NO874395L - PROCEDURE FOR THE PREPARATION OF ENGINEERING CERAMIC POWDER WITH ADDITIVES. - Google Patents

PROCEDURE FOR THE PREPARATION OF ENGINEERING CERAMIC POWDER WITH ADDITIVES.

Info

Publication number
NO874395L
NO874395L NO874395A NO874395A NO874395L NO 874395 L NO874395 L NO 874395L NO 874395 A NO874395 A NO 874395A NO 874395 A NO874395 A NO 874395A NO 874395 L NO874395 L NO 874395L
Authority
NO
Norway
Prior art keywords
salt
powders
mixture
oxide
additive
Prior art date
Application number
NO874395A
Other languages
Norwegian (no)
Other versions
NO874395D0 (en
Inventor
Ulrike Wickel
Gerhard Franz
Lothar Schoenfelder
Original Assignee
Bayer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Ag filed Critical Bayer Ag
Publication of NO874395D0 publication Critical patent/NO874395D0/en
Publication of NO874395L publication Critical patent/NO874395L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62823Zirconium or hafnium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av ingeniørkeramiske pulvere hvis enkeltpartikler er belagt med av et annet materiale bestående oksydisk additiv. The invention relates to a method for the production of engineering ceramic powders whose individual particles are coated with an oxidic additive consisting of a different material.

Videre vedrører oppfinnelsen S13N4pulver og anvendelsen av disse pulvere, og det ingeniørkeramiske pulver som er oppnåelig ved fremgangsmåten ifølge oppfinnelsen til fremstilling av keramiske formlegemer. Furthermore, the invention relates to S13N4 powder and the use of these powders, and the engineering ceramic powder which is obtainable by the method according to the invention for the production of ceramic shaped bodies.

I materialteknologien for såkalte ingeniørkeramiske pulvere økende betydning. Ingeniørkeramiske pulvere innen oppfinnelsens ramme er keramiske pulvere av et eller flere stoffer fra gruppen BN, B4C, A1N, A1203, SIC, Si3N4, TIC, TiB2, Zr02, innbefattende delstabilisert og helstabilisert ZrC>2, og/eller blandingsformer herav. Increasing importance in material technology for so-called engineering ceramic powders. Engineering ceramic powders within the scope of the invention are ceramic powders of one or more substances from the group BN, B4C, A1N, A1203, SIC, Si3N4, TIC, TiB2, Zr02, including partially stabilized and fully stabilized ZrC>2, and/or mixed forms thereof.

Fremstillingen av formlegemer av ingeniørkeramiske pulvere foregår ved formgivnings- og sinterfremgangsmåter. The production of shaped bodies from engineering ceramic powders takes place by shaping and sintering methods.

Mange ingeniørkeramiske pulvere er imidlertid i ren form bare lite eller overhodet ikke sinteraktivt. Ved tilsetning av additiver kan sinterevnen imidlertid vanligvis forbedres, og dermed oppnås vedsintring en sterk komprimering av materialet. However, many engineering ceramic powders are, in their pure form, only slightly or not at all sinter-active. By adding additives, however, the ability to sinter can usually be improved, and thus a strong compaction of the material is achieved by sintering.

Som additiver har det derved fremfor alt hvis egnet oksydiske materialer som eksempelvis MgO, Y2O3, AI2O3og B2O3. As additives, it therefore has, above all, suitable oxidic materials such as MgO, Y2O3, AI2O3 and B2O3.

De ingeniørkeramiske pulvere blandes og/eller males dertil for det meste ifølge DE-A-20 472 555 og US-A-3 992 497 med additivene. Ved sintring av denne blanding oppnås imidlertid vanligvis bare ved meget høye trykk og temperaturer en fullstendig komprimering av materialet. The engineering ceramic powders are mixed and/or ground thereto mostly according to DE-A-20 472 555 and US-A-3 992 497 with the additives. When sintering this mixture, however, a complete compression of the material is usually only achieved at very high pressures and temperatures.

I doktoravhandlingen av G.WBttin, TU Berlin 1983, side 27 og side 83-86 foreslås å påføre salter (eksempelvis magnesium-acetat) i form av en oppløsning og overflaten av 813^- pulvere. Etter en forstøvningstørkning og fremstilling av et rålegeme, ved isostatisk pressing, overføres de på overflaten av Si3N4~pulveret utskilte salter ved glødning i luften i de tilsvarende oksyder. In the doctoral dissertation of G.WBttin, TU Berlin 1983, page 27 and pages 83-86, it is proposed to apply salts (eg magnesium acetate) in the form of a solution to the surface of 813^- powders. After spray drying and production of a raw body, by isostatic pressing, the salts separated on the surface of the Si3N4 powder are transferred by annealing in the air into the corresponding oxides.

Denne fremgangsmåte har den ulempe at ved glødningen unnviker flyktige spaltningsbestanddeler av saltene, og kan føre til fordrivning av legemene eller til udefinert porestørrelse-fordeling i legemet. Dessuten er de etter denne fremgangsmåte oppnåelige pulvere ikke brukbare for den formgivning ved slamstøp, da additivene igjen ville bli oppløst i slammet. This method has the disadvantage that volatile decomposition components of the salts escape during the annealing, and can lead to displacement of the bodies or to an undefined pore size distribution in the body. Moreover, the powders obtainable according to this method are not usable for shaping by mud casting, as the additives would again be dissolved in the mud.

En annen mulighet til påføring avoksydisk additiver på overflaten av keramiske pulvere, består i den såkalte alkoksyd-sol-gel-metoden (sammenlign Horizons of Powd.Metall-urgy, Part. II, Proceedings of the 1986 Intern. Powd. Met. Conf. and Exhib., utgiver W.A.Kaysser, W.J.Huppmann, side 1151-1154, H.Kubo, H.Endo, K.Sugita "Sintering Behavior of ultra-fine Alumina-coated Silicon Carbide".) Another possibility for applying avoxidic additives to the surface of ceramic powders consists in the so-called alkoxide-sol-gel method (compare Horizons of Powd.Metall-urgy, Part. II, Proceedings of the 1986 Intern. Powd. Met. Conf. and Exhib., publisher W.A.Kaysser, W.J.Huppmann, pages 1151-1154, H.Kubo, H.Endo, K.Sugita "Sintering Behavior of ultra-fine Alumina-coated Silicon Carbide".)

Deretter sammenblandes SiC-pulveret med en oppløsning av aluminiumisopropoksyd (I-C3H7O) qA1), oppløst I et organisk oppløsningsmiddel. Etter en tørkning,, en hydrolyse av alkoksyder til et bømit (AlOOH)-gel respektivt -Sol og/eller pyrolyse av alkoksyder respektivt AlOOH-gelen, får man SiC-pulveret med et AlOOH-belegg. Dette belegg overføres deretter ved 1200°C til aluminiumoksyd. The SiC powder is then mixed with a solution of aluminum isopropoxide (I-C3H7O) qA1) dissolved in an organic solvent. After a drying, a hydrolysis of alkoxides to a boehmite (AlOOH) gel respectively -Sol and/or pyrolysis of alkoxides respectively the AlOOH gel, you get the SiC powder with an AlOOH coating. This coating is then transferred at 1200°C to aluminum oxide.

Denne fremgangsmåte har imidlertid den ulempe at det er nødvendig med et arbeide iorganisk oppløsningsmidler. Dessuten kan denne fremgangsmåte ikke uten videre overføres på andre additiver, da mange alkoksyder av elementer som er overførbare til oksydiske additiver, danner lett flyktige forbindelser, hvilket fører til problemer ved deres håndter-ing. Ikke minst har denne fremgangsmåte også den ulempe at alkoksyder for det meste ikke er disponerbart billige. Oppfinnelsens oppgave besto nu i å tilveiebringe en fremgangsmåte til fremstilling av keramiske pulvere hvis enkeltpartikler er belagt med av et annet materiale bestående oksydisk additiv, som ikke har de omtalte ulemper. However, this method has the disadvantage that a working inorganic solvent is required. Moreover, this method cannot be easily transferred to other additives, as many alkoxides of elements that are transferable to oxidative additives form easily volatile compounds, which leads to problems in their handling. Not least, this method also has the disadvantage that alkoxides are mostly not readily available cheap. The task of the invention now consisted in providing a method for the production of ceramic powders whose individual particles are coated with an oxidic additive consisting of a different material, which does not have the mentioned disadvantages.

Overraskende ble det nu funnet at oppgaven kan løses idet oksydiske additiver påføres I form av I vandig medier oppløselige og termisk til oksyder spaltabare salter eller saltblandinger, på det keramiske pulvers enkeltpartikler, og ved termisk spaltning overføres til de tilsvarende oksyder. Surprisingly, it was now found that the task can be solved as oxidative additives are applied in the form of salts or salt mixtures soluble in aqueous media and thermally decomposable to oxides, on the individual particles of the ceramic powder, and by thermal decomposition are transferred to the corresponding oxides.

Oppfinnelsens gjenstand er således en fremgangsmåte til fremstilling av ingeniørkeramiske pulvere hvis enkeltpartikler er belagt med av et annet materiale bestående oksydisk additiv, Idet fremgangsmåten erkarakterisert vedat additivet påføres i form av et i vandig medium oppløselig og termisk til oksyd spaltbare salter eller saltblanding, og enkeltpartiklene, og ved termisk spaltning overføres til den tilsvarende oksydform. The object of the invention is thus a method for the production of engineering ceramic powders whose individual particles are coated with an oxidative additive consisting of a different material. The method is characterized in that the additive is applied in the form of a salt or salt mixture that is soluble in an aqueous medium and can be thermally split into oxide, and the individual particles, and by thermal decomposition is transferred to the corresponding oxide form.

Fortrinnsvis anvendes salt eller saltblandingen i slike mengder at de keramiske pulvere etter den termiske spaltning er belagt med 0,5 til 25 vekt-# oksydisk additiv. Preferably, salt or the salt mixture is used in such quantities that the ceramic powders are coated with 0.5 to 25 wt% of an oxide additive after the thermal cleavage.

Som salt eller saltblanding kan det anvendes forskjellige stoffer. Det foretrekkes imidlertid slike som etter den termiske spaltning danner et oksydisk additiv fra gruppen Jordalkalioksyder B2O3, AI2O3, Ga203, Sc203, Y2O3, La203, TI02, Zr02, HfO2, Cr203, oksyder av de sjeldne Jordmetaller, blandinger eller blandingsoksyder av to eller flere av de nevnte oksyder. Different substances can be used as salt or salt mixture. However, preference is given to those which, after the thermal decomposition, form an oxidative additive from the group Alkaline earth oxides B2O3, AI2O3, Ga203, Sc203, Y2O3, La203, TI02, Zr02, HfO2, Cr203, oxides of the rare earth metals, mixtures or mixed oxides of two or more of the aforementioned oxides.

Spesielt foretrukket er en utførelsesform av fremgangsmåten ifølge oppfinnelsen hvor saltet eller saltblandingen oppløses i et vandig medium, blandes med et keramiske pulver og saltet eller saltblandingen fra blandingen ved forstøvningstørkning frysetørkning eller en fellingsreaksjon påføres som belegg på enkeltpartlklene av det keramiske pulver. Particularly preferred is an embodiment of the method according to the invention where the salt or salt mixture is dissolved in an aqueous medium, mixed with a ceramic powder and the salt or salt mixture from the mixture is applied as a coating to the individual particles of the ceramic powder by spray drying, freeze drying or a precipitation reaction.

Det er Imidlertid også mulig å påføre saltet eller salgblan-dingen på det ingeniørkeramiske pulvers enkeltpartikler ved en annen tørketype, eksempelvis ved innbringning av blandingen i et vannuttrekkende oppløsningsmiddel. En annen variant av fremgangsmåten ifølge oppfinnelsen påsprøytes de ingeniørkeramiske pulvere med saltoppløsning og tørkes deretter. However, it is also possible to apply the salt or the sales mixture to the individual particles of the engineering ceramic powder by another type of drying, for example by introducing the mixture into a water-extracting solvent. In another variant of the method according to the invention, the engineering ceramic powders are sprayed with salt solution and then dried.

Spesielt ved ikke-oksydiske ingeniørkeramiske pulvere er det fordelaktig å gjennomføre den termiske spaltning under inertgass eller i vakuum, hvorved det kan unngås en mulig oksydasjon av pulveret. Som inertgass anvendes fortrinnsvis nitrogen eller argon. Especially in the case of non-oxidizing engineering ceramic powders, it is advantageous to carry out the thermal decomposition under inert gas or in a vacuum, whereby a possible oxidation of the powder can be avoided. Nitrogen or argon is preferably used as inert gas.

Som I vandige medier oppløselige salter anvendes fortrinnsvis hydroksyder, karbonater, nitratater, salter av organiske syrer fra gruppen av karboksylsyrer, hydroksykarboksylsyrer eller aminokarboksylsyrer eller blandinger derav. Hydroxides, carbonates, nitrates, salts of organic acids from the group of carboxylic acids, hydroxycarboxylic acids or aminocarboxylic acids or mixtures thereof are preferably used as salts soluble in aqueous media.

For å få produkter med en høyest mulig renhetsgrad, er det hensiktsmessig å anvende salter som residu-fritt lar seg spalte og/eller forbrenne til oksyd. Spesielt fordelaktig er det derved å anvende salter som eksempelvis formeater, hydroksyder og nitrater, som uten oksygentilførsel lar seg spalte fullstendig. En termisk spaltning til oksydene kan i disse tilfeller gjennomføres under Inertgass eller i vakuum, hvorved som nevnt det unngås en oksydasjon av det Ikke-oksydiske ingeniørkeramiske pulver. In order to obtain products with the highest possible degree of purity, it is appropriate to use salts that can be decomposed and/or burned to oxide without residue. It is therefore particularly advantageous to use salts such as formates, hydroxides and nitrates, which can be completely decomposed without the supply of oxygen. A thermal decomposition of the oxides can in these cases be carried out under inert gas or in a vacuum, whereby, as mentioned, oxidation of the non-oxidative engineering ceramic powder is avoided.

Imidlertid også ved anvendelse av salter som ikke er fullstendig spaltbare uten oksygentilførsel (eksempelvis aceta-ter), lar en oksydasjon av de ikke-oksydiske ingeniørkera-miske pulvere seg hindre når man begynner den termiske spaltning I første rekke ved en temperatur under 600°C i luften, og deretter fortsetter under beskyttelsesgass eller 1 vakuum ved temperaturer på 600-1200°C. However, even when using salts that are not completely cleavable without oxygen supply (for example acetates), oxidation of the non-oxidizing engineering ceramic powders can be prevented when the thermal decomposition is started in the first place at a temperature below 600°C in air, and then continues under protective gas or 1 vacuum at temperatures of 600-1200°C.

Fremgangsmåten ifølge oppfinnelsen er universelt anvendbar på alle Ingeniørkeramiske pulvere. Man får på enkel og økono-misk måte ingeniørkeramiske pulvere hvis enkeltpartikler er belagt med oksydiske additiver. The method according to the invention is universally applicable to all engineering ceramic powders. Engineering ceramic powders whose individual particles are coated with oxidic additives are obtained in a simple and economical way.

Ikke oksydiske og spesielt nitridiske ingeniørkeramiske pulvere lar seg ifølge denne fremgangsmåten spesielt fordelaktig belegges med oksydiske additiver. According to this method, non-oxidic and especially nitrided engineering ceramic powders can be particularly advantageously coated with oxidic additives.

De belagte ingeniørkeramiske pulvere kan ved sintring komprimeres fullstendig uten at de omtalte ulemper opptrer. The coated engineering ceramic powders can be completely compressed by sintering without the aforementioned disadvantages occurring.

En ytterligere fordel ved fremgangsmåten ifølge oppfinnelsen ligger i at det er mulig å påføre homogene blandingsoksyder ved anvendelse av tilsvarende saltoppløsninger på pulverets enkeltpartikler. A further advantage of the method according to the invention lies in the fact that it is possible to apply homogeneous mixed oxides by using corresponding salt solutions on the individual particles of the powder.

Fremgangsmåten ifølge oppfinnelsen er spesielt egnet til legning av Si3N4~pulvere med oksydiske additiver. De oppnåelige Sis^-pulvere utmerker seg ved spesielt gunstig sinteregenskaper og et vekttap på mindre enn 1 vekt-$ ved glødning inntil 1000°C. Slike Si3N4-pulvere er hittil ikke kjent. The method according to the invention is particularly suitable for laying Si3N4 powders with oxidative additives. The obtainable Sis^ powders are distinguished by particularly favorable sintering properties and a weight loss of less than 1 weight-$ when annealing up to 1000°C. Such Si3N4 powders are not known to date.

Oppfinnelsens gjenstand og derfor også Si3N4~pulveret som erkarakterisert vedat deres enkeltpartikler er belagt med oksydisk additive mengder fra 0,5-25 vekt-# og Si3N4-pulver-ene ved glødning til 1000° C, har et vekttap på mindre enn 1 vekt-56. The object of the invention and therefore also the Si3N4~ powder, which is characterized by the fact that their individual particles are coated with oxide additive amounts from 0.5-25 wt- 56.

Foretrukket er slike Si3N4-pulvere hvis enkeltpartikler er belagt med et additiv fra gruppen av jordalkalioksyder, B2O3, A1203, Ga203, Sc203, Y203, La203>Ti02, Zr02, Hf02, Cr203, oksyder av de sjeldne jordmetaller, blandinger eller blandingsoksyder av to eller flere av de nevnte oksyder. Preferred are such Si3N4 powders whose individual particles are coated with an additive from the group of alkaline earth oxides, B2O3, A1203, Ga203, Sc203, Y203, La203>Ti02, Zr02, Hf02, Cr203, oxides of the rare earth metals, mixtures or mixed oxides of two or several of the aforementioned oxides.

Si3N4~pulvere som har en overflateanrikningsfaktor K større enn 10 er spesielt foretrukket. Si3N4 powders having a surface enrichment factor K greater than 10 are particularly preferred.

Overflateanrikningsfaktoren K er et mål for overflatebelegget av Si3N4-pulver-enkeltpartiklene med additiver, kan påvises ved dyp profil-undersøkelser med sekundær-ionemasse-spektro-metri (SIMS; F. Schulz, K.Wittmaack, J.Maul, Radiation Effects 18, 211-215 (1973); S.Hofmann, Appl. Phys. 9, 59-66 The surface enrichment factor K is a measure of the surface coating of the Si3N4 powder single particles with additives, can be detected by deep profile investigations with secondary ion mass spectrometry (SIMS; F. Schulz, K. Wittmaack, J. Maul, Radiation Effects 18, 211-215 (1973); S. Hofmann, Appl. Phys. 9, 59-66

(1976); S. Hofmann, Surface and Interface Analysis 2, 148-160 (1976); S. Hofmann, Surface and Interface Analysis 2, 148-160

(1980); R.G.Gossink, Glass Technology 21, 125-133 (1980)). Faktor K er forholdet av den kvantitative sammensetningen av overflaten referert til denne av volumet (dvs. begynnelsen av dybdeprofilen til slutten av dybdeprofilen). Ved SIMS-målingene har det vist seg egnet følgende apparative parame-tere: primærioner Ar<+>(argonkationer), 12 keV (kiloelektrone-volt), strøm IO-<7>A (ampere) ved en strålediameter på 1,2 mm, blanding av det vanligvis ikke ledende pulver som skal måles med rent Ag (sølv )-pulver i forhold 1:4. Foreligger Si3N4~partikler og additivpartiklene ved siden av hverandre, viser SIMS-undersøkelsene et tidsuavhengig lineært intensitetsfor-løp av de for de enkelte stoffer karakteristiske ioner. Er Si3N4-partiklene Imidlertid belagt med additiver, opptrer ved begynnelsen av målingene i spektro overveiende ionene av additivene og mindre ionene av Si3N4. Først når det dekkende sjikt er fjernet ved ionebeskytning, øker intensiteten av de fra Si3N4dannede ioner de av ionene fra additivene går ned inntil det er oppnådd en likevekt, dvs. spektrene viser et sterkt tidsavhengig forløp. Med ovennevnte apparatparameter er likevektsinnstillingen oppnådd etter senest 60 minutter, hvilket tilsvareren avbygning fra 500 til 1000 Å. Ved SIMS-undersøkelser lar det seg også finne kvantitative uttalelser. Over en justering med blandinger av Si3N4~pulvere og additiver med kjent additivkonsentrasjon, kan de med SIMS målte ioneintensiteter omregnes i konsentrasjoner av de enkelte stoffer. Som måletall for kvaliteten av overflatebelegget defineres ved hjelp av de målte konsentrasjoner en overflateanrikningsfaktor K: (1980); R. G. Gossink, Glass Technology 21, 125-133 (1980)). Factor K is the ratio of the quantitative composition of the surface referenced to that of the volume (ie the beginning of the depth profile to the end of the depth profile). For the SIMS measurements, the following apparatus parameters have proven suitable: primary ions Ar<+> (argon cations), 12 keV (kiloelectron volts), current IO-<7>A (amperes) at a beam diameter of 1.2 mm , mixture of the usually non-conductive powder to be measured with pure Ag (silver) powder in a ratio of 1:4. If Si3N4~ particles and the additive particles are present next to each other, the SIMS investigations show a time-independent linear intensity progression of the ions characteristic of the individual substances. However, if the Si3N4 particles are coated with additives, at the beginning of the measurements, predominantly the ions of the additives and less the ions of Si3N4 appear in the spectrum. Only when the covering layer has been removed by ion shielding does the intensity of the ions formed from Si3N4 increase, those of the ions from the additives decrease until an equilibrium is reached, i.e. the spectra show a strong time-dependent course. With the above-mentioned apparatus parameters, the equilibrium setting is reached after 60 minutes at the latest, which corresponds to decomposition from 500 to 1000 Å. With SIMS investigations, it is also possible to find quantitative statements. After an adjustment with mixtures of Si3N4 powders and additives with known additive concentration, the ion intensities measured with SIMS can be converted into concentrations of the individual substances. As a measure of the quality of the surface coating, a surface enrichment factor K is defined using the measured concentrations:

Foreligger ingen belegning av Si3N4~pulvere med additiver, er de målte konsentrasjoner ved begynnelsen av målingen (t=0; prøveoverflaten), og etter en lengre ionebeskyttelse (t=60 minutter; sjikt i en dybde på ca. 500-1000Å), lik. Det er ikke tilstede noen overflateanrikning, og det fremkommer en faktor av K=l. Foreligger derimot en ideal lukket omhylling av Si3N4-pulverpartiklene med additiver, er konsentrasjonen av Si3-N4~pulvere på prøveoverflaten (t=0) lik 0, derav fremkommer en overflateanrikningsfaktor på K = (uendelig). I reelle prøver oppnås ikke verdien K=°°. If there is no coating of Si3N4~ powders with additives, the measured concentrations at the beginning of the measurement (t=0; sample surface), and after a longer ion protection (t=60 minutes; layer at a depth of approx. 500-1000Å), are equal . No surface enrichment is present, and a factor of K=l appears. If, on the other hand, there is an ideal closed encasement of the Si3N4 powder particles with additives, the concentration of Si3-N4 powders on the sample surface (t=0) is equal to 0, resulting in a surface enrichment factor of K = (infinity). In real samples, the value K=°° is not achieved.

Denne metode kan anvendes på alle keramiske pulvere med additiver. Produkter med en overflateanrikningsfaktor K større enn 10 har en til forbedring av sinteregenskapene tilstrekkelig belegning med oksydisk additiv. This method can be applied to all ceramic powders with additives. Products with a surface enrichment factor K greater than 10 have a sufficient coating with an oxide additive to improve the sintering properties.

Oppfinnelsens gjenstand er også anvendelsen av Sis^-pulver-ene ifølge oppfinnelsen, og de etter fremgangsmåten ifølge oppfinnelsen oppnådde ingeniørkeramiske pulvere til fremstilling av keramiske formlegemer. The object of the invention is also the use of the Sis^ powders according to the invention, and the engineering ceramic powders obtained according to the method according to the invention for the production of ceramic moldings.

Ved det meget lille vektstap ved glødning inntil 1000"C og den høye grad av overflatebelegg med oksydiske additiver, kan de nevnte pulvere spesielt fordelaktig anvendes ved fremstillingen av keramiske formlegemer. Såvel ved fremstillingen av rålegemet ved en formgivningsfremgangsmåte (eksempelvis pressing, isostatisk pressing, slamstøp eller sprøytestøp), som også ved den etterfølgende sinterfremgangsmåte (eksempelvis trykkløs sintring, gasstrykksintring, varmpressing, varmisostatisk pressing) kan de omtalte ulemper unngås. Due to the very small weight loss when annealing up to 1000°C and the high degree of surface coating with oxidic additives, the aforementioned powders can be particularly advantageously used in the production of ceramic molded bodies. or injection moulding), as also with the subsequent sintering method (for example pressureless sintering, gas pressure sintering, hot pressing, hot isostatic pressing) the disadvantages mentioned can be avoided.

Fremgangsmåten ifølge oppfinnelsen skal forklares nærmere ved hjelp av et eksempel. The method according to the invention shall be explained in more detail by means of an example.

Som karakteristiske størrelser av det med oksydiske additiver belagte produkt, ble det bestemt overflateanrikningsfaktoren K og veksttapet ved glødning ved 1000°C. Til sammenligning ble det bestemt overflateanrikningsfaktoren K av et tilsvarende pulver som ble fremstilt ved sammenmaling med oksydiske additiver. As characteristic sizes of the product coated with oxidative additives, the surface enrichment factor K and the growth loss upon annealing at 1000°C were determined. For comparison, the surface enrichment factor K of a corresponding powder that was produced by grinding together with oxidative additives was determined.

Eksempel.Example.

Av 100 g Si3N4~pulver, 95 ml av en ca. 12 vekt-* oppløsning av yttriumf ormiatdiydrat ivann og 20 ml av en 18 vekt-* oppløsning av aluminiumformeat i vann, fremstilles i en røreapparatur en suspensjon. Denne tørkes i en forstøvnings-tørker. Det tørre produkt kalsineres under luft i 1 time ved 600°C, og deretter under nitrogen 1 time ved 1000°C. Etter kalsineringen var Si3N4~pulveret belagt med 5,3 vekt-* Y2O3og 1,1 vekt-* AI2O3, referert til den samlede pulvermengde. From 100 g of Si3N4~powder, 95 ml of an approx. A 12 weight-* solution of yttrium formate dihydrate in water and 20 ml of a 18 weight-* solution of aluminum formate in water are prepared in a stirring apparatus into a suspension. This is dried in a spray dryer. The dry product is calcined under air for 1 hour at 600°C, and then under nitrogen for 1 hour at 1000°C. After the calcination, the Si3N4~ powder was coated with 5.3 wt-* Y2O3 and 1.1 wt-* AI2O3, referred to the total amount of powder.

På det kalsinerte produkt gjennomføres dypprofilmålinger med SIMS (primærioner Ar<+>, 12 keV,strøm 1.10-<7>A ved en strålediameter på 1,2 mm). On the calcined product, deep profile measurements are carried out with SIMS (primary ions Ar<+>, 12 keV, current 1.10-<7>A at a beam diameter of 1.2 mm).

Fra de målte ioneintensiteter fremgår følgende konsentrasjoner c (angivelser i vekt-*): From the measured ion intensities, the following concentrations c (indicated in weight-*) appear:

på prøveoverflaten (t = 0):on the sample surface (t = 0):

cAl203= 25,1 *; cY203= 57,3 *; cSi3N4= 17,6*; i den indre prøver (t = 60 minutter): cAl203= 4,4*;cY203= 13,2 *; cSi3N4= 82,4 *; og en overflateanrikningsfaktor på cAl 2 O 3 = 25.1*; cY 2 O 3 = 57.3*; cSi 3 N 4 = 17.6*; in the inner samples (t = 60 minutes): cAl203= 4.4*; cY203= 13.2*; cSi 3 N 4 = 82.4*; and a surface enrichment factor of

Ved etterglødning til 1000°C kunne det ikke iakttas noe vektstap. After annealing to 1000°C, no weight loss could be observed.

Sammenlignlngseksempel 1Comparative example 1

Av 140 g Si3N4-pulver, 16 Y203-pulver, 3,6 g Al203-pulver og 350 ml isopropanol fremstilles en suspensjon. Denne males i 1 time i en rørverkskulemølle med Al203-perler. Maleperlene adskilles deretter og suspensjonen tørkes i en forstøvnings-tørker. A suspension is prepared from 140 g Si3N4 powder, 16 Y2 O3 powder, 3.6 g Al2 O3 powder and 350 ml isopropanol. This is ground for 1 hour in a pipework ball mill with Al203 beads. The grinding beads are then separated and the suspension is dried in a spray dryer.

På det tørkede produkt gjennomføres dypprofilmålinger med SIMS. Fra de målte ioneintensiteter fremgår følgende konsentrasjoner c (angivelseri vekt-*): Deep profile measurements with SIMS are carried out on the dried product. From the measured ion intensities, the following concentrations c (indicated by weight-*) appear:

på prøveoverflaten (t = 0):on the sample surface (t = 0):

cAl203= 1,2*; cY203= 7,9 *; cAl 2 O 3 = 1.2*; cY 2 O 3 = 7.9*;

cSi3N4= 90,9 *; cSi 3 N 4 = 90.9*;

i den indre prøven (t = 60 minutter):in the inner sample (t = 60 minutes):

cAl203= 1,6*; cY203= 4,7*; cAl 2 O 3 = 1.6*; cY 2 O 3 = 4.7*;

cSi3N4= 93,7 *. cSi 3 N 4 = 93.7*.

Overflateanrikningsfaktoren utgjør følgelig: The surface enrichment factor therefore amounts to:

Sammenligningseksempel 2 Comparative example 2

Av 93,6 g Si3N4-pulver, 5,3 g Y203-pulver, 0,3 g Al203-pulver og 350 ml isopropanol fremstilles en suspensjon. Denne males i 1 time i en rørverkskulemølle med A^C^-perler. Maleperlene adskilles deretter og suspensjonen tørkes i en forstøv-ningstørker. A suspension is prepared from 93.6 g Si3N4 powder, 5.3 g Y2 O3 powder, 0.3 g Al2 O3 powder and 350 ml isopropanol. This is ground for 1 hour in a pipework ball mill with A^C^ beads. The grinding beads are then separated and the suspension is dried in a spray dryer.

Etter forstøvningstørkningen var pulverblandingen sammensatt av 5,5 vekt-* Y2O3, 1,9 vekt-* AI2O3, og resten Si3N4. After the spray drying, the powder mixture was composed of 5.5 wt-* Y 2 O 3 , 1.9 wt-* Al 2 O 3 , and the remainder Si 3 N 4 .

På det tørkede produkt gjennomføres dypprofilmålinger med SIMS. Fra de målte ioneintensiteter fremkommer følgende konsentrasjoner c (angivelseri vekt-*): Deep profile measurements with SIMS are carried out on the dried product. From the measured ion intensities, the following concentrations c (indicated by weight-*) appear:

på prøveoverflaten (t = 0):on the sample surface (t = 0):

cAl203= 2,2*; cY203= 1,9 *; cAl 2 O 3 = 2.2*; cY 2 O 3 = 1.9*;

cSi3N4= 95,9*; cSi 3 N 4 = 95.9*;

i den indre prøve (t = 60 minutter):in the inner test (t = 60 minutes):

cAl203= 3,8cY203= 1,9*; cAl 2 O 3 = 3.8 cY 2 O 3 = 1.9*;

cSi3N4= 94,3 *. cSi 3 N 4 = 94.3*.

Overflateanrikningsfaktoren utgjør følgelig:The surface enrichment factor therefore amounts to:

De meget små overflateanrikningsfaktorer K viser at ved maling av Si3N4~pulvere med de oksydiske additiver oppnås bare et lite overflatebelegg av Si3N4-pulver-enkeltpartiklene. The very small surface enrichment factors K show that when grinding Si3N4 powders with the oxidic additives, only a small surface coating of the individual Si3N4 powder particles is achieved.

Med anvendelse av fremgangsmåten Ifølge oppfinnelsen oppnås derimot et vesentlig forbedret overflatebelegg av 813^-pulver-enkeltpartiklene med de oksydiske additiver. Using the method according to the invention, on the other hand, a significantly improved surface coating of the 813^ powder single particles with the oxidic additives is achieved.

Claims (12)

1. Fremgangsmåte til fremstilling av ingeniørkeramiske pulvere hvis enkeltpartikler er belagt med av et annet materiale bestående oksydisk additiv, karakterisert ved at additivet påføres på enkeltpartiklene i form av et i vandig medium oppløselig og termisk til oksyd spaltbart salt eller saltblanding, og overføres ved termisk spaltning til den tilsvarende oksydform.1. Process for the production of engineering ceramic powders whose individual particles are coated with an oxidic additive consisting of another material, characterized in that the additive is applied to the individual particles in the form of a salt or salt mixture that is soluble in an aqueous medium and can be thermally split into oxide, and is transferred by thermal splitting into the corresponding oxide form. 2 . Fremgangsmåte ifølge krav 1, karakterisert ved at saltet eller saltblandingen anvendes i slike mengder at de keramiske pulvere etter den termiske spaltning er belagt med 0,5-25 vekt-* oksydisk additiv.2. Method according to claim 1, characterized in that the salt or salt mixture is used in such quantities that the ceramic powders after the thermal cleavage are coated with 0.5-25 weight-* of oxide additive. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at additivet er et jordalkalioksyd, B2 O3 , AI2 O3 , SC2 O3 , Ga2 03 , Y2 O3 , 1^2 03 , T102 , ZrC"2, HfO2 , 0203, etoksyd av de sjeldne jordmetaller, en blanding eller et blandingsoksyd fra to eller flere av de nevnte oksyder.3. Method according to claim 1 or 2, characterized in that the additive is an alkaline earth oxide, B2 O3 , AI2 O3 , SC2 O3 , Ga2 03 , Y2 O3 , 1^2 03 , T102 , ZrC"2 , HfO2 , 0203, ethoxide of the rare earth metals , a mixture or a mixed oxide from two or more of the said oxides. 4. Fremgangsmåte ifølge ett eller flere av kravene 1 til 3, karakterisert ved at saltet eller saltblandingen oppløses i et vandig medium, blandes med det keramiske pulver og saltet eller saltablandingen fra blandingen påføres ved forstøvningstørkning, frysetørkning eller en fellingsreaksjon som besjiktning på det keramiske pulverets enkeltpartikler .4. Method according to one or more of claims 1 to 3, characterized in that the salt or salt mixture is dissolved in an aqueous medium, mixed with the ceramic powder and the salt or salt mixture from the mixture is applied by spray drying, freeze drying or a precipitation reaction as a coating on the individual particles of the ceramic powder. 5. Fremgangsmåte ifølge et eller flere av kravene 1 til 4, karakterisert ved at den termiske spaltning gjennomføres under inertgass eller i vakuum.5. Method according to one or more of claims 1 to 4, characterized in that the thermal cleavage is carried out under inert gas or in a vacuum. 6. Fremgangsmåte ifølge et eller flere av kravene 1 til 5, karakterisert ved at det i vandig medium oppløselige salt er et hydroksyd, et karbonat, et nitrat, et salt av en organisk syre fra gruppen av karboksylsyrer, hydroksykarboksylsyrer eller maursyrer, eller blanding herav.6. Method according to one or more of claims 1 to 5, characterized in that the salt soluble in an aqueous medium is a hydroxide, a carbonate, a nitrate, a salt of an organic acid from the group of carboxylic acids, hydroxycarboxylic acids or formic acids, or a mixture thereof. 7. Fremgangsmåte ifølge et eller flere av kravene 1 til 6, karakterisert ved at det ingeniørkeramiske pulver er et ikke-oksydisk pulver.7. Method according to one or more of claims 1 to 6, characterized in that the engineering ceramic powder is a non-oxidizing powder. 8. Fremgangsmåte ifølge et eller flere av kravene 1 til 7, karakterisert ved det ingeniørkeramiske pulver er et nitridisk pulver.8. Method according to one or more of claims 1 to 7, characterized in that the engineering ceramic powder is a nitride powder. 9. Si2 N4 -pulvere, karakterisert ved at deres enkeltpartikler er belagt med oksydisk additiv i mengder fra 0,5 til 25 vekt-*, og Si3 N4~ pulverene ved glødning inntil 1000°C har et vekttap på mindre enn 1 vekt-*.9. Si2 N4 powders, characterized in that their individual particles are coated with an oxidative additive in amounts from 0.5 to 25 weight-*, and the Si3 N4~ powders when annealing up to 1000°C have a weight loss of less than 1 weight-*. 10. Si3 N4~ pulvere ifølge krav 9, karakterisert ved at additivet er et jordalkalioksyd, B2 O3 , AI2 O3 , Ga2 03 , SC2 O3 , Y2 O3 , La2 03 , T102 , ZrC>2 , HFO2 , CV2 O2 , et oksyd av de sjeldne jordmetaller, en blanding eller et blandingsoksyd av to eller flere av de nevnte oksyder.10. Si3 N4~ powders according to claim 9, characterized in that the additive is an alkaline earth oxide, B2 O3 , AI2 O3 , Ga2 03 , SC2 O3 , Y2 O3 , La2 03 , T102 , ZrC>2 , HFO2 , CV2 O2 , an oxide of the rare earth metals, a mixture or a mixed oxide of two or more of the said oxides. 11. Si3 N4 -pulvere ifølge krav 9 eller 10, karakterisert ved at Si3 N4 -pulverene har en overflateanrikningsfaktor større enn 10.11. Si3 N4 powders according to claim 9 or 10, characterized in that the Si3 N4 powders have a surface enrichment factor greater than 10. 12. Anvendelsen av Si3 N4 -pulverene ifølge et eller flere av kravene 9-11 og det keramiske pulver oppnådd etter en fremgangsmåte ifølge et eller flere av kravene 1-6 til fremstilling av keramiske formlegemer.12. The use of the Si3 N4 powders according to one or more of claims 9-11 and the ceramic powder obtained according to a method according to one or more of claims 1-6 for the production of ceramic shaped bodies.
NO874395A 1986-11-04 1987-10-21 PROCEDURE FOR THE PREPARATION OF ENGINEERING CERAMIC POWDER WITH ADDITIVES. NO874395L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19863637506 DE3637506A1 (en) 1986-11-04 1986-11-04 METHOD FOR PRODUCING ENGINEERING-CERAMIC POWDERS WITH ADDITIVES

Publications (2)

Publication Number Publication Date
NO874395D0 NO874395D0 (en) 1987-10-21
NO874395L true NO874395L (en) 1988-05-05

Family

ID=6313116

Family Applications (1)

Application Number Title Priority Date Filing Date
NO874395A NO874395L (en) 1986-11-04 1987-10-21 PROCEDURE FOR THE PREPARATION OF ENGINEERING CERAMIC POWDER WITH ADDITIVES.

Country Status (5)

Country Link
EP (1) EP0266641A3 (en)
JP (1) JPS63117948A (en)
CA (1) CA1274552A (en)
DE (1) DE3637506A1 (en)
NO (1) NO874395L (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3741119A1 (en) * 1987-12-04 1989-06-15 Krupp Gmbh PRODUCTION OF SECONDARY POWDER PARTICLES WITH NANOCRISTALLINE STRUCTURE AND WITH SEALED SURFACES
DE3834325A1 (en) * 1988-10-08 1990-04-12 Bayer Ag SIC POWDER, METHOD FOR THE PRODUCTION AND THE USE THEREOF AND THE CORRESPONDING SIC SINTER BODY
WO1990006906A1 (en) * 1988-12-22 1990-06-28 Norton Company Uniformly-coated ceramic particles
DE3931654A1 (en) * 1989-09-22 1991-04-04 Basf Ag METHOD FOR THE PRODUCTION OF MASSES FILLED WITH CERAMIC POWDERS AND OXIDIC SINTER ADDITIVES FROM THERMOPLASTIC PLASTICS
GB9015892D0 (en) * 1990-07-19 1990-09-05 Tioxide Group Services Ltd Compositions
GB9016690D0 (en) * 1990-07-30 1990-09-12 Tioxide Group Services Ltd Ceramic green bodies
US5273699A (en) * 1992-02-14 1993-12-28 The Dow Chemical Company Moisture-resistant aluminum nitride powder and methods of making and using
AU763385B2 (en) * 1999-04-16 2003-07-24 Moltech Invent S.A. Protection coating of wear-exposed components used for refining molten metal
JP4969372B2 (en) * 2007-02-27 2012-07-04 京セラ株式会社 Boron carbide powder, method for producing the same, boron carbide molded body and boron carbide sintered body using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761664A (en) * 1980-09-29 1982-04-14 Nat Res Inst Metals Ceramic-base composite powder and manufacture
JPS59164673A (en) * 1983-03-11 1984-09-17 三井造船株式会社 Homonization of ceramic powder and sintering aid
JPS59169969A (en) * 1983-03-14 1984-09-26 三井造船株式会社 Ceramic powder pretreatment
CA1273185A (en) * 1985-08-01 1990-08-28 Sheldon Lieberman Process for making a homogeneous doped silicon nitride article
JPH0788258B2 (en) * 1985-08-01 1995-09-27 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレイテツド Method for producing silicon nitride powder having good sinterability
JPS62158166A (en) * 1985-12-27 1987-07-14 三菱化学株式会社 Manufacture of silicon nitride mixed powder

Also Published As

Publication number Publication date
JPS63117948A (en) 1988-05-21
NO874395D0 (en) 1987-10-21
EP0266641A3 (en) 1989-06-14
EP0266641A2 (en) 1988-05-11
DE3637506A1 (en) 1988-05-05
CA1274552A (en) 1990-09-25

Similar Documents

Publication Publication Date Title
Marí et al. Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors
US5863850A (en) Process of making zirconia based ceramic material
US4520114A (en) Production of metastable tetragonal zirconia
KR101094596B1 (en) A Zirconia Sintered Body and a Method for Producing the Same
Bhandhubanyong et al. Forming of silicon nitride by the HIP process
JPH0288423A (en) Stabilized zirconia
US4690911A (en) Zirconia ceramics and process for producing the same
Nettleship et al. Phase transformations in dicalcium silicate: I, fabrication and phase stability of fine‐grained β phase
US4764491A (en) Low temperature sintering of yttria stabilized zirconia with lanthana borate additions
NO874395L (en) PROCEDURE FOR THE PREPARATION OF ENGINEERING CERAMIC POWDER WITH ADDITIVES.
Duh et al. Fabrication and sinterability in Y 2 O 3-CeO 2-ZrO 2
Guedes-Silva et al. Effect of rare-earth oxides on properties of silicon nitride obtained by normal sintering and sinter-HIP
Yashima et al. Raman spectral characterization of existing phases in the Y2O3 Nb2O5 system
Cook et al. A new powder production route for transparent spinel windows: powder synthesis and window properties
CN109534823B (en) Method for obtaining MgAlON transparent ceramic
CN113348148A (en) Method for producing lithium titanium phosphate
Pyda et al. CaO-containing tetragonal ZrO2 polycrystals (Ca-TZP)
Cerqueira et al. Sintering and characterization of PLZT (9/65/35)
Fujihara et al. Sol-gel processing of LaF3 thin films
Garskaite et al. Sol-gel preparation and electrical behaviour of Ln: YAG (Ln= Ce, Nd, Ho, Er)
Kimoto et al. Formation and Sintering of Yttria‐Doped Tetragonal Zirconia with 50 mol% Alumina Prepared by the Hydrazine Method
Wang et al. Oxidation Behavior of Lanthanide Aluminum Oxynitrides with Magnetoplumbite‐Like Structure
Campanella et al. Prehistoric terracottas from the libyan tadrart acacus
Sun et al. Solubility of Si in YAG
Kim et al. Spark plasma sintering and decomposition of the Y3NbO7: Eu phase