NO861552L - CONTROL ROTATING PROPELL DRIVES. - Google Patents
CONTROL ROTATING PROPELL DRIVES.Info
- Publication number
- NO861552L NO861552L NO861552A NO861552A NO861552L NO 861552 L NO861552 L NO 861552L NO 861552 A NO861552 A NO 861552A NO 861552 A NO861552 A NO 861552A NO 861552 L NO861552 L NO 861552L
- Authority
- NO
- Norway
- Prior art keywords
- propellers
- propeller
- rotating
- counter
- shafts
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 241000251729 Elasmobranchii Species 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H11/00—Marine propulsion by water jets
- B63H11/02—Marine propulsion by water jets the propulsive medium being ambient water
- B63H11/04—Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
- B63H11/08—Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/08—Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
- B63H5/10—Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/125—Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/14—Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/16—Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/125—Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
- B63H2005/1254—Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H11/00—Marine propulsion by water jets
- B63H11/02—Marine propulsion by water jets the propulsive medium being ambient water
- B63H11/04—Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
- B63H11/08—Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
- B63H2011/084—Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type with two or more pump stages
- B63H2011/085—Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type with two or more pump stages having counter-rotating impellers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Gear Transmission (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Vehicle Body Suspensions (AREA)
- Power Steering Mechanism (AREA)
- Hydraulic Turbines (AREA)
- Toys (AREA)
- Control Of Electric Motors In General (AREA)
Description
Oppfinnelsen vedrører et drivverk med kontraroterende propeller, hvor akselen til den ytre propell er opplagret i lageret i den hule akselen til den indre propell. The invention relates to a drive unit with counter-rotating propellers, where the shaft of the outer propeller is stored in the bearing in the hollow shaft of the inner propeller.
Arbeidsprinsippet for kontraroterende propeller, en venstre-skrue og en høyreskrue, som roterer om to konsentriske akser i motsatte retninger, har vært kjent i ca. 100 år. Den fysiske virkemåten til systemet baserer seg på det faktum at rotasjons-tapet for fremre propell kan utnyttes i den aktre propell, hvorved virkningsgraden til systemet vanligvis kan forbedres med 5-10% sammenlignet med konvensjonelle propeller. Den tra-disjonelle anvendelse for kontraroterende propeller har vært for torpedoer, hvor det i tillegg til en god virkningsgrad kreves et dreiemomentfritt propulsjonssystem. Andre fordeler med kontraroterende propeller sammenlignet med konvensjonelle er at man kan få en mindre propelldiameter, bedre kavitasjons-karakteristikk, lavere vibrasjonsnivå og bedre styreegenskaper. The working principle of counter-rotating propellers, a left-hand screw and a right-hand screw, which rotate about two concentric axes in opposite directions, has been known for approx. 100 years. The physical operation of the system is based on the fact that the rotational loss for the forward propeller can be utilized in the aft propeller, whereby the efficiency of the system can usually be improved by 5-10% compared to conventional propellers. The traditional use for counter-rotating propellers has been for torpedoes, where in addition to a good degree of efficiency, a torque-free propulsion system is required. Other advantages of counter-rotating propellers compared to conventional ones are that you can get a smaller propeller diameter, better cavitation characteristics, lower vibration levels and better steering properties.
Disse fordeler står i motsetning til den kompleksitet som drivverket krever, med tilhørende dyre og upålitelige tekniske løs-ninger. Den relative rotasjonshastighet mellom de to konsentriske aksler er stor, og dette kompliserer lagerutførelsen vesentlig. These advantages stand in contrast to the complexity that the drive unit requires, with associated expensive and unreliable technical solutions. The relative speed of rotation between the two concentric shafts is large, and this complicates the bearing design considerably.
Høyt belastede propeller lider som kjent under en dårlig virkningsgrad. Eksempelvis arbeider trålere og slepebåter med virk-ningsgrader rundt 40%. Kan kraften deles mellom flere propeller, så vil virkningsgraden bedres, men strømningsbetingelsene for en propell som ligger langt fra fartøyets senterlinje, er dår-ligere enn for en sentralt plassert propell, og derved taper man den fordel som flere propeller skulle gi. As is well known, heavily loaded propellers suffer from poor efficiency. For example, trawlers and tugs work with efficiencies of around 40%. If the power can be shared between several propellers, the efficiency will be improved, but the flow conditions for a propeller that is far from the centerline of the vessel are poorer than for a centrally located propeller, and thereby the advantage that several propellers would give is lost.
Kontraroterende propeller er kjent som en effektiv propulsjonsanordning for høyhastighets-fartøy. Deres virkningsgrad baserer seg i tillegg til kraftoppdelingen på to propeller også på Counter-rotating propellers are known as an efficient propulsion device for high-speed vessels. In addition to the power distribution between two propellers, their efficiency is also based on
det faktum at rotasjonstapene kan elimineres delvist ved omsorgs- the fact that the rotational losses can be partially eliminated by care-
full konstruksjon av propellene.full construction of the propellers.
Hensikten med foreliggende oppfinnelse er å tilveiebringe en enda mer virkningsfull propulsjonsanordning med mulighet for oppnåelse av bedre virkningsgrad særlig for høyt belastede drivverk. Dette oppnås ved å benytte i det minste fire propeller. I en foretrukken utførelsesform av oppfinnelsen benyttes det fire propeller som er anordnet i par, idet det ene par trekker mens det andre par skyver, og idet propellene i begge par roterer i motsatte retninger. Med et slikt fire-propelldrivverk oppnås en tilstrekkelig kraftdeling og for høyt belastede ' fartøy kan det oppnås brenselbesparelser på mellom 20-25% . The purpose of the present invention is to provide an even more effective propulsion device with the possibility of achieving a better degree of efficiency, particularly for highly loaded drive units. This is achieved by using at least four propellers. In a preferred embodiment of the invention, four propellers are used which are arranged in pairs, with one pair pulling while the other pair pushes, and with the propellers in both pairs rotating in opposite directions. With such a four-propeller drive, a sufficient power distribution is achieved and for heavily loaded vessels, fuel savings of between 20-25% can be achieved.
I den utførelsen hvor det ifølge oppfinnelsen benyttes minst fire propeller, vil rotasjonstapene kunne utnyttes mer effektivt enn i tidligere kjente anordninger. Dessuten kan propelledia-meterne holdes relativt små samtidig som skyvekraften vil øke som følge av et større antall propeller. Det vil derfor være lett å montere drivverket i fartøyets bunn. Som følge av de små propelldiametre vil drivverket ikke utgjøre et for stort fremspring under fartøyets bunn. In the embodiment where, according to the invention, at least four propellers are used, the rotational losses can be utilized more effectively than in previously known devices. Furthermore, the propeller diameters can be kept relatively small at the same time that the thrust will increase as a result of a greater number of propellers. It will therefore be easy to mount the drive unit in the bottom of the vessel. As a result of the small propeller diameters, the drive unit will not form too large a projection under the bottom of the vessel.
Det vil også være mulig å kunne montere drivverket på en grei måte i en kompass-thruster, som derved kan utnyttes som et aktivt ror. Drivverket kan også monteres i en dyse eller i en kanal i bunnen av fartøyet, og derved virke som en vannjet. It will also be possible to mount the drive in a straightforward manner in a compass thruster, which can thereby be used as an active rudder. The drive unit can also be mounted in a nozzle or in a channel in the bottom of the vessel, thereby acting as a water jet.
Fordi drivverket innbefatter flere propeller kan det fordel-aktig konstrueres for ulike anvendelser. Propelldiameterne velges slik at den forreste propelldiameter er den største og den bakerste er den minste, for derved å holde propellene inne i strømningskontraksjonen. I tillegg kan man ved hjelp av egnede girarrangementer velge ulike rotasjonshastigheter, med lavere hastighet for fremre propell og høyere hastighet for den bakre. Antall propellblader kan også varieres, idet den fremre propell utføres med det minste bladantall mens den bakerste propell utføres med det største bladantall. Stigningsfordelingen kan varieres etter behov, alt avhengig av den påtenkte anvendelse. Because the drive unit includes several propellers, it can advantageously be designed for various applications. The propeller diameters are chosen so that the front propeller diameter is the largest and the rear is the smallest, thereby keeping the propellers within the flow contraction. In addition, with the help of suitable gear arrangements, different rotation speeds can be selected, with a lower speed for the front propeller and a higher speed for the rear. The number of propeller blades can also be varied, as the front propeller is made with the smallest number of blades while the rear propeller is made with the largest number of blades. The slope distribution can be varied as needed, all depending on the intended application.
Oppfinnelsen skal beskrives nærmere nedenfor under henvisning til tegningene hvor: Fig.l viser en foretrukken utførelsesform av oppfinnelsen , The invention shall be described in more detail below with reference to the drawings where: Fig.l shows a preferred embodiment of the invention,
fig.2 viser et drivverk ifølge oppfinnelsen, an-vendt som vannjet, fig.2 shows a drive unit according to the invention, used as a water jet,
fig.3 viser et drivverk ifølge oppfinnelsen, montert fig.3 shows a drive mechanism according to the invention, assembled
i dysen til en kompass-thruster ogin the nozzle of a compass thruster and
fig.4 viser nok en utførelsesform av oppfinnelsen.Fig. 4 shows another embodiment of the invention.
I fig.l er en foretrukken utførelsesform av oppfinnelsen montert akterut på et fartøy 1. Drivverket er koblet til en ikke vist drivmotor ved hjelp av et vinkeldrev. Drivmotorens utgående aksel 7 er ved hjelp av et vinkeldrev drivkoblet med en transmissionsaksel 8 som går ut gjennom fartøyets bunn og til en girkasse inne i et hus 2. Girkassen innbefatter koniske tann-hjul 9 og 10 på transmissionsakselen 8. Disse tannhjulene er plassert i innbyrdes avstand og i nærheten av de respektive bærelagre for transmissionsakselen 8. In fig.l, a preferred embodiment of the invention is mounted aft on a vessel 1. The drive is connected to a drive motor, not shown, by means of an angle drive. The drive motor's output shaft 7 is, by means of a bevel gear, drive-coupled with a transmission shaft 8 which goes out through the bottom of the vessel and to a gearbox inside a housing 2. The gearbox includes conical gears 9 and 10 on the transmission shaft 8. These gears are placed in each other distance and in the vicinity of the respective support bearings for the transmission shaft 8.
Akslene til propellparene 3,4 og 5,6 er ført frem til området mellom vinkeltannhjulene 9 og 10. Akslene 13 for de ytre propeller 3,6 bæres av lagre som ligger inne i de hule akslene 14 for de indre propeller 4,5. På den frie enden til akslene The shafts of the propeller pairs 3,4 and 5,6 are brought forward to the area between the bevel gears 9 and 10. The shafts 13 for the outer propellers 3,6 are supported by bearings located inside the hollow shafts 14 for the inner propellers 4,5. On the free end of the shafts
13 og 14 er det montert vinkeltannhjul 11. Disse drives av det øvre vinkeltannhjul 9 på transmissionsakselen 8. De ytre propeller 3 og 6 roterer derfor i motsatte retninger. På den frie enden til de indre aksler 13 er det også montert vinkeltannhjul 12. Disse drives av det nedre vinkeltannhjul 10 på transmissionsakselen 8. De indre propeller 4 og 5 roterer således også i motsatte retninger. I tillegg roterer propellparene 3,4 og 5,6 i motsatte innbyrdes retninger. 13 and 14 the bevel gear 11 is mounted. These are driven by the upper bevel gear 9 on the transmission shaft 8. The outer propellers 3 and 6 therefore rotate in opposite directions. Bevel gears 12 are also mounted on the free end of the inner shafts 13. These are driven by the lower bevel gear 10 on the transmission shaft 8. The inner propellers 4 and 5 thus also rotate in opposite directions. In addition, the propeller pairs 3,4 and 5,6 rotate in opposite directions.
Ved bruk av dette konsept oppnås en meget enkel og drivsikker mekanisk konstruksjon som lett kan monteres i den bakre delen av en fartøysbunn- -. Som følge av de små dimensjoner kan drivverket også enkelt innpasses i en kompass-thruster, som kan benyttes som et aktivt ror. By using this concept, a very simple and drift-proof mechanical construction is achieved which can easily be mounted in the rear part of a vessel's bottom - -. Due to the small dimensions, the drive unit can also be easily fitted into a compass thruster, which can be used as an active rudder.
I en utførelsesform av oppfinnelsen kan drivverket være montert i en kanal i fartøyets aktre del, slik at drivverket således virker som en vannjet (fig.2). In one embodiment of the invention, the drive unit can be mounted in a channel in the aft part of the vessel, so that the drive unit thus acts as a water jet (fig.2).
En annen utførelse av oppfinnelsen er vist i fig.4, hvor to dobbeltpropell-drivverk er montert etter hverandre under en fartøysbunn. I prinsippet er denne utførelse lik den som er vist i fig.l, med unntagelse av at propellparene her er mekanisk adskilt. Fysisk sett virker de imidlertid på samme måte. Another embodiment of the invention is shown in fig. 4, where two twin propeller drives are mounted one behind the other under a vessel bottom. In principle, this design is similar to that shown in fig.1, with the exception that the propeller pairs are here mechanically separated. Physically, however, they act the same way.
I fig.4 er samtlige propeller skyvende. Man kan naturligvis også anordne drivverkene slik at det ene propellpar skyver og det andre trekker. In Fig.4, all propellers are pushing. You can of course also arrange the drives so that one pair of propellers pushes and the other pulls.
Drivkraften fra drivmotoren kan således deles på fire propeller. Dette gir mindre dimensjoner for de enkelte propeller uten at man derved reduserer drivverkets totale skyvekraft. I tillegg kan rotasjonstapene effektivt elimineres med tilhørende bedre virkningsgrad, sammenlignet med konvensjonelle anordninger. Drivverket er derfor meget godt egnet for høy belastning. The drive power from the drive motor can thus be divided between four propellers. This results in smaller dimensions for the individual propellers without thereby reducing the drivetrain's total thrust. In addition, the rotational losses can be effectively eliminated with an associated better efficiency, compared to conventional devices. The drive is therefore very well suited for high loads.
En annen fordel er at drivverket som sådan kan konstrueres og tilpasses for den enkelte påtenkte anvendelse på en best mulig måte. Man kan lett foreta de nødvendige tilpassinger med hensyn til variasjoner av propelldiameterne, antall propellblad, rotasjonshastighet, stigningsfordeling, rotasjonsretning osv. Another advantage is that the drive unit as such can be designed and adapted for the individual intended application in the best possible way. One can easily make the necessary adjustments with regard to variations in the propeller diameters, number of propeller blades, rotation speed, pitch distribution, direction of rotation, etc.
Vanligvis utføres drivverket slik at sett fra fartøyets baug vil diameteren til den første propell være den største, antall Usually, the drive is made so that, seen from the bow of the vessel, the diameter of the first propeller will be the largest, number
propéllblader være minst og rotasjonshastigheten være lavest,propeller blades be the least and the rotation speed be the lowest,
og disse forhold kan variere slik i retning mot den siste propell at diameteren til den siste propell er minst, antall propéllblader er størst og rotasjonshastigheten er størst. and these conditions can vary in such a way towards the last propeller that the diameter of the last propeller is smallest, the number of propeller blades is greatest and the rotational speed is greatest.
I tillegg er det naturligvis mulig å variere antall propellblad, bladformen og stigningsfordelingen, alt avhengig av den påtenkte anvendelse. In addition, it is naturally possible to vary the number of propeller blades, the blade shape and pitch distribution, all depending on the intended application.
Rotasjonsretningene velges slik at sidekreftene under dreiing av fartøyet reduseres. Rotasjonshastighetene kan i tillegg velges noe ulike hverandre, for derved å bidra til å løse smørings- og vibrasjonsproblemer. The directions of rotation are chosen so that the side forces during turning of the vessel are reduced. In addition, the rotation speeds can be chosen slightly different from each other, thereby helping to solve lubrication and vibration problems.
Drivverket er meget godt egnet for høye belastniger, slik man finner dem i forbindelse med slepebåter, trålere og lastefartøy-er, men andre anvendelsesområder er naturligvis også aktuelle og mulige. The drive system is very well suited for high loads, as you find them in connection with tugboats, trawlers and cargo vessels, but other areas of application are of course also relevant and possible.
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI843301A FI75128C (en) | 1984-08-22 | 1984-08-22 | Drive device equipped with counter-rotating propellers. |
Publications (1)
Publication Number | Publication Date |
---|---|
NO861552L true NO861552L (en) | 1986-04-18 |
Family
ID=8519497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO861552A NO861552L (en) | 1984-08-22 | 1986-04-18 | CONTROL ROTATING PROPELL DRIVES. |
Country Status (10)
Country | Link |
---|---|
JP (1) | JPS61503022A (en) |
AU (1) | AU4639785A (en) |
DE (1) | DE3590393T1 (en) |
DK (1) | DK174786A (en) |
FI (1) | FI75128C (en) |
GB (1) | GB2187516B (en) |
NL (1) | NL8520216A (en) |
NO (1) | NO861552L (en) |
SE (1) | SE8700721L (en) |
WO (1) | WO1986001483A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI79991C (en) * | 1986-04-29 | 1990-04-10 | Hollming Oy | PROPELLERANORDNING FOER ETT FARTYG. |
US7070469B2 (en) | 2004-09-15 | 2006-07-04 | James Stallings | Dual propeller surface drive propulsion system for boats |
JP2012061938A (en) * | 2010-09-15 | 2012-03-29 | Mitsubishi Heavy Ind Ltd | Marine propulsion apparatus |
KR101380651B1 (en) * | 2011-06-15 | 2014-04-04 | 삼성중공업 주식회사 | Propulsion apparatus for ship, and ship having the same |
RU2540200C1 (en) * | 2013-07-19 | 2015-02-10 | Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" | Ship screw-steering column for vessel manoeuvring in icy conditions |
RU2611468C1 (en) * | 2015-11-10 | 2017-02-22 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) | Coaxil vessel propellers with counter-rotation |
WO2017158204A1 (en) | 2016-03-18 | 2017-09-21 | Rolls-Royce Marine As | Steerable contra-rotating propulsion system |
RU201400U1 (en) * | 2020-07-31 | 2020-12-14 | Общество с ограниченной ответственностью "Выборгский машиностроительный завод - Судовое машиностроение" | Mechanical ship propulsion propeller of a high ice class (Icebreaker 6, 3.5 MW). |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI28898A (en) * | 1957-02-11 | Masch Und Zahnraederfabri Veb | Drivanordning för vattenfarkoster | |
US1381939A (en) * | 1919-12-15 | 1921-06-21 | Robert E Small | Propelling mechanism |
GB357368A (en) * | 1930-09-19 | 1931-09-24 | Roe A V & Co Ltd | Improvements relating to fans or blowers |
FR712183A (en) * | 1931-02-13 | 1931-09-26 | Thruster with double or multiple propellers working alternately in opposite direction, for fluids of all kinds | |
US2987031A (en) * | 1959-07-24 | 1961-06-06 | Conrad R Odden | Dual propeller propulsion |
FR1499497A (en) * | 1966-10-04 | 1967-10-27 | Stal Laval Turbin Ab | Boat propelled by two propellers rotating in opposite directions |
SE433599B (en) * | 1981-03-05 | 1984-06-04 | Volvo Penta Ab | DOUBLE PROPELLER DRIVE FOR BATAR |
SE445107B (en) * | 1983-06-22 | 1986-06-02 | Volvo Penta Ab | ROTOR DEVICE |
-
1984
- 1984-08-22 FI FI843301A patent/FI75128C/en not_active IP Right Cessation
-
1985
- 1985-07-08 WO PCT/FI1985/000065 patent/WO1986001483A1/en active Application Filing
- 1985-07-08 AU AU46397/85A patent/AU4639785A/en not_active Abandoned
- 1985-07-08 NL NL8520216A patent/NL8520216A/en unknown
- 1985-07-08 DE DE19853590393 patent/DE3590393T1/de not_active Withdrawn
- 1985-07-08 GB GB8703462A patent/GB2187516B/en not_active Expired
- 1985-07-08 JP JP60503415A patent/JPS61503022A/en active Pending
-
1986
- 1986-04-16 DK DK174786A patent/DK174786A/en unknown
- 1986-04-18 NO NO861552A patent/NO861552L/en unknown
-
1987
- 1987-02-20 SE SE8700721A patent/SE8700721L/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
GB2187516A (en) | 1987-09-09 |
WO1986001483A1 (en) | 1986-03-13 |
FI843301A0 (en) | 1984-08-22 |
DE3590393T1 (en) | 1987-06-04 |
SE8700721D0 (en) | 1987-02-20 |
SE8700721L (en) | 1987-02-20 |
NL8520216A (en) | 1987-05-04 |
FI75128C (en) | 1988-05-09 |
GB2187516B (en) | 1989-05-10 |
DK174786D0 (en) | 1986-04-16 |
GB8703462D0 (en) | 1987-03-18 |
FI843301A (en) | 1986-02-23 |
DK174786A (en) | 1986-06-06 |
FI75128B (en) | 1988-01-29 |
AU4639785A (en) | 1986-03-24 |
JPS61503022A (en) | 1986-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3478620A (en) | Marine propulsion unit with dual drive shafts and dual propeller shafts | |
US4642059A (en) | Marine contra-rotating propeller apparatus | |
NO339938B1 (en) | Drive system for ships | |
NO973775L (en) | jet propulsion system | |
US4828518A (en) | Double reverse revolution propeller apparatus | |
US5836795A (en) | Watercraft drive with a rudder propeller | |
NO861552L (en) | CONTROL ROTATING PROPELL DRIVES. | |
JPS62273194A (en) | Propeller device for ship | |
ITPG960026A1 (en) | VERTICAL AXIS AND TRANSVERSAL FLOW NAUTICAL THRUSTER WITH CONTINUOUS SELF-ORIENTATION OF THE BLADES ABLE TO SATISFY THE VARIOUS | |
KR20120004280A (en) | Propulsion apparatus and ship including the same | |
US3745963A (en) | Boat structure | |
US3938464A (en) | Contra-rotating propeller drive system | |
NO145829B (en) | MARINT PROPELLAGGREGAT. | |
EP3551530B1 (en) | Strut mounted gear box for counter rotating propellers | |
US8393923B2 (en) | Marine propulsion assembly | |
GB2063804A (en) | Wind powered water borne vessel | |
NO311337B1 (en) | Boat propulsion unit | |
US1545723A (en) | Propelling and steering apparatus for vessels | |
KR102510678B1 (en) | azimuth thruster | |
US5205767A (en) | Propelling system suitable for use on watercraft | |
WO2005021372A1 (en) | Marine propulsion/steering system comprising single propeller shaft driven with two engines | |
US1851833A (en) | Boat propeller unit | |
US596178A (en) | Propelling mechanism for ships | |
SU604747A1 (en) | Ship's angular propulsion column | |
US1229583A (en) | Means for propulsion. |