NO874555L - PROCEDURE FOR THE PREPARATION OF MAGNESIUM SULPHATES. - Google Patents

PROCEDURE FOR THE PREPARATION OF MAGNESIUM SULPHATES.

Info

Publication number
NO874555L
NO874555L NO874555A NO874555A NO874555L NO 874555 L NO874555 L NO 874555L NO 874555 A NO874555 A NO 874555A NO 874555 A NO874555 A NO 874555A NO 874555 L NO874555 L NO 874555L
Authority
NO
Norway
Prior art keywords
magnesium sulfate
nacl
mgso
subjected
kiserite
Prior art date
Application number
NO874555A
Other languages
Norwegian (no)
Other versions
NO874555D0 (en
Inventor
Arno Singewald
Ulrich Neitzel
Guenter Friche
Original Assignee
Kali & Salz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kali & Salz Ag filed Critical Kali & Salz Ag
Publication of NO874555D0 publication Critical patent/NO874555D0/en
Publication of NO874555L publication Critical patent/NO874555L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/40Magnesium sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C7/00Separating solids from solids by electrostatic effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/08Preparation by working up natural or industrial salt mixtures or siliceous minerals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

Two magnesium sulphate concentrates are prepared with reduced waste water production from hard salts by combination of electrostatic separation with cooling by crystallisation and froth flotation.

Description

Den klassiske metode for MgSO^-utvinningen består i å be-handle resten av varmløsningsprosessen som i det vesentlige er sammensatt av stensalt og kiseritt (magnesiumsulfat-monohydrat), med kalt vann og oppløse stensaltet fullsten-dig ("Ullmanns Encylopadie der Technischen Chemie", 4. opp-lag, bd. 13, s. 483). The classic method for MgSO^ extraction consists of treating the remainder of the hot solution process, which is essentially composed of rock salt and kiserite (magnesium sulfate monohydrate), with cold water and dissolving the rock salt completely ("Ullmann's Encylopadie der Technischen Chemie" , 4th edition, vol. 13, p. 483).

Derved dannes pr. tonn produsert kiseritt i det minsteThereby, per tonnes of kiserite produced at least

15 m^ stensaltoppløsning, hvis fjernelse alltid har vært forbundet med vanskeligheter og hindret produksjonen i tiltagende grad. Med synkende MgSO^-innhold i råsaltet blir disse mengder enda større. 15 m^ rock salt solution, the removal of which has always been associated with difficulties and hindered production to an increasing extent. With decreasing MgSO^ content in the raw salt, these quantities become even greater.

Riktignok adskiller kiserittets oppløsningshastighet seg sterkt fra den for NaCl, men allikevel går det betraktelige mengder MgSO^i oppløsning slik at det totalt sett ved varm- og kaldoppløsningsprosessen fremkommer bare MgSO^-utbytter på ca. 60 %. Admittedly, the dissolution rate of kisite differs greatly from that of NaCl, but still considerable amounts of MgSO^ are dissolved so that, overall, the hot and cold dissolution process only produces MgSO^ yields of approx. 60%.

Idet også andre bestanddeler av råsaltet har relativt små oppløsningshastigheter i vann, gjenfinnes mineraler såsom anhydritt, polyhalitt og langbeinitt praktisk talt full-stendig i kiseritt og påvirker utnyttelsesmulighetene. Since other components of the raw salt also have relatively low dissolution rates in water, minerals such as anhydrite, polyhalite and langbeinite are found practically entirely in kiserite and affect the utilization possibilities.

Dette blir meget utpreget særlig fordi det i tiltagende grad også må nedbrytes råsalter som har mindre kiseritt-innhold og tydelige andeler av nevnte bimineraler. This is particularly pronounced because, to an increasing extent, raw salts that have a lower kiserite content and clear proportions of the aforementioned biminerals must also be broken down.

Under disse betingelser har det vist seg som ytterst vans-kelig å produsere rene produkter med høye MgSO^-utbytter. Under these conditions, it has proven extremely difficult to produce pure products with high MgSO^ yields.

Ved innføringen av den elektrostatiske separering ble det for første gang mulig å utvinne kiserittkonsentrater tørt og redusere spillvannsmengden drastisk. With the introduction of electrostatic separation, it became possible for the first time to extract kiserite concentrates dry and drastically reduce the amount of waste water.

Patentene DE 12 83 772, 17 92 120, 19 53 534, The patents DE 12 83 772, 17 92 120, 19 53 534,

26 19 026, 31 46 295 vedrører separeringen av NaCl, idet det på den positive elektrode dannes kiseritt og kaliandeler. 26 19 026, 31 46 295 relate to the separation of NaCl, as kiserite and potassium parts are formed on the positive electrode.

I DE-PS 31 46 295, spalte 5 og 6, er det angitt at detIn DE-PS 31 46 295, columns 5 and 6, it is stated that the

er mulig å separere en del av anhydrittet med stensaltet. Denne separering lykkes riktignok bare meget ufullkomment slik at det stadig foreliggende anhydritt kan påvirke kiserittets kvalitet. it is possible to separate part of the anhydrite from the rock salt. Admittedly, this separation is only very imperfectly successful, so that the anhydrite that is still present can affect the quality of the kisiterite.

DE-patentene 10 78 961, 12 61 453, 16 67 814 vedrører utvinningen av et salgbart kiserittprodukt. Det ligger i den elektrostatiske separerings natur at det på den ene side separeres et verdistoff og på den annen side, som må foreligge på grunn av den innbyrdes oppladning, også bortføres noe av verdistoffet slik at det oppstår tap i MgS04-utbyttet. The DE patents 10 78 961, 12 61 453, 16 67 814 relate to the extraction of a salable kiserite product. It is in the nature of electrostatic separation that on the one hand a valuable substance is separated and on the other hand, which must be present due to the mutual charging, some of the valuable substance is also carried away so that a loss occurs in the MgSO4 yield.

Det rene produkt som produseres med tørrmetoden, skal inneholde høyst 1,5 % kloritt og må inneholde 81 % MgSO^The pure product produced by the dry method must contain no more than 1.5% chlorite and must contain 81% MgSO^

(det er - uttrykt i kiseritt - minst 93 % MgS04.H20).(it is - expressed in kiserite - at least 93% MgS04.H20).

Det har vist seg at bare en del av det foreliggende MgSO^kan fremstilles med en kvalitet av salgsproduktet kiseritt. Den resterende andel kunne hittil ikke brukes på elektrostatisk måte og går enten uutnyttet tapt eller inn i varm-løsningsprosessen. It has been shown that only a part of the present MgSO^ can be produced with a quality of the commercial product kiserite. The remaining portion could not be used in an electrostatic way so far and is either lost unused or enters the hot solution process.

Riktignok er det mulig efter ekstraksjon av KC1 fraAdmittedly, it is possible after extraction of KC1 from

den nu riktignok sterkt utarmede varmløsningsrest å gjennomføre en såkalt kiserittvaskning, men det skjer herved en betydelig hydratisering av magnesiumsulfatmono-hydratet og således en oppløsningsprosess hvor magnesiumsulfatet sammen med stensaltet går tapt i betydelige mengder av natriumklorittrike oppløsninger. the now admittedly greatly depleted hot solution residue to carry out a so-called kiserite washing, but this results in a significant hydration of the magnesium sulfate monohydrate and thus a dissolution process where the magnesium sulfate together with the rock salt is lost in significant amounts of sodium chlorite-rich solutions.

Det er også blitt foreslått å utvinne kiserittet ved flotasjon fra en varmløsningsrest fra hårdsaltfremstillin-gen, altså en kiseritt-NaCl-blanding. ("Bergakademie", It has also been proposed to extract the kierite by flotation from a hot solution residue from hard salt production, i.e. a kierite-NaCl mixture. ("Bergacademy",

16. årgang, hefte 6,juni 1964).16th year, booklet 6, June 1964).

Men ved det foreliggende store stensaltoverskudd og den derved nødvendige liggetid av det våte gods og det således forårsakede høye oppløsningstap ble MgSO^-utbyttene lite tilfredsstillende og MgSO^-konsentratene av mindre god kvalitet (Tab. s. 360). However, due to the large excess of rock salt present and the consequent residence time of the wet material and the high solution loss thus caused, the MgSO^ yields were not satisfactory and the MgSO^ concentrates were of less good quality (Tab. p. 360).

Det er også beskrevet flotasjon av MgS04-materialer i tilslutning til en KCl-fIotasjon. (III. Intern. Kalisym-posium 1965, del I, s. 199 - 211, VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, 1967). Flotation of MgSO4 materials in connection with a KCl flotation has also been described. (III. Intern. Kalisymposium 1965, part I, pp. 199 - 211, VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, 1967).

Utvinningsfremgangsmåtene som bare består av en elektrostatisk separeringsfremgangsmåte eller bare av en våt-kjemisk behandling, spesielt en flotasjon, gir av nevnte grunner relativt høye utbyttetap. The extraction methods which consist only of an electrostatic separation method or only of a wet-chemical treatment, in particular a flotation, give relatively high yield losses for the aforementioned reasons.

Følgelig har foreliggende oppfinnelse som oppgave å utvinne MgSO^med høye utbytter og lite spillvann fra hårdsalter, spesielt slike som bare har lite kiseritt-innhold og dessuten tydelig anhydritt-, kainitt-, polyhalitt- og langbeinitt-inhold. Consequently, the task of the present invention is to extract MgSO^ with high yields and little waste water from hard salts, especially those which have only a small kiserite content and also clear anhydrite, kainite, polyhalite and langbeinite content.

Ifølge oppfinnelsen oppnås dette ved fremgangsmåtetrinnene ifølge krav 1, som i det følgende skal spesifiseres nærme-re . According to the invention, this is achieved by the process steps according to claim 1, which will be specified in more detail below.

a) En råsaltblanding, spesielt et hårdsalt som inneholder magnesiumsulfat vesentlig i form av kiseritt a) A raw salt mixture, especially a hard salt containing magnesium sulphate substantially in the form of kiserite

(MgSO^.E^), men også i form av polyhalitt, langbeinitt og kainitt, underkastes en rekke elektrostatiske separeringer, idet det først dannes et stensalt som avfall (og opphopes) og dessuten en kali-kiseritt-fraksjon som i et ytterligere separeringstrinn videre forarbeides til en råkali og et råkiseritt som hver i særskilte trinn videreforarbeides til et renkiseritt og renkali. Derved dannes det på den overforliggende elektrode restfraks joner, dessuten i samtlige separerings- (MgSO^.E^), but also in the form of polyhalite, langbeinite and kainite, are subjected to a series of electrostatic separations, as a rock salt is first formed as waste (and accumulated) and also a calicherite fraction which in a further separation step is further processed into a crude potash and a crude kiserite, each of which is further processed in separate steps into a pure potash and pure potash. Thereby, residual fraction ions are formed on the overlying electrode, moreover in all separation

trinn filter- og syklonstøv som samles med restfrak-sjonene; b) disse magnesiumsulfatholdige restmaterialer underkastes en konvensjonell varmløsningsprosess, idet kaliumklo-ridet løses ut ved kontakt med en varm løsningslut og utvinnes i salgbar form som krystallisert KC1 ved av-kjøling av den klargjorte oppløsning, og den resulte-rende kalde oppløsning efter oppvarmningen påny benyt-tes til oppløsning. c) Resten som separeres efter klarning av den varme oppløs-ning og som består av NaCl og det magnesiumsulfatholdige step filter and cyclone dust which is collected with the residual fractions; b) these magnesium sulfate-containing residual materials are subjected to a conventional hot solution process, the potassium chloride being dissolved by contact with a hot solution liquor and extracted in salable form as crystallized KC1 by cooling the prepared solution, and the resulting cold solution after heating is reused -test to dissolution. c) The residue which is separated after clarification of the hot solution and which consists of NaCl and the magnesium sulfate-containing material

materiale, meskes i en kald, med NaCl mettet oppløsning som i tillegg kan inneholde 10 til 250 g/l MgC^ og underkastes en skumfIotasjon ved hjelp av de allerede fra fremgangsmåtetrinn a foreliggende kondis jonerings-midler, spesielt fettsyrene, under tilsetning av små mengder ytterligere spesifiske samlereagenser såsom alkylsulfat, alkylsulfonat og/eller sulfatiserte fett-syrer (f.eks. prestaminol), idet de MgSO^-holdige mineraler flyter opp og NaCl forblir i resten. material, is mashed in a cold, NaCl-saturated solution which can additionally contain 10 to 250 g/l MgC^ and subjected to foam flotation using the conditioning agents already present from process step a, especially the fatty acids, while adding small quantities further specific collecting reagents such as alkyl sulphate, alkyl sulphonate and/or sulphated fatty acids (e.g. prestaminol), the MgSO^-containing minerals floating up and the NaCl remaining in the residue.

d) Skumkonsentratet fra fremgangsmåtetrinn c som inneholder samtlige MgSO^-mineraler såsom kainitt, langbeinitt d) The foam concentrate from method step c which contains all MgSO^ minerals such as kainite, langbeinite

og polyhalitt, ved siden av det resterende kiseritt som ikke kunne utvinnes i den elektrostatiske separering, underkastes eventuelt en efterfIotas jon for ytterligere rensning og vaskes med lite vann for å fjerne eventuelt medrevet stensalt. Det praktisk talt NaCl-frie MgSO^-konsentrat som dessuten inneholder anhydritt som fulgte med under den elektrostatiske separering og flyter med også ved flotasjonen, behandles med en tilbakeført MgS04-oppløsning ved 75 til 80°C, idet MgS04 går and polyhalite, next to the remaining kiserite which could not be extracted in the electrostatic separation, is optionally subjected to an afterflow for further purification and washed with a little water to remove any entrained rock salt. The practically NaCl-free MgSO^ concentrate, which also contains anhydrite that came along during the electrostatic separation and floats along during the flotation, is treated with a recycled MgSO4 solution at 75 to 80°C, the MgSO4 going

i oppløsning. Resten som i det vesentlige består av anhydritt, fjernes og den varme, praktisk MgS04~mettede oppløsning avkjøles, idet MgSC>4~heptahydrat in resolution. The residue, which essentially consists of anhydrite, is removed and the hot, practically MgSO4~saturated solution is cooled, MgSC>4~heptahydrate

(bittersalt) krystalliseres. Den tilbakeblivende moder-lut føres tilbake til fornyet oppløsning av MgSO^. (bitter salt) crystallizes. The remaining mother liquor is returned to renewed dissolution of MgSO^.

Bittersaltet kan i tørket form tjene som salgsprodukt eller i filterfuktig form til omsetning til alkalisulfat. The bitter salt can be used in dried form as a sales product or in filter-moist form for conversion to alkali sulphate.

Ved prosessen ifølge oppfinnelsen oppstår det således to MgSO^-produkter, først på tørr måte magnesiumsulfat-monohydratet (kiseritt) som inneholder en tolererbar mengde kloritt (< 1,5 % Cl) og for det andre et krystallisert MgSO^-heptahydrat som inneholder meget lite kloritt The process according to the invention thus produces two MgSO^ products, first in a dry way the magnesium sulfate monohydrate (kiserite) which contains a tolerable amount of chlorite (< 1.5% Cl) and secondly a crystallized MgSO^ heptahydrate which contains a lot little chlorite

(< 0,1 % Cl) som som sådant kan anvendes på mange måter og som også kan videreforarbeides til klorittfrie kjemikalier og gj ødsel. (< 0.1% Cl) which as such can be used in many ways and which can also be further processed into chlorite-free chemicals and fertiliser.

Forholdsreglene ifølge oppfinnelsen sikrer et høyt utbytte ved MgSO^-utvinningen - det egentlige mål med oppfinnelsen - men skaper dessuten også gunstige betingelser for kaliutvinningen. The precautions according to the invention ensure a high yield in the MgSO^ extraction - the real aim of the invention - but also create favorable conditions for potassium extraction.

Ifølge efterfølgende eksempel skal oppfinnelsen forklares ytterligere. En detaljert oversikt fremgår av flytediagram-met I . According to the following example, the invention will be further explained. A detailed overview can be seen in the flowchart I.

EKSEMPELEXAMPLE

100 t hårdsalt med sammensetning:100 t of hard salt with composition:

8,1 % magnesiumsulfatholdige mineraler8.1% magnesium sulphate containing minerals

11,2 % sylvin11.2% sylvin

19,6 % carnalitt19.6% carnalite

1,5 % anhydritt1.5% anhydrite

59, 6 % stensalt59.6% rock salt

males til under 1,6 mm og underkastes en elektrostatisk ground to less than 1.6 mm and subjected to an electrostatic

separering i frittfall-separator, idet det som kondisjoneringsmiddel anvendes en blanding av 40 g/t salicylsyre og 60 g/t melkesyre, en temperatur på 48°C og en relativ luftfuktighet på 10 %. separation in a free-fall separator, using a mixture of 40 g/t salicylic acid and 60 g/t lactic acid, a temperature of 48°C and a relative humidity of 10% as conditioning agent.

40,5 t stensaltrest dannes på den negative elektrode og opphopes. Konsentratet som dannes på den positive elektrode som inneholder kali og magnesiumsulfat-kompnentene, spaltes i et ytterligere elektrostatisk trinn ved 62°C 40.5 t of rock salt residue is formed on the negative electrode and accumulates. The concentrate formed on the positive electrode containing the potassium and magnesium sulfate components is decomposed in a further electrostatic step at 62°C

og 5 % luftfuktighet i en råkali og et råkiseritt. and 5% humidity in a raw potash and a raw kiserite.

Råkalien omdannes under tilsetning av 14 g/t salicyl- ogThe raw potash is converted with the addition of 14 g/t of salicyl and

30 g/t fettsyre som kondisjoneringsmiddel ved 53°C og 7,5 % luftfuktighet til et rent kaliverdistoff (18,7 t) og en restfraks jon. Fra råkiserittet oppstår det i en ytterligere elektrostatisk separering under tilsetning av 30 g/t fettsyre og 60 g/t ammonacetat som kondisjoneringsmiddel 5,0 t renkiseritt med 1,5 % Cl og en restfraks jon. 30 g/t of fatty acid as a conditioning agent at 53°C and 7.5% humidity to a pure potassium value substance (18.7 t) and a residual fraction ion. From the raw kiserite, 5.0 t renkiserite with 1.5% Cl and a residual fraction is produced in a further electrostatic separation with the addition of 30 g/t fatty acid and 60 g/t ammonium acetate as conditioning agent.

Begge restfraks joner forenes, blandes med filterstøv og syklonstøv fra forsepareringen (totalt 35,8 t) og underkastes en konvensjonell varmløsningsprosess, idet det som sluttprodukt produseres 6,1 t kaliumklorid. Both residual fractions are combined, mixed with filter dust and cyclone dust from the pre-separation (a total of 35.8 t) and subjected to a conventional hot solution process, with 6.1 t of potassium chloride being produced as the final product.

Varmløsningsresten som består av NaCl, CaSO^og de magne-siumsulf atholdige mineraler, meskes i 65 t bærelut som er NaCl-mettet og inneholder 200 g/l MgCl2og 50 g/l MgS04. The hot solution residue, which consists of NaCl, CaSO^ and the magnesium sulphate-containing minerals, is mixed in 65 t of carrier liquor which is saturated with NaCl and contains 200 g/l MgCl2 and 50 g/l MgS04.

Under tilsetning av 70 g/t prestaminol, 20 g/t tjaereolje og 10 g/t polyacrylamid svelles 3 t MgSO^-fIotasjons-konsentrat, separeres ved sentrifugering fra flotasjons-luten og vaskes med litt vann. During the addition of 70 g/t of prestaminol, 20 g/t of castor oil and 10 g/t of polyacrylamide, 3 t of MgSO^ flotation concentrate is swelled, separated by centrifugation from the flotation liquor and washed with a little water.

Ved 75 C opplø ses dette magnesiumsulfat-konsentrat i en tilbakeført MgSO^-oppløsning og oppløsningen avkjøles til 25°C, idet 4 t magnesiumsulfat-heptahydrat krystalli- At 75°C, this magnesium sulfate concentrate is dissolved in a returned MgSO^ solution and the solution is cooled to 25°C, with 4 t of magnesium sulfate heptahydrate crystallising

seres; moderluten føres tilbake.seres; the mother liquor is returned.

Magnesiumsulfatet som foreligger i råsaltet, omsettes til 82 % til høyprosentige MgSO^-produkter. The magnesium sulphate present in the raw salt is converted to 82% into high-percentage MgSO^ products.

Claims (5)

1. Fremgangsmåte ved utvinning av magnesiumsulfater fra råsaltblandinger, spesielt hårdsalter, karakterisert ved følgende fremgangsmåtetrinn: a) råsaltblandingen underkastes en første elektrostatisk behandling, idet NaCl dannes som avfall, hvorefter ho-vedmaterialet underkastes ytterligere elektrostatiske separeringsbehandlingstrinn hvor det dannes et magne-siumsulf at-monohydrat ( kiseritt ) -konsentrat med høy ren-het, hvorefter de i de enkelte trinn dannede magnesium-sulf atholdige restmaterialer samles; b) de samlede magnesiumsulfatholdige restermaterialer underkastes en varmløsningsprosess, idet det utvinnes et KCl-produkt og det oppstår en NaCl- og magnesiumsulfat-holdig rest; c) den MgSO^ - og NaCl-holdige rest meskes i en NaCl-mettet kald oppløsning og underkastes en skumfIotasjon, idet de resterende kiserittbestanddeler sammen med andre MgSO^ -holdige mineraler flyter opp og en NaCl-holdig rest blir tilbake.1. Method for extracting magnesium sulphates from raw salt mixtures, especially hard salts, characterized by the following method steps: a) the raw salt mixture is subjected to a first electrostatic treatment, with NaCl being formed as waste, after which the main material is subjected to further electrostatic separation treatment steps where a high-purity magnesium sulfate monohydrate (kieserite) concentrate is formed, after which in the individual steps formed magnesium sulfate-containing residual materials are collected; b) the combined magnesium sulfate-containing residual materials are subjected to a hot solution process, whereby a KCl product is recovered and a NaCl- and magnesium sulfate-containing residue is produced; c) the MgSO^ - and NaCl-containing residue is mixed in a NaCl-saturated cold solution and subjected to foam flotation, with the remaining kiserite components together with other MgSO^ -containing minerals floating up and a NaCl-containing residue remaining. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved et ytterligere fremgangsmåtetrinn d: d) det i fremgangsmåtetrinn c dannede magnesiumsulfatholdige konsentrat frigjø res fra det resterende NaCl ved vaskning med lite vann og videreforarbeides ved varmlø s-ning og derefter krystallisering på magnesiumsulfat-heptahydrat.2. Method as stated in claim 1, characterized by a further method step d: d) the magnesium sulfate-containing concentrate formed in process step c is freed from the remaining NaCl by washing with a little water and further processed by thermal solution and then crystallization on magnesium sulfate heptahydrate. 3. Fremgangsmåte som angitt i krav 1, karakterisert ved at det ved skumfIotasjonen ifølge fremgangsmåtetrinn c som fIotasjonsreagenser i tillegg til-settes alkylsuflat eller alkylsulfonater og/eller prestaminol som samlereagenser, fortrinnsvis i en mengde på 50 til 80 g/t.3. Method as stated in claim 1, characterized in that during the foam flotation according to method step c, alkyl sulphlate or alkyl sulphonates and/or prestaminol are added as flotation reagents as collection reagents, preferably in an amount of 50 to 80 g/h. 4. Fremgangsmåte som angitt i krav 1, karakterisert ved at det som utgangsstoffer også kan anvendes slike magnesiumsulfatholdige materialer som for-uten kiseritt også inneholder kainitt og/eller langbeinitt, polyhalitt, schonitt og leonitt.4. Method as stated in claim 1, characterized in that such magnesium sulfate-containing materials can also be used as starting materials which, in addition to kiserite, also contain kainite and/or langbeinite, polyhalite, schonite and leonite. 5. Fremgangsmåte som angitt i krav 2, karakterisert ved at det i fremgangsmåtetrinn d erholdte magnesiumsulfatheptahydrat omsettes med alkali-klorid til alkalisulfat.5. Process as stated in claim 2, characterized in that the magnesium sulfate heptahydrate obtained in process step d is reacted with alkali chloride to alkali sulfate.
NO874555A 1986-11-03 1987-11-02 PROCEDURE FOR THE PREPARATION OF MAGNESIUM SULPHATES. NO874555L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19863637227 DE3637227A1 (en) 1986-11-03 1986-11-03 METHOD FOR PRODUCING MAGNESIUM SULFAT

Publications (2)

Publication Number Publication Date
NO874555D0 NO874555D0 (en) 1987-11-02
NO874555L true NO874555L (en) 1988-05-04

Family

ID=6312958

Family Applications (1)

Application Number Title Priority Date Filing Date
NO874555A NO874555L (en) 1986-11-03 1987-11-02 PROCEDURE FOR THE PREPARATION OF MAGNESIUM SULPHATES.

Country Status (8)

Country Link
EP (1) EP0266600B1 (en)
AT (1) ATE76626T1 (en)
DD (1) DD266562A5 (en)
DE (1) DE3637227A1 (en)
DK (1) DK562987A (en)
FI (1) FI874849A (en)
NO (1) NO874555L (en)
PT (1) PT86047B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4025371A1 (en) * 1990-08-10 1992-02-13 Kali & Salz Ag PROCESS FOR CLEANING ELECTROSTATICALLY OBTAINED STONE SALT
CN109647631B (en) * 2018-12-28 2020-09-04 青海盐湖工业股份有限公司 Utilization method and utilization system of reverse flotation tail salt foam

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1158912B (en) * 1961-10-16 1963-12-12 Zentrale Forschungsstelle Fuer Flotation process for the recovery of sodium chloride and kieserite from the residue slurry separated out in clarifiers and on the sludge filter
DE1201782B (en) * 1964-06-24 1965-09-30 Stockhausen & Cie Chem Fab Process for flotation of kieserite
DE1953534C3 (en) * 1969-10-24 1974-03-14 Kali Und Salz Ag, 3500 Kassel Process for the electrostatic treatment of crude potash salts containing Kiesent
DE2619026C3 (en) * 1976-04-30 1978-10-19 Kali Und Salz Ag, 3500 Kassel Process for the electrostatic separation of crude potash salts
DE3146295C1 (en) * 1981-11-23 1983-04-07 Kali Und Salz Ag, 3500 Kassel Method of electrostatically separating ground potash ores
DE3334665C1 (en) * 1983-09-24 1984-10-04 Kali Und Salz Ag, 3500 Kassel Process for the electrostatic preparation of crude potassium salts containing kieserite and langbeinite

Also Published As

Publication number Publication date
NO874555D0 (en) 1987-11-02
PT86047B (en) 1990-07-31
PT86047A (en) 1987-11-01
ATE76626T1 (en) 1992-06-15
EP0266600A2 (en) 1988-05-11
DD266562A5 (en) 1989-04-05
DE3637227A1 (en) 1988-05-19
DE3637227C2 (en) 1990-09-20
DK562987D0 (en) 1987-10-27
FI874849A (en) 1988-05-04
FI874849A0 (en) 1987-11-03
EP0266600A3 (en) 1989-10-04
EP0266600B1 (en) 1992-05-27
DK562987A (en) 1988-05-04

Similar Documents

Publication Publication Date Title
ES2806425T3 (en) Recovery process
US3528767A (en) Production of potassium chloride,potassium sulfate and sodium sulfate from brines and the like containing potassium,chloride and sulfate
EP3802892B1 (en) Process for recovering lithium phosphate and lithium sulfate from lithium-bearing silicates
CN109890990B (en) Caustic digestion process
US2024026A (en) Recovering lithium compounds
US2687339A (en) Process for the treatment of liquors to recover potassium and magnesium values
AU2019310188B2 (en) Caustic conversion process
US2895794A (en) Process for recovering potassium values from kainite
US3634041A (en) Method for the production of potassium sulfate from potassium-containing double salts of magnesium sulfate
US3271106A (en) Production of potassium sulfate and potassium chloride
US2801153A (en) Recovery of lithium from spodumene ores
NO874555L (en) PROCEDURE FOR THE PREPARATION OF MAGNESIUM SULPHATES.
US1836426A (en) Process of separating sodium salts from mixtures thereof
US3760941A (en) Process for preparing highly free flowing rock or table salt
NO874554L (en) PROCEDURE FOR THE PREPARATION OF MAGNESIUM SULPHATES.
US2033149A (en) Process for the recovery of potassium salts from minerals
SU1242465A1 (en) Method of isolating sodium chloride from solutions
RU2371492C2 (en) Extraction method of lithium from spodumene-containing beryllium concentrate
RU2547060C1 (en) Method of combined processing of beryllium concentrates
US1643261A (en) Conversion of lead chloride to lead carbonate
NO874553L (en) PROCEDURE FOR THE PREPARATION OF MAGNESIUM SULPHATES.
Yavorskii et al. Acid decomposition of difficultly soluble potassium ores with the use of organic solvents