution), before the step of pretreating with warm black liquor.<br><br>
8. The method of Claim 6, wherein the total white liquor used has a total charge ranging between 15% AA - 35% AA.<br><br>
9. The method of Claim 8. wherein the preferred total white liquor charge is &gt; 20% AA.<br><br> AuV.Z..---<br><br> N.2. PATE?-,'7<br><br> 11 JUN 1996<br><br> 282616<br><br> WO 95/23891<br><br> PCT/US95/02719<br><br> 38/A<br><br>
10. The method of Claim 6. wherein the preferred cooking temperature ranges between approximately 155c - 165°C.<br><br>
11. The method of Claim 6. including the step of displacing the contents of the digester (10) with any combination of washer filtrate and white liquor (or NaOH solution).<br><br> EHD OF CLAIMS<br><br> </p> </div>
NZ282616A 1994-03-04 1995-03-02 Improving pulp brightness by rapid displacement heating and alkali charge pretreatment NZ282616A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20649694A 1994-03-04 1994-03-04

Publications (1)

Publication Number Publication Date
NZ282616A true NZ282616A (en) 1997-05-26

Family

ID=22766657

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ282616A NZ282616A (en) 1994-03-04 1995-03-02 Improving pulp brightness by rapid displacement heating and alkali charge pretreatment

Country Status (19)

Country Link
EP (1) EP0748412B1 (en)
JP (1) JP2876428B2 (en)
CN (1) CN1143398A (en)
AT (1) ATE172503T1 (en)
AU (1) AU684623B2 (en)
BR (1) BR9506974A (en)
CA (1) CA2184706C (en)
DE (1) DE69505503T2 (en)
ES (1) ES2126263T3 (en)
FI (1) FI118348B (en)
MX (1) MX9603876A (en)
NO (1) NO963520L (en)
NZ (1) NZ282616A (en)
PL (1) PL316144A1 (en)
RO (1) RO117929B1 (en)
RU (1) RU2127342C1 (en)
TW (1) TW270159B (en)
WO (1) WO1995023891A1 (en)
ZA (1) ZA951777B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI970254A (en) * 1997-01-22 1998-07-23 Ahlstrom Machinery Oy Method and apparatus for cooking pulp
US6139689A (en) * 1997-06-11 2000-10-31 Beloit Technologies, Inc. Apparatus for digesting pulp in a displacement batch digester that uses displacement liquor having a sufficient hydrostatic head
FI20001351A0 (en) * 2000-06-06 2000-06-06 Valmet Chemical Pulping Oy Eräkeittomenetelmä
SE0602476L (en) * 2006-11-22 2007-08-21 Metso Fiber Karlstad Ab Method for recovering heat energy from black liquor
KR20110123184A (en) 2010-05-06 2011-11-14 바히아 스페셜티 셀룰로스 에스에이 Method and system for high alpha dissolving pulp production
CN103757961B (en) * 2013-12-30 2016-01-20 汶瑞机械(山东)有限公司 A kind of batch cooking device and liquid distributing method thereof
US9644317B2 (en) 2014-11-26 2017-05-09 International Paper Company Continuous digester and feeding system
FI129440B (en) * 2020-01-15 2022-02-28 Chempolis Oy Cooking equipment and method for treating biomass containing lignocellulose

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1687076A (en) * 1927-10-12 1928-10-09 Venning D Simons Process for cooking wood chips by the alkaline process of pulp manufacture
US4578149A (en) * 1981-03-05 1986-03-25 Fagerlund Bertil K E Process for digesting cellulosic material with heat recovery
JPS6059189A (en) * 1983-08-24 1985-04-05 ベロイト コ−ポレ−ション Multi-stage digestion of wood pulp
SU1498857A1 (en) * 1987-07-17 1989-08-07 Сибирский научно-исследовательский институт целлюлозы и картона Method of alkaline digestion of pulp in intermittent-action digesters

Also Published As

Publication number Publication date
FI963448A0 (en) 1996-09-03
ATE172503T1 (en) 1998-11-15
WO1995023891A1 (en) 1995-09-08
RU2127342C1 (en) 1999-03-10
AU684623B2 (en) 1997-12-18
NO963520L (en) 1996-08-23
DE69505503T2 (en) 1999-10-21
MX9603876A (en) 1997-03-29
FI963448A (en) 1996-09-03
AU1978995A (en) 1995-09-18
BR9506974A (en) 1997-09-16
ZA951777B (en) 1995-12-11
DE69505503D1 (en) 1998-11-26
ES2126263T3 (en) 1999-03-16
CA2184706C (en) 2001-10-30
TW270159B (en) 1996-02-11
EP0748412A1 (en) 1996-12-18
CN1143398A (en) 1997-02-19
RO117929B1 (en) 2002-09-30
JPH09505115A (en) 1997-05-20
CA2184706A1 (en) 1995-09-08
PL316144A1 (en) 1996-12-23
JP2876428B2 (en) 1999-03-31
FI118348B (en) 2007-10-15
EP0748412B1 (en) 1998-10-21

Similar Documents

Publication Publication Date Title
US5589033A (en) Production of prehydrolyzed pulp
Colodette et al. Influence of pulping conditions on eucalyptus kraft pulp yield, quality, and bleachability
CA2195297C (en) Two-stage kraft cooking
US5635026A (en) Cooking cellulose material with high alkali concentrations and/or high pH
CA1043515A (en) Method for controlling batch alkaline pulp digestion in combination with continuous alkaline oxygen delignification
CA2166618C (en) Pulp production
EP2286022A1 (en) Prehydrolysis sulfate cooking process
NZ282616A (en) Improving pulp brightness by rapid displacement heating and alkali charge pretreatment
US20010032711A1 (en) Pulp cooking with particular alkali profiles
US20040089431A1 (en) Method for alkaline batch cooking of fiber material
EP0810321B1 (en) Batch process for preparing improved kraft pulp
US5183535A (en) Process for preparing kraft pulp using black liquor pretreatment reaction
AU639304B2 (en) Process for preparing kraft pulp
EP0554391B1 (en) Pulping process
US6350348B1 (en) Batch cooking with black liquor pretreatment
US20060175029A1 (en) Batch process for preparing pulp
US20040089430A1 (en) Method for alkaline cooking of fiber material